Defining parameters
Level: | \( N \) | = | \( 60 = 2^{2} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 5 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(60))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 42 | 94 |
Cusp forms | 57 | 34 | 23 |
Eisenstein series | 79 | 8 | 71 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(60))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(60)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 1}\)