Properties

Label 616.1.z.b.131.1
Level $616$
Weight $1$
Character 616.131
Analytic conductor $0.307$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
RM discriminant 88
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,1,Mod(131,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.131");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 616.z (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.307424047782\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.130153408.1

Embedding invariants

Embedding label 131.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 616.131
Dual form 616.1.z.b.395.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.73205i q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(0.500000 + 0.866025i) q^{11} +(1.50000 + 0.866025i) q^{12} +1.73205i q^{13} +(0.500000 + 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{18} -1.73205i q^{21} +1.00000 q^{22} +(1.50000 - 0.866025i) q^{24} +(0.500000 + 0.866025i) q^{25} +(1.50000 + 0.866025i) q^{26} +1.73205i q^{27} +1.00000 q^{28} -1.00000 q^{29} +(0.500000 + 0.866025i) q^{32} +(-1.50000 - 0.866025i) q^{33} -2.00000 q^{36} +(-1.50000 - 2.59808i) q^{39} +(-1.50000 - 0.866025i) q^{42} +(0.500000 - 0.866025i) q^{44} -1.73205i q^{48} +(-0.500000 - 0.866025i) q^{49} +1.00000 q^{50} +(1.50000 - 0.866025i) q^{52} +(1.50000 + 0.866025i) q^{54} +(0.500000 - 0.866025i) q^{56} +(-0.500000 + 0.866025i) q^{58} +(1.50000 - 0.866025i) q^{59} +(-1.50000 - 0.866025i) q^{61} +(1.00000 + 1.73205i) q^{63} +1.00000 q^{64} +(-1.50000 + 0.866025i) q^{66} +(-0.500000 - 0.866025i) q^{67} +(-1.00000 + 1.73205i) q^{72} +(-1.50000 - 0.866025i) q^{75} -1.00000 q^{77} -3.00000 q^{78} +(-0.500000 + 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} +(-1.50000 + 0.866025i) q^{84} +(1.50000 - 0.866025i) q^{87} +(-0.500000 - 0.866025i) q^{88} +(-1.50000 - 0.866025i) q^{91} +(-1.50000 - 0.866025i) q^{96} +1.73205i q^{97} -1.00000 q^{98} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} - q^{7} - 2 q^{8} + 2 q^{9} + q^{11} + 3 q^{12} + q^{14} - q^{16} - 2 q^{18} + 2 q^{22} + 3 q^{24} + q^{25} + 3 q^{26} + 2 q^{28} - 2 q^{29} + q^{32} - 3 q^{33} - 4 q^{36}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.500000 0.866025i
\(3\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(4\) −0.500000 0.866025i −0.500000 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 1.73205i 1.73205i
\(7\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(8\) −1.00000 −1.00000
\(9\) 1.00000 1.73205i 1.00000 1.73205i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(12\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(13\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −1.00000 1.73205i −1.00000 1.73205i
\(19\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(20\) 0 0
\(21\) 1.73205i 1.73205i
\(22\) 1.00000 1.00000
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 1.50000 0.866025i 1.50000 0.866025i
\(25\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(26\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(27\) 1.73205i 1.73205i
\(28\) 1.00000 1.00000
\(29\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(32\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(33\) −1.50000 0.866025i −1.50000 0.866025i
\(34\) 0 0
\(35\) 0 0
\(36\) −2.00000 −2.00000
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) −1.50000 2.59808i −1.50000 2.59808i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −1.50000 0.866025i −1.50000 0.866025i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0.500000 0.866025i 0.500000 0.866025i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 1.73205i 1.73205i
\(49\) −0.500000 0.866025i −0.500000 0.866025i
\(50\) 1.00000 1.00000
\(51\) 0 0
\(52\) 1.50000 0.866025i 1.50000 0.866025i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.500000 0.866025i
\(57\) 0 0
\(58\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(59\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(60\) 0 0
\(61\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(67\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(73\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) −1.50000 0.866025i −1.50000 0.866025i
\(76\) 0 0
\(77\) −1.00000 −1.00000
\(78\) −3.00000 −3.00000
\(79\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(85\) 0 0
\(86\) 0 0
\(87\) 1.50000 0.866025i 1.50000 0.866025i
\(88\) −0.500000 0.866025i −0.500000 0.866025i
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) −1.50000 0.866025i −1.50000 0.866025i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.50000 0.866025i −1.50000 0.866025i
\(97\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) −1.00000 −1.00000
\(99\) 2.00000 2.00000
\(100\) 0.500000 0.866025i 0.500000 0.866025i
\(101\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 1.73205i 1.73205i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 1.50000 0.866025i 1.50000 0.866025i
\(109\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.500000 0.866025i −0.500000 0.866025i
\(113\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(117\) 3.00000 + 1.73205i 3.00000 + 1.73205i
\(118\) 1.73205i 1.73205i
\(119\) 0 0
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(122\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 2.00000 2.00000
\(127\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0.500000 0.866025i 0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 1.73205i 1.73205i
\(133\) 0 0
\(134\) −1.00000 −1.00000
\(135\) 0 0
\(136\) 0 0
\(137\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(144\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(145\) 0 0
