Properties

Label 60.2
Level 60
Weight 2
Dimension 34
Nonzero newspaces 5
Newform subspaces 6
Sturm bound 384
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 6 \)
Sturm bound: \(384\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(60))\).

Total New Old
Modular forms 136 42 94
Cusp forms 57 34 23
Eisenstein series 79 8 71

Trace form

\( 34 q + 2 q^{3} - 8 q^{4} + 2 q^{5} - 8 q^{6} - 4 q^{7} - 12 q^{8} - 10 q^{9} - 20 q^{10} - 8 q^{11} - 4 q^{12} - 24 q^{13} - 14 q^{15} - 20 q^{17} + 16 q^{18} + 20 q^{20} - 12 q^{21} + 8 q^{22} + 24 q^{24}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
60.2.a \(\chi_{60}(1, \cdot)\) None 0 1
60.2.d \(\chi_{60}(49, \cdot)\) 60.2.d.a 2 1
60.2.e \(\chi_{60}(11, \cdot)\) 60.2.e.a 8 1
60.2.h \(\chi_{60}(59, \cdot)\) 60.2.h.a 4 1
60.2.h.b 4
60.2.i \(\chi_{60}(17, \cdot)\) 60.2.i.a 4 2
60.2.j \(\chi_{60}(7, \cdot)\) 60.2.j.a 12 2

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(60))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(60)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 1}\)