Properties

Label 592.2.a.e.1.1
Level $592$
Weight $2$
Character 592.1
Self dual yes
Analytic conductor $4.727$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(1,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 37)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 592.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -2.00000 q^{5} +1.00000 q^{7} +6.00000 q^{9} +5.00000 q^{11} -2.00000 q^{13} -6.00000 q^{15} +3.00000 q^{21} -2.00000 q^{23} -1.00000 q^{25} +9.00000 q^{27} +6.00000 q^{29} +4.00000 q^{31} +15.0000 q^{33} -2.00000 q^{35} -1.00000 q^{37} -6.00000 q^{39} -9.00000 q^{41} -2.00000 q^{43} -12.0000 q^{45} +9.00000 q^{47} -6.00000 q^{49} +1.00000 q^{53} -10.0000 q^{55} -8.00000 q^{59} -8.00000 q^{61} +6.00000 q^{63} +4.00000 q^{65} -8.00000 q^{67} -6.00000 q^{69} -9.00000 q^{71} -1.00000 q^{73} -3.00000 q^{75} +5.00000 q^{77} -4.00000 q^{79} +9.00000 q^{81} +15.0000 q^{83} +18.0000 q^{87} +4.00000 q^{89} -2.00000 q^{91} +12.0000 q^{93} +4.00000 q^{97} +30.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 6.00000 2.00000
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −6.00000 −1.54919
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 15.0000 2.61116
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) −12.0000 −1.78885
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) 0 0
\(55\) −10.0000 −1.34840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −8.00000 −1.02430 −0.512148 0.858898i \(-0.671150\pi\)
−0.512148 + 0.858898i \(0.671150\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −9.00000 −1.06810 −0.534052 0.845452i \(-0.679331\pi\)
−0.534052 + 0.845452i \(0.679331\pi\)
\(72\) 0 0
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) 0 0
\(75\) −3.00000 −0.346410
\(76\) 0 0
\(77\) 5.00000 0.569803
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 15.0000 1.64646 0.823232 0.567705i \(-0.192169\pi\)
0.823232 + 0.567705i \(0.192169\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 18.0000 1.92980
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) 12.0000 1.24434
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.00000 0.406138 0.203069 0.979164i \(-0.434908\pi\)
0.203069 + 0.979164i \(0.434908\pi\)
\(98\) 0 0
\(99\) 30.0000 3.01511
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −18.0000 −1.77359 −0.886796 0.462160i \(-0.847074\pi\)
−0.886796 + 0.462160i \(0.847074\pi\)
\(104\) 0 0
\(105\) −6.00000 −0.585540
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) 0 0
\(111\) −3.00000 −0.284747
\(112\) 0 0
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) −12.0000 −1.10940
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) −27.0000 −2.43451
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −1.00000 −0.0887357 −0.0443678 0.999015i \(-0.514127\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 0 0
\(129\) −6.00000 −0.528271
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −18.0000 −1.54919
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 27.0000 2.27381
\(142\) 0 0
\(143\) −10.0000 −0.836242
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 0 0
\(147\) −18.0000 −1.48461
\(148\) 0 0
\(149\) −5.00000 −0.409616 −0.204808 0.978802i \(-0.565657\pi\)
−0.204808 + 0.978802i \(0.565657\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 23.0000 1.83560 0.917800 0.397043i \(-0.129964\pi\)
0.917800 + 0.397043i \(0.129964\pi\)
\(158\) 0 0
\(159\) 3.00000 0.237915
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 18.0000 1.40987 0.704934 0.709273i \(-0.250976\pi\)
0.704934 + 0.709273i \(0.250976\pi\)
\(164\) 0 0
\(165\) −30.0000 −2.33550
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.00000 0.684257 0.342129 0.939653i \(-0.388852\pi\)
0.342129 + 0.939653i \(0.388852\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) −24.0000 −1.80395