\(146\) 0 0
\(147\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(148\) 0 0
\(149\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(150\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(151\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(155\) 0 0
\(156\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(157\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(158\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.00000 −1.00000
\(163\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(168\) 1.73205i 1.73205i
\(169\) −2.00000 −2.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 1.73205i 1.73205i
\(175\) −1.00000 −1.00000
\(176\) −1.00000 −1.00000
\(177\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(178\) 0 0
\(179\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(183\) 3.00000 3.00000
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.50000 0.866025i −1.50000 0.866025i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 1.00000 1.73205i 1.00000 1.73205i
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −0.500000 0.866025i −0.500000 0.866025i
\(201\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(202\) 1.73205i 1.73205i
\(203\) 0.500000 0.866025i 0.500000 0.866025i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −1.50000 0.866025i −1.50000 0.866025i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 1.73205i 1.73205i
\(217\) 0 0
\(218\) 2.00000 2.00000
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) −1.00000 −1.00000
\(225\) 2.00000 2.00000
\(226\) 0.500000 0.866025i 0.500000 0.866025i
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(230\) 0 0
\(231\) 1.50000 0.866025i 1.50000 0.866025i
\(232\) 1.00000 1.00000
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 3.00000 1.73205i 3.00000 1.73205i
\(235\) 0 0
\(236\) −1.50000 0.866025i −1.50000 0.866025i
\(237\) 1.73205i 1.73205i
\(238\) 0 0
\(239\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(243\) 0 0
\(244\) 1.73205i 1.73205i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.00000 1.73205i 1.00000 1.73205i
\(253\) 0 0
\(254\) 0.500000 0.866025i 0.500000 0.866025i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(262\) 0 0
\(263\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 3.00000 3.00000
\(274\) −1.00000 −1.00000
\(275\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(276\) 0 0
\(277\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.73205i 1.73205i
\(287\) 0 0
\(288\) 2.00000 2.00000
\(289\) 0.500000 0.866025i 0.500000 0.866025i
\(290\) 0 0
\(291\) −1.50000 2.59808i −1.50000 2.59808i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 1.50000 0.866025i 1.50000 0.866025i
\(295\) 0 0
\(296\) 0 0
\(297\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(298\) −1.00000 1.73205i −1.00000 1.73205i
\(299\) 0 0
\(300\) 1.73205i 1.73205i
\(301\) 0 0
\(302\) 1.00000 1.00000
\(303\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(313\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.00000 1.00000
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) −0.500000 0.866025i −0.500000 0.866025i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(325\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(326\) −0.500000 0.866025i −0.500000 0.866025i
\(327\) −3.00000 1.73205i −3.00000 1.73205i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −1.50000 0.866025i −1.50000 0.866025i
\(335\) 0 0
\(336\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(339\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 1.50000 0.866025i 1.50000 0.866025i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) −1.50000 0.866025i −1.50000 0.866025i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(351\) −3.00000 −3.00000
\(352\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(353\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(354\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 1.00000 1.00000
\(359\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(360\) 0 0
\(361\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(362\) 0 0
\(363\) 1.73205i 1.73205i
\(364\) 1.73205i 1.73205i
\(365\) 0 0
\(366\) 1.50000 2.59808i 1.50000 2.59808i
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.73205i 1.73205i
\(378\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(379\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(380\) 0 0
\(381\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 1.73205i 1.73205i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 1.50000 0.866025i 1.50000 0.866025i
\(389\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(393\) 0 0
\(394\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(395\) 0 0
\(396\) −1.00000 1.73205i −1.00000 1.73205i
\(397\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.00000 −1.00000
\(401\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(402\) 1.50000 0.866025i 1.50000 0.866025i
\(403\) 0 0
\(404\) −1.50000 0.866025i −1.50000 0.866025i
\(405\) 0 0
\(406\) −0.500000 0.866025i −0.500000 0.866025i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(412\) 0 0
\(413\) 1.73205i 1.73205i
\(414\) 0 0
\(415\) 0 0
\(416\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.50000 0.866025i 1.50000 0.866025i
\(428\) 0 0
\(429\) 1.50000 2.59808i 1.50000 2.59808i
\(430\) 0 0
\(431\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −1.50000 0.866025i −1.50000 0.866025i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.00000 1.73205i 1.00000 1.73205i
\(437\) 0 0
\(438\) 0 0
