Properties

Label 616.2
Level 616
Weight 2
Dimension 5926
Nonzero newspaces 24
Newform subspaces 61
Sturm bound 46080
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 61 \)
Sturm bound: \(46080\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(616))\).

Total New Old
Modular forms 12240 6286 5954
Cusp forms 10801 5926 4875
Eisenstein series 1439 360 1079

Trace form

\( 5926 q - 28 q^{2} - 28 q^{3} - 28 q^{4} - 28 q^{6} - 38 q^{7} - 76 q^{8} - 44 q^{9} - 28 q^{10} - 28 q^{11} - 68 q^{12} + 12 q^{13} - 38 q^{14} - 32 q^{15} - 28 q^{16} - 24 q^{17} - 64 q^{18} + 2 q^{19}+ \cdots - 116 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(616))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
616.2.a \(\chi_{616}(1, \cdot)\) 616.2.a.a 1 1
616.2.a.b 1
616.2.a.c 1
616.2.a.d 1
616.2.a.e 1
616.2.a.f 2
616.2.a.g 3
616.2.a.h 4
616.2.c \(\chi_{616}(309, \cdot)\) 616.2.c.a 2 1
616.2.c.b 4
616.2.c.c 24
616.2.c.d 30
616.2.e \(\chi_{616}(153, \cdot)\) 616.2.e.a 24 1
616.2.f \(\chi_{616}(351, \cdot)\) None 0 1
616.2.h \(\chi_{616}(419, \cdot)\) 616.2.h.a 40 1
616.2.h.b 40
616.2.j \(\chi_{616}(111, \cdot)\) None 0 1
616.2.l \(\chi_{616}(43, \cdot)\) 616.2.l.a 2 1
616.2.l.b 2
616.2.l.c 34
616.2.l.d 34
616.2.o \(\chi_{616}(461, \cdot)\) 616.2.o.a 2 1
616.2.o.b 2
616.2.o.c 88
616.2.q \(\chi_{616}(177, \cdot)\) 616.2.q.a 2 2
616.2.q.b 4
616.2.q.c 6
616.2.q.d 8
616.2.q.e 10
616.2.q.f 10
616.2.r \(\chi_{616}(113, \cdot)\) 616.2.r.a 4 4
616.2.r.b 4
616.2.r.c 12
616.2.r.d 16
616.2.r.e 16
616.2.r.f 20
616.2.s \(\chi_{616}(285, \cdot)\) 616.2.s.a 184 2
616.2.w \(\chi_{616}(199, \cdot)\) None 0 2
616.2.y \(\chi_{616}(219, \cdot)\) 616.2.y.a 8 2
616.2.y.b 176
616.2.ba \(\chi_{616}(263, \cdot)\) None 0 2
616.2.bc \(\chi_{616}(243, \cdot)\) 616.2.bc.a 80 2
616.2.bc.b 80
616.2.bd \(\chi_{616}(221, \cdot)\) 616.2.bd.a 4 2
616.2.bd.b 4
616.2.bd.c 152
616.2.bf \(\chi_{616}(241, \cdot)\) 616.2.bf.a 48 2
616.2.bi \(\chi_{616}(13, \cdot)\) 616.2.bi.a 8 4
616.2.bi.b 8
616.2.bi.c 352
616.2.bl \(\chi_{616}(211, \cdot)\) 616.2.bl.a 144 4
616.2.bl.b 144
616.2.bn \(\chi_{616}(223, \cdot)\) None 0 4
616.2.bp \(\chi_{616}(27, \cdot)\) 616.2.bp.a 8 4
616.2.bp.b 8
616.2.bp.c 352
616.2.br \(\chi_{616}(127, \cdot)\) None 0 4
616.2.bs \(\chi_{616}(41, \cdot)\) 616.2.bs.a 96 4
616.2.bu \(\chi_{616}(141, \cdot)\) 616.2.bu.a 136 4
616.2.bu.b 152
616.2.bw \(\chi_{616}(9, \cdot)\) 616.2.bw.a 96 8
616.2.bw.b 96
616.2.by \(\chi_{616}(17, \cdot)\) 616.2.by.a 192 8
616.2.ca \(\chi_{616}(37, \cdot)\) 616.2.ca.a 736 8
616.2.cb \(\chi_{616}(3, \cdot)\) 616.2.cb.a 736 8
616.2.cd \(\chi_{616}(39, \cdot)\) None 0 8
616.2.cf \(\chi_{616}(51, \cdot)\) 616.2.cf.a 736 8
616.2.ch \(\chi_{616}(31, \cdot)\) None 0 8
616.2.cl \(\chi_{616}(61, \cdot)\) 616.2.cl.a 736 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(616))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(616)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(154))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(308))\)\(^{\oplus 2}\)