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 0 0
\(185\) 2.00000 0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 9.00000 0.654654
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −26.0000 −1.87152 −0.935760 0.352636i \(-0.885285\pi\)
−0.935760 + 0.352636i \(0.885285\pi\)
\(194\) 0 0
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) 3.00000 0.213741 0.106871 0.994273i \(-0.465917\pi\)
0.106871 + 0.994273i \(0.465917\pi\)
\(198\) 0 0
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0 0
\(201\) −24.0000 −1.69283
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 18.0000 1.25717
\(206\) 0 0
\(207\) −12.0000 −0.834058
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 0 0
\(213\) −27.0000 −1.85001
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) −3.00000 −0.202721
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 17.0000 1.13840 0.569202 0.822198i \(-0.307252\pi\)
0.569202 + 0.822198i \(0.307252\pi\)
\(224\) 0 0
\(225\) −6.00000 −0.400000
\(226\) 0 0
\(227\) 16.0000 1.06196 0.530979 0.847385i \(-0.321824\pi\)
0.530979 + 0.847385i \(0.321824\pi\)
\(228\) 0 0
\(229\) 7.00000 0.462573 0.231287 0.972886i \(-0.425707\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) 0 0
\(231\) 15.0000 0.986928
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −18.0000 −1.17419
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.0000 0.766652
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 45.0000 2.85176
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) −10.0000 −0.628695
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 36.0000 2.22834
\(262\) 0 0
\(263\) −19.0000 −1.17159 −0.585795 0.810459i \(-0.699218\pi\)
−0.585795 + 0.810459i \(0.699218\pi\)
\(264\) 0 0
\(265\) −2.00000 −0.122859
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 31.0000 1.88312 0.941558 0.336851i \(-0.109362\pi\)
0.941558 + 0.336851i \(0.109362\pi\)
\(272\) 0 0
\(273\) −6.00000 −0.363137
\(274\) 0 0
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) 12.0000 0.721010 0.360505 0.932757i \(-0.382604\pi\)
0.360505 + 0.932757i \(0.382604\pi\)
\(278\) 0 0
\(279\) 24.0000 1.43684
\(280\) 0 0
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 12.0000 0.703452
\(292\) 0 0
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 16.0000 0.931556
\(296\) 0 0
\(297\) 45.0000 2.61116
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 0 0
\(303\) 9.00000 0.517036
\(304\) 0 0
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) 17.0000 0.970241 0.485121 0.874447i \(-0.338776\pi\)
0.485121 + 0.874447i \(0.338776\pi\)
\(308\) 0 0
\(309\) −54.0000 −3.07195
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) 0 0
\(315\) −12.0000 −0.676123
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) 30.0000 1.67968
\(320\) 0 0
\(321\) 36.0000 2.00932
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) −48.0000 −2.65441
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) −54.0000 −2.93288
\(340\) 0 0
\(341\) 20.0000 1.08306
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) 10.0000 0.536828 0.268414 0.963304i \(-0.413500\pi\)
0.268414 + 0.963304i \(0.413500\pi\)
\(348\) 0 0
\(349\) 6.00000 0.321173 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(350\) 0 0
\(351\) −18.0000 −0.960769
\(352\) 0 0
\(353\) 8.00000 0.425797 0.212899 0.977074i \(-0.431710\pi\)
0.212899 + 0.977074i \(0.431710\pi\)
\(354\) 0 0
\(355\) 18.0000 0.955341
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.0000 0.791670 0.395835 0.918322i \(-0.370455\pi\)
0.395835 + 0.918322i \(0.370455\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 42.0000 2.20443
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −54.0000 −2.81113
\(370\) 0 0
\(371\) 1.00000 0.0519174
\(372\) 0 0