\(439\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) −2.00000 −2.00000
\(442\) 0 0
\(443\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.46410i 3.46410i
\(448\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(449\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(450\) 1.00000 1.73205i 1.00000 1.73205i
\(451\) 0 0
\(452\) −0.500000 0.866025i −0.500000 0.866025i
\(453\) −1.50000 0.866025i −1.50000 0.866025i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 1.73205i 1.73205i
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0.500000 0.866025i 0.500000 0.866025i
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 3.46410i 3.46410i
\(469\) 1.00000 1.00000
\(470\) 0 0
\(471\) 0 0
\(472\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(473\) 0 0
\(474\) −1.50000 0.866025i −1.50000 0.866025i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0.500000 0.866025i 0.500000 0.866025i
\(479\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(489\) 1.73205i 1.73205i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(500\) 0 0
\(501\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(502\) 0 0
\(503\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(504\) −1.00000 1.73205i −1.00000 1.73205i
\(505\) 0 0
\(506\) 0 0
\(507\) 3.00000 1.73205i 3.00000 1.73205i
\(508\) −0.500000 0.866025i −0.500000 0.866025i
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −3.00000 −3.00000
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(523\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) 0 0
\(525\) 1.50000 0.866025i 1.50000 0.866025i
\(526\) 1.00000 1.00000
\(527\) 0 0
\(528\) 1.50000 0.866025i 1.50000 0.866025i
\(529\) −0.500000 0.866025i −0.500000 0.866025i
\(530\) 0 0
\(531\) 3.46410i 3.46410i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(537\) −1.50000 0.866025i −1.50000 0.866025i
\(538\) 0 0
\(539\) 0.500000 0.866025i 0.500000 0.866025i
\(540\) 0 0
\(541\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(542\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 1.50000 2.59808i 1.50000 2.59808i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(549\) −3.00000 + 1.73205i −3.00000 + 1.73205i
\(550\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(551\) 0 0
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.500000 0.866025i
\(554\) −1.00000 −1.00000
\(555\) 0 0
\(556\) 0 0
\(557\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 1.00000
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.73205i 1.00000 1.73205i
\(577\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(578\) −0.500000 0.866025i −0.500000 0.866025i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) −3.00000 −3.00000
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 1.73205i 1.73205i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.50000 0.866025i 1.50000 0.866025i
\(592\) 0 0
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 1.73205i 1.73205i
\(595\) 0 0
\(596\) −2.00000 −2.00000
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −2.00000 −2.00000
\(604\) 0.500000 0.866025i 0.500000 0.866025i
\(605\) 0 0
\(606\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 0 0
\(609\) 1.73205i 1.73205i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.00000 1.00000
\(617\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) 0 0
\(619\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 3.00000 3.00000
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 1.50000 0.866025i 1.50000 0.866025i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0.500000 0.866025i 0.500000 0.866025i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.50000 0.866025i 1.50000 0.866025i
\(638\) −1.00000 −1.00000
\(639\) 0 0
\(640\) 0 0
\(641\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(650\) 1.73205i 1.73205i
\(651\) 0 0
\(652\) −1.00000 −1.00000
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) −3.00000 + 1.73205i −3.00000 + 1.73205i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(669\) 0 0
\(670\) 0 0
\(671\) 1.73205i 1.73205i
\(672\) 1.50000 0.866025i 1.50000 0.866025i
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(676\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 1.73205i 1.73205i
\(679\) −1.50000 0.866025i −1.50000 0.866025i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.500000 0.866025i 0.500000 0.866025i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(692\) 1.73205i 1.73205i
\(693\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(694\) 0 0
\(695\) 0 0
\(696\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(701\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(702\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(703\) 0 0
\(704\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(705\) 0 0
\(706\) 0 0
\(707\) 1.73205i 1.73205i
\(708\) 3.00000 3.00000
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 0.866025i 0.500000 0.866025i
\(717\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(718\) −0.500000 0.866025i −0.500000 0.866025i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) 0 0
\(725\) −0.500000 0.866025i −0.500000 0.866025i
\(726\) −1.50000 0.866025i −1.50000 0.866025i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −1.50000 2.59808i −1.50000 2.59808i
\(733\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.500000 0.866025i 0.500000 0.866025i
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.500000 0.866025i −0.500000 0.866025i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −1.50000 0.866025i −1.50000 0.866025i
\(755\) 0 0
\(756\) 1.73205i 1.73205i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 1.73205i 1.73205i