\(373\) −19.0000 −0.983783 −0.491891 0.870657i \(-0.663694\pi\)
−0.491891 + 0.870657i \(0.663694\pi\)
\(374\) 0 0
\(375\) 36.0000 1.85903
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) −15.0000 −0.770498 −0.385249 0.922813i \(-0.625884\pi\)
−0.385249 + 0.922813i \(0.625884\pi\)
\(380\) 0 0
\(381\) −3.00000 −0.153695
\(382\) 0 0
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) 0 0
\(385\) −10.0000 −0.509647
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) 4.00000 0.202808 0.101404 0.994845i \(-0.467667\pi\)
0.101404 + 0.994845i \(0.467667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 36.0000 1.81596
\(394\) 0 0
\(395\) 8.00000 0.402524
\(396\) 0 0
\(397\) −5.00000 −0.250943 −0.125471 0.992097i \(-0.540044\pi\)
−0.125471 + 0.992097i \(0.540044\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 0 0
\(405\) −18.0000 −0.894427
\(406\) 0 0
\(407\) −5.00000 −0.247841
\(408\) 0 0
\(409\) 20.0000 0.988936 0.494468 0.869196i \(-0.335363\pi\)
0.494468 + 0.869196i \(0.335363\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) −8.00000 −0.393654
\(414\) 0 0
\(415\) −30.0000 −1.47264
\(416\) 0 0
\(417\) −12.0000 −0.587643
\(418\) 0 0
\(419\) −7.00000 −0.341972 −0.170986 0.985273i \(-0.554695\pi\)
−0.170986 + 0.985273i \(0.554695\pi\)
\(420\) 0 0
\(421\) −24.0000 −1.16969 −0.584844 0.811146i \(-0.698844\pi\)
−0.584844 + 0.811146i \(0.698844\pi\)
\(422\) 0 0
\(423\) 54.0000 2.62557
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) 0 0
\(429\) −30.0000 −1.44841
\(430\) 0 0
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) 9.00000 0.432512 0.216256 0.976337i \(-0.430615\pi\)
0.216256 + 0.976337i \(0.430615\pi\)
\(434\) 0 0
\(435\) −36.0000 −1.72607
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) −36.0000 −1.71429
\(442\) 0 0
\(443\) −1.00000 −0.0475114 −0.0237557 0.999718i \(-0.507562\pi\)
−0.0237557 + 0.999718i \(0.507562\pi\)
\(444\) 0 0
\(445\) −8.00000 −0.379236
\(446\) 0 0
\(447\) −15.0000 −0.709476
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) −45.0000 −2.11897
\(452\) 0 0
\(453\) −48.0000 −2.25524
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 22.0000 1.02243 0.511213 0.859454i \(-0.329196\pi\)
0.511213 + 0.859454i \(0.329196\pi\)
\(464\) 0 0
\(465\) −24.0000 −1.11297
\(466\) 0 0
\(467\) 2.00000 0.0925490 0.0462745 0.998929i \(-0.485265\pi\)
0.0462745 + 0.998929i \(0.485265\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 69.0000 3.17935
\(472\) 0 0
\(473\) −10.0000 −0.459800
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −14.0000 −0.639676 −0.319838 0.947472i \(-0.603629\pi\)
−0.319838 + 0.947472i \(0.603629\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) −6.00000 −0.273009
\(484\) 0 0
\(485\) −8.00000 −0.363261
\(486\) 0 0
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) 0 0
\(489\) 54.0000 2.44196
\(490\) 0 0
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −60.0000 −2.69680
\(496\) 0 0
\(497\) −9.00000 −0.403705
\(498\) 0 0
\(499\) −12.0000 −0.537194 −0.268597 0.963253i \(-0.586560\pi\)
−0.268597 + 0.963253i \(0.586560\pi\)
\(500\) 0 0
\(501\) 36.0000 1.60836
\(502\) 0 0
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) −27.0000 −1.19911
\(508\) 0 0
\(509\) −31.0000 −1.37405 −0.687025 0.726633i \(-0.741084\pi\)
−0.687025 + 0.726633i \(0.741084\pi\)
\(510\) 0 0
\(511\) −1.00000 −0.0442374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 36.0000 1.58635
\(516\) 0 0
\(517\) 45.0000 1.97910
\(518\) 0 0
\(519\) 27.0000 1.18517
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 0 0
\(525\) −3.00000 −0.130931
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −48.0000 −2.08302
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) 0 0
\(537\) −54.0000 −2.33027
\(538\) 0 0
\(539\) −30.0000 −1.29219
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 0 0
\(543\) 15.0000 0.643712
\(544\) 0 0
\(545\) 32.0000 1.37073
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) −48.0000 −2.04859
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 −0.170097
\(554\) 0 0
\(555\) 6.00000 0.254686
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.0000 1.26435 0.632175 0.774826i \(-0.282163\pi\)
0.632175 + 0.774826i \(0.282163\pi\)
\(564\) 0 0
\(565\) 36.0000 1.51453
\(566\) 0 0
\(567\) 9.00000 0.377964
\(568\) 0 0
\(569\) −24.0000 −1.00613 −0.503066 0.864248i \(-0.667795\pi\)
−0.503066 + 0.864248i \(0.667795\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) 0 0
\(575\) 2.00000 0.0834058
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) −78.0000 −3.24157
\(580\) 0 0
\(581\) 15.0000 0.622305
\(582\) 0 0
\(583\) 5.00000 0.207079
\(584\) 0 0
\(585\) 24.0000 0.992278
\(586\) 0 0
\(587\) 32.0000 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 9.00000 0.370211
\(592\) 0 0
\(593\) −5.00000 −0.205325 −0.102663 0.994716i \(-0.532736\pi\)
−0.102663 + 0.994716i \(0.532736\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.00000 −0.245564
\(598\) 0 0
\(599\) −1.00000 −0.0408589 −0.0204294 0.999791i \(-0.506503\pi\)
−0.0204294 + 0.999791i \(0.506503\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) −48.0000 −1.95471
\(604\) 0 0
\(605\) −28.0000 −1.13836
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 18.0000 0.729397
\(610\) 0 0
\(611\) −18.0000 −0.728202
\(612\) 0 0
\(613\) 15.0000 0.605844 0.302922 0.953015i \(-0.402038\pi\)
0.302922 + 0.953015i \(0.402038\pi\)
\(614\) 0 0
\(615\) 54.0000 2.17749
\(616\) 0 0
\(617\) 17.0000 0.684394 0.342197 0.939628i \(-0.388829\pi\)
0.342197 + 0.939628i \(0.388829\pi\)
\(618\) 0 0
\(619\) 1.00000 0.0401934 0.0200967 0.999798i \(-0.493603\pi\)
0.0200967 + 0.999798i \(0.493603\pi\)
\(620\) 0 0
\(621\) −18.0000 −0.722315
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 28.0000 1.11466 0.557331 0.830290i \(-0.311825\pi\)
0.557331 + 0.830290i \(0.311825\pi\)
\(632\) 0 0
\(633\) 39.0000 1.55011
\(634\) 0 0
\(635\) 2.00000 0.0793676
\(636\) 0 0
\(637\) 12.0000 0.475457
\(638\) 0 0
\(639\) −54.0000 −2.13621
\(640\) 0 0
\(641\) −1.00000 −0.0394976 −0.0197488 0.999805i \(-0.506287\pi\)
−0.0197488 + 0.999805i \(0.506287\pi\)
\(642\) 0 0
\(643\) −14.0000 −0.552106 −0.276053 0.961142i \(-0.589027\pi\)
−0.276053 + 0.961142i \(0.589027\pi\)
\(644\) 0 0
\(645\) 12.0000 0.472500
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) −40.0000 −1.57014
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) −24.0000 −0.937758
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) 51.0000 1.97177
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 27.0000 1.04077 0.520387 0.853931i \(-0.325788\pi\)
0.520387 + 0.853931i \(0.325788\pi\)
\(674\) 0 0
\(675\) −9.00000 −0.346410
\(676\) 0 0
\(677\) −11.0000 −0.422764 −0.211382 0.977403i \(-0.567796\pi\)
−0.211382 + 0.977403i \(0.567796\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 48.0000 1.83936
\(682\) 0 0
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 21.0000 0.801200
\(688\) 0 0
\(689\) −2.00000 −0.0761939
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) 0 0
\(693\) 30.0000 1.13961
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −54.0000 −2.03376
\(706\) 0 0
\(707\) 3.00000 0.112827
\(708\) 0 0
\(709\) 40.0000 1.50223 0.751116 0.660171i \(-0.229516\pi\)
0.751116 + 0.660171i \(0.229516\pi\)
\(710\) 0 0
\(711\) −24.0000 −0.900070
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) 0 0
\(715\) 20.0000 0.747958
\(716\) 0 0
\(717\) 18.0000 0.672222
\(718\) 0 0
\(719\) −39.0000 −1.45445 −0.727227 0.686397i \(-0.759191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 42.0000 1.56200