\(763\) −2.00000 −2.00000
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.50000 + 2.59808i 1.50000 + 2.59808i
\(768\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 3.00000 3.00000
\(772\) 0 0
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.73205i 1.73205i
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1.73205i 1.73205i
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(788\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(789\) −1.50000 0.866025i −1.50000 0.866025i
\(790\) 0 0
\(791\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(792\) −2.00000 −2.00000
\(793\) 1.50000 2.59808i 1.50000 2.59808i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(801\) 0 0
\(802\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(803\) 0 0
\(804\) 1.73205i 1.73205i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(809\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) −1.00000 −1.00000
\(813\) 3.00000 3.00000
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −3.00000 + 1.73205i −3.00000 + 1.73205i
\(820\) 0 0
\(821\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(822\) 1.50000 0.866025i 1.50000 0.866025i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 1.73205i 1.73205i
\(826\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 0 0
\(831\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(832\) 1.73205i 1.73205i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.500000 0.866025i −0.500000 0.866025i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 1.73205i 1.73205i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) −1.50000 2.59808i −1.50000 2.59808i
\(859\) 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 \(0\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.00000 1.00000
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(865\) 0 0
\(866\) 0 0
\(867\) 1.73205i 1.73205i
\(868\) 0 0
\(869\) −1.00000 −1.00000
\(870\) 0 0
\(871\) 1.50000 0.866025i 1.50000 0.866025i
\(872\) −1.00000 1.73205i −1.00000 1.73205i
\(873\) 3.00000 + 1.73205i 3.00000 + 1.73205i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(878\) 1.50000 0.866025i 1.50000 0.866025i
\(879\) 0 0
\(880\) 0 0
\(881\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(882\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(883\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(887\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(890\) 0 0
\(891\) 0.500000 0.866025i 0.500000 0.866025i
\(892\) 0 0
\(893\) 0 0
\(894\) 3.00000 + 1.73205i 3.00000 + 1.73205i
\(895\) 0 0
\(896\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(897\) 0 0
\(898\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(899\) 0 0
\(900\) −1.00000 1.73205i −1.00000 1.73205i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −1.00000 −1.00000
\(905\) 0 0
\(906\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(907\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0 0
\(909\) 3.46410i 3.46410i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(923\) 0 0
\(924\) −1.50000 0.866025i −1.50000 0.866025i
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) −0.500000 0.866025i −0.500000 0.866025i
\(929\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −3.00000 1.73205i −3.00000 1.73205i
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0.500000 0.866025i 0.500000 0.866025i
\(939\) −3.00000 −3.00000
\(940\) 0 0
\(941\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.73205i 1.73205i
\(945\) 0 0
\(946\) 0 0
\(947\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(948\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −0.500000 0.866025i −0.500000 0.866025i
\(957\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(958\) 1.73205i 1.73205i
\(959\) 1.00000 1.00000
\(960\) 0 0
\(961\) 0.500000 0.866025i 0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(968\) 0.500000 0.866025i 0.500000 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.50000 2.59808i 1.50000 2.59808i
\(976\) 1.50000 0.866025i 1.50000 0.866025i
\(977\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(978\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(979\) 0 0
\(980\) 0 0
\(981\) 4.00000 4.00000
\(982\) 0 0
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 1.73205i 1.73205i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) −1.00000 1.73205i −1.00000 1.73205i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.1.z.b.131.1 yes 2
4.3 odd 2 2464.1.bh.b.2287.1 2
7.3 odd 6 inner 616.1.z.b.395.1 yes 2
8.3 odd 2 616.1.z.a.131.1 2
8.5 even 2 2464.1.bh.a.2287.1 2
11.10 odd 2 616.1.z.a.131.1 2
28.3 even 6 2464.1.bh.b.1935.1 2
44.43 even 2 2464.1.bh.a.2287.1 2
56.3 even 6 616.1.z.a.395.1 yes 2
56.45 odd 6 2464.1.bh.a.1935.1 2
77.10 even 6 616.1.z.a.395.1 yes 2
88.21 odd 2 2464.1.bh.b.2287.1 2
88.43 even 2 RM 616.1.z.b.131.1 yes 2
308.87 odd 6 2464.1.bh.a.1935.1 2
616.395 odd 6 inner 616.1.z.b.395.1 yes 2
616.549 even 6 2464.1.bh.b.1935.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.1.z.a.131.1 2 8.3 odd 2
616.1.z.a.131.1 2 11.10 odd 2
616.1.z.a.395.1 yes 2 56.3 even 6
616.1.z.a.395.1 yes 2 77.10 even 6
616.1.z.b.131.1 yes 2 1.1 even 1 trivial
616.1.z.b.131.1 yes 2 88.43 even 2 RM
616.1.z.b.395.1 yes 2 7.3 odd 6 inner
616.1.z.b.395.1 yes 2 616.395 odd 6 inner
2464.1.bh.a.1935.1 2 56.45 odd 6
2464.1.bh.a.1935.1 2 308.87 odd 6
2464.1.bh.a.2287.1 2 8.5 even 2
2464.1.bh.a.2287.1 2 44.43 even 2
2464.1.bh.b.1935.1 2 28.3 even 6
2464.1.bh.b.1935.1 2 616.549 even 6
2464.1.bh.b.2287.1 2 4.3 odd 2
2464.1.bh.b.2287.1 2 88.21 odd 2