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 7.00000 0.258551 0.129275 0.991609i \(-0.458735\pi\)
0.129275 + 0.991609i \(0.458735\pi\)
\(734\) 0 0
\(735\) 36.0000 1.32788
\(736\) 0 0
\(737\) −40.0000 −1.47342
\(738\) 0 0
\(739\) 9.00000 0.331070 0.165535 0.986204i \(-0.447065\pi\)
0.165535 + 0.986204i \(0.447065\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.0000 −0.770415 −0.385208 0.922830i \(-0.625870\pi\)
−0.385208 + 0.922830i \(0.625870\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) 90.0000 3.29293
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) −25.0000 −0.912263 −0.456131 0.889912i \(-0.650765\pi\)
−0.456131 + 0.889912i \(0.650765\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) −50.0000 −1.81728 −0.908640 0.417579i \(-0.862879\pi\)
−0.908640 + 0.417579i \(0.862879\pi\)
\(758\) 0 0
\(759\) −30.0000 −1.08893
\(760\) 0 0
\(761\) −35.0000 −1.26875 −0.634375 0.773026i \(-0.718742\pi\)
−0.634375 + 0.773026i \(0.718742\pi\)
\(762\) 0 0
\(763\) −16.0000 −0.579239
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.0000 0.577727
\(768\) 0 0
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.00000 −0.323708 −0.161854 0.986815i \(-0.551747\pi\)
−0.161854 + 0.986815i \(0.551747\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) −3.00000 −0.107624
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −45.0000 −1.61023
\(782\) 0 0
\(783\) 54.0000 1.92980
\(784\) 0 0
\(785\) −46.0000 −1.64181
\(786\) 0 0
\(787\) 5.00000 0.178231 0.0891154 0.996021i \(-0.471596\pi\)
0.0891154 + 0.996021i \(0.471596\pi\)
\(788\) 0 0
\(789\) −57.0000 −2.02925
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 16.0000 0.568177
\(794\) 0 0
\(795\) −6.00000 −0.212798
\(796\) 0 0
\(797\) 52.0000 1.84193 0.920967 0.389640i \(-0.127401\pi\)
0.920967 + 0.389640i \(0.127401\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 24.0000 0.847998
\(802\) 0 0
\(803\) −5.00000 −0.176446
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 2.00000 0.0703163 0.0351581 0.999382i \(-0.488807\pi\)
0.0351581 + 0.999382i \(0.488807\pi\)
\(810\) 0 0
\(811\) −47.0000 −1.65039 −0.825197 0.564846i \(-0.808936\pi\)
−0.825197 + 0.564846i \(0.808936\pi\)
\(812\) 0 0
\(813\) 93.0000 3.26165
\(814\) 0 0
\(815\) −36.0000 −1.26102
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) −47.0000 −1.64031 −0.820156 0.572140i \(-0.806113\pi\)
−0.820156 + 0.572140i \(0.806113\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) −15.0000 −0.522233
\(826\) 0 0
\(827\) −22.0000 −0.765015 −0.382507 0.923952i \(-0.624939\pi\)
−0.382507 + 0.923952i \(0.624939\pi\)
\(828\) 0 0
\(829\) −4.00000 −0.138926 −0.0694629 0.997585i \(-0.522129\pi\)
−0.0694629 + 0.997585i \(0.522129\pi\)
\(830\) 0 0
\(831\) 36.0000 1.24883
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −24.0000 −0.830554
\(836\) 0 0
\(837\) 36.0000 1.24434
\(838\) 0 0
\(839\) −44.0000 −1.51905 −0.759524 0.650479i \(-0.774568\pi\)
−0.759524 + 0.650479i \(0.774568\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 36.0000 1.23991
\(844\) 0 0
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −48.0000 −1.63965 −0.819824 0.572615i \(-0.805929\pi\)
−0.819824 + 0.572615i \(0.805929\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) −27.0000 −0.920158
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) −51.0000 −1.73205
\(868\) 0 0
\(869\) −20.0000 −0.678454
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) 24.0000 0.812277
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) 50.0000 1.68838 0.844190 0.536044i \(-0.180082\pi\)
0.844190 + 0.536044i \(0.180082\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) −48.0000 −1.61533 −0.807664 0.589643i \(-0.799269\pi\)
−0.807664 + 0.589643i \(0.799269\pi\)
\(884\) 0 0
\(885\) 48.0000 1.61350
\(886\) 0 0
\(887\) −25.0000 −0.839418 −0.419709 0.907659i \(-0.637868\pi\)
−0.419709 + 0.907659i \(0.637868\pi\)
\(888\) 0 0
\(889\) −1.00000 −0.0335389
\(890\) 0 0
\(891\) 45.0000 1.50756
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 36.0000 1.20335
\(896\) 0 0
\(897\) 12.0000 0.400668
\(898\) 0 0
\(899\) 24.0000 0.800445
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.00000 −0.199667
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) −52.0000 −1.72663 −0.863316 0.504664i \(-0.831616\pi\)
−0.863316 + 0.504664i \(0.831616\pi\)
\(908\) 0 0
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −26.0000 −0.861418 −0.430709 0.902491i \(-0.641737\pi\)
−0.430709 + 0.902491i \(0.641737\pi\)
\(912\) 0 0
\(913\) 75.0000 2.48214
\(914\) 0 0
\(915\) 48.0000 1.58683
\(916\) 0 0
\(917\) 12.0000 0.396275
\(918\) 0 0
\(919\) 58.0000 1.91324 0.956622 0.291333i \(-0.0940987\pi\)
0.956622 + 0.291333i \(0.0940987\pi\)
\(920\) 0 0
\(921\) 51.0000 1.68051
\(922\) 0 0
\(923\) 18.0000 0.592477
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) 0 0
\(927\) −108.000 −3.54719
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.0000 1.20874 0.604369 0.796705i \(-0.293425\pi\)
0.604369 + 0.796705i \(0.293425\pi\)
\(938\) 0 0
\(939\) 66.0000 2.15383
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) 18.0000 0.586161
\(944\) 0 0
\(945\) −18.0000 −0.585540
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) 0 0
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) 66.0000 2.14020
\(952\) 0 0
\(953\) 61.0000 1.97598 0.987992 0.154506i \(-0.0493785\pi\)
0.987992 + 0.154506i \(0.0493785\pi\)
\(954\) 0 0
\(955\) −8.00000 −0.258874
\(956\) 0 0
\(957\) 90.0000 2.90929
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 72.0000 2.32017
\(964\) 0 0
\(965\) 52.0000 1.67394
\(966\) 0 0
\(967\) 14.0000 0.450210 0.225105 0.974335i \(-0.427728\pi\)
0.225105 + 0.974335i \(0.427728\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.00000 0.256732 0.128366 0.991727i \(-0.459027\pi\)
0.128366 + 0.991727i \(0.459027\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 6.00000 0.192154
\(976\) 0 0
\(977\) 28.0000 0.895799 0.447900 0.894084i \(-0.352172\pi\)
0.447900 + 0.894084i \(0.352172\pi\)
\(978\) 0 0
\(979\) 20.0000 0.639203
\(980\) 0 0
\(981\) −96.0000 −3.06504
\(982\) 0 0
\(983\) −9.00000 −0.287055 −0.143528 0.989646i \(-0.545845\pi\)
−0.143528 + 0.989646i \(0.545845\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 27.0000 0.859419
\(988\) 0 0
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) 18.0000 0.571789 0.285894 0.958261i \(-0.407709\pi\)
0.285894 + 0.958261i \(0.407709\pi\)
\(992\) 0 0
\(993\) 6.00000 0.190404
\(994\) 0 0
\(995\) 4.00000 0.126809
\(996\) 0 0
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) 0 0
\(999\) −9.00000 −0.284747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.a.e.1.1 1
3.2 odd 2 5328.2.a.r.1.1 1
4.3 odd 2 37.2.a.a.1.1 1
8.3 odd 2 2368.2.a.q.1.1 1
8.5 even 2 2368.2.a.b.1.1 1
12.11 even 2 333.2.a.d.1.1 1
20.3 even 4 925.2.b.b.149.2 2
20.7 even 4 925.2.b.b.149.1 2
20.19 odd 2 925.2.a.e.1.1 1
28.27 even 2 1813.2.a.a.1.1 1
44.43 even 2 4477.2.a.b.1.1 1
52.51 odd 2 6253.2.a.c.1.1 1
60.59 even 2 8325.2.a.e.1.1 1
148.31 even 4 1369.2.b.c.1368.1 2
148.43 even 4 1369.2.b.c.1368.2 2
148.147 odd 2 1369.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
37.2.a.a.1.1 1 4.3 odd 2
333.2.a.d.1.1 1 12.11 even 2
592.2.a.e.1.1 1 1.1 even 1 trivial
925.2.a.e.1.1 1 20.19 odd 2
925.2.b.b.149.1 2 20.7 even 4
925.2.b.b.149.2 2 20.3 even 4
1369.2.a.e.1.1 1 148.147 odd 2
1369.2.b.c.1368.1 2 148.31 even 4
1369.2.b.c.1368.2 2 148.43 even 4
1813.2.a.a.1.1 1 28.27 even 2
2368.2.a.b.1.1 1 8.5 even 2
2368.2.a.q.1.1 1 8.3 odd 2
4477.2.a.b.1.1 1 44.43 even 2
5328.2.a.r.1.1 1 3.2 odd 2
6253.2.a.c.1.1 1 52.51 odd 2
8325.2.a.e.1.1 1 60.59 even 2