Properties

Label 616.2.r.f.169.1
Level $616$
Weight $2$
Character 616.169
Analytic conductor $4.919$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(113,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.113");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.r (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 169.1
Root \(2.75053 + 1.99838i\) of defining polynomial
Character \(\chi\) \(=\) 616.169
Dual form 616.2.r.f.113.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05061 + 3.23344i) q^{3} +(-0.556182 + 0.404090i) q^{5} +(-0.309017 - 0.951057i) q^{7} +(-6.92433 - 5.03082i) q^{9} +(1.80996 - 2.77922i) q^{11} +(-3.70618 - 2.69270i) q^{13} +(-0.722272 - 2.22292i) q^{15} +(-3.81391 + 2.77097i) q^{17} +(0.462816 - 1.42440i) q^{19} +3.39984 q^{21} -2.19201 q^{23} +(-1.39904 + 4.30579i) q^{25} +(15.2900 - 11.1089i) q^{27} +(-2.42815 - 7.47307i) q^{29} +(3.32675 + 2.41702i) q^{31} +(7.08488 + 8.77227i) q^{33} +(0.556182 + 0.404090i) q^{35} +(-0.0655973 - 0.201888i) q^{37} +(12.6004 - 9.15475i) q^{39} +(-0.108464 + 0.333817i) q^{41} -3.09382 q^{43} +5.88409 q^{45} +(-2.50681 + 7.71517i) q^{47} +(-0.809017 + 0.587785i) q^{49} +(-4.95284 - 15.2433i) q^{51} +(-10.3297 - 7.50494i) q^{53} +(0.116386 + 2.27714i) q^{55} +(4.11948 + 2.99298i) q^{57} +(2.37226 + 7.30106i) q^{59} +(5.74134 - 4.17132i) q^{61} +(-2.64486 + 8.14003i) q^{63} +3.14940 q^{65} +0.889399 q^{67} +(2.30295 - 7.08774i) q^{69} +(3.95035 - 2.87010i) q^{71} +(-2.83347 - 8.72052i) q^{73} +(-12.4527 - 9.04740i) q^{75} +(-3.20250 - 0.862549i) q^{77} +(-12.6433 - 9.18587i) q^{79} +(11.9214 + 36.6904i) q^{81} +(-9.79813 + 7.11876i) q^{83} +(1.00151 - 3.08232i) q^{85} +26.7148 q^{87} -15.6209 q^{89} +(-1.41563 + 4.35687i) q^{91} +(-11.3104 + 8.21750i) q^{93} +(0.318176 + 0.979246i) q^{95} +(-2.27459 - 1.65258i) q^{97} +(-26.5145 + 10.1386i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{3} + 5 q^{7} - 6 q^{9} - 3 q^{11} + 2 q^{13} + 8 q^{15} + 21 q^{19} + 6 q^{21} - 6 q^{23} - 7 q^{25} + 32 q^{27} + 6 q^{29} - 18 q^{31} - 16 q^{33} + 5 q^{37} + 12 q^{39} - 12 q^{41} - 42 q^{43}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05061 + 3.23344i −0.606570 + 1.86683i −0.120952 + 0.992658i \(0.538595\pi\)
−0.485618 + 0.874171i \(0.661405\pi\)
\(4\) 0 0
\(5\) −0.556182 + 0.404090i −0.248732 + 0.180714i −0.705165 0.709044i \(-0.749127\pi\)
0.456433 + 0.889758i \(0.349127\pi\)
\(6\) 0 0
\(7\) −0.309017 0.951057i −0.116797 0.359466i
\(8\) 0 0
\(9\) −6.92433 5.03082i −2.30811 1.67694i
\(10\) 0 0
\(11\) 1.80996 2.77922i 0.545723 0.837965i
\(12\) 0 0
\(13\) −3.70618 2.69270i −1.02791 0.746820i −0.0600200 0.998197i \(-0.519116\pi\)
−0.967889 + 0.251378i \(0.919116\pi\)
\(14\) 0 0
\(15\) −0.722272 2.22292i −0.186490 0.573956i
\(16\) 0 0
\(17\) −3.81391 + 2.77097i −0.925009 + 0.672058i −0.944766 0.327747i \(-0.893711\pi\)
0.0197568 + 0.999805i \(0.493711\pi\)
\(18\) 0 0
\(19\) 0.462816 1.42440i 0.106177 0.326780i −0.883828 0.467813i \(-0.845042\pi\)
0.990005 + 0.141033i \(0.0450422\pi\)
\(20\) 0 0
\(21\) 3.39984 0.741907
\(22\) 0 0
\(23\) −2.19201 −0.457065 −0.228533 0.973536i \(-0.573393\pi\)
−0.228533 + 0.973536i \(0.573393\pi\)
\(24\) 0 0
\(25\) −1.39904 + 4.30579i −0.279807 + 0.861158i
\(26\) 0 0
\(27\) 15.2900 11.1089i 2.94257 2.13790i
\(28\) 0 0
\(29\) −2.42815 7.47307i −0.450895 1.38771i −0.875887 0.482516i \(-0.839723\pi\)
0.424992 0.905197i \(-0.360277\pi\)
\(30\) 0 0
\(31\) 3.32675 + 2.41702i 0.597501 + 0.434110i 0.844991 0.534780i \(-0.179606\pi\)
−0.247490 + 0.968890i \(0.579606\pi\)
\(32\) 0 0
\(33\) 7.08488 + 8.77227i 1.23332 + 1.52706i
\(34\) 0 0
\(35\) 0.556182 + 0.404090i 0.0940119 + 0.0683037i
\(36\) 0 0
\(37\) −0.0655973 0.201888i −0.0107841 0.0331902i 0.945520 0.325565i \(-0.105555\pi\)
−0.956304 + 0.292375i \(0.905555\pi\)
\(38\) 0 0
\(39\) 12.6004 9.15475i 2.01768 1.46593i
\(40\) 0 0
\(41\) −0.108464 + 0.333817i −0.0169392 + 0.0521335i −0.959169 0.282834i \(-0.908725\pi\)
0.942230 + 0.334968i \(0.108725\pi\)
\(42\) 0 0
\(43\) −3.09382 −0.471803 −0.235901 0.971777i \(-0.575804\pi\)
−0.235901 + 0.971777i \(0.575804\pi\)
\(44\) 0 0
\(45\) 5.88409 0.877148
\(46\) 0 0
\(47\) −2.50681 + 7.71517i −0.365656 + 1.12537i 0.583913 + 0.811816i \(0.301521\pi\)
−0.949569 + 0.313557i \(0.898479\pi\)
\(48\) 0 0
\(49\) −0.809017 + 0.587785i −0.115574 + 0.0839693i
\(50\) 0 0
\(51\) −4.95284 15.2433i −0.693536 2.13448i
\(52\) 0 0
\(53\) −10.3297 7.50494i −1.41889 1.03088i −0.991954 0.126600i \(-0.959594\pi\)
−0.426934 0.904283i \(-0.640406\pi\)
\(54\) 0 0
\(55\) 0.116386 + 2.27714i 0.0156935 + 0.307049i
\(56\) 0 0
\(57\) 4.11948 + 2.99298i 0.545639 + 0.396430i
\(58\) 0 0
\(59\) 2.37226 + 7.30106i 0.308842 + 0.950517i 0.978216 + 0.207591i \(0.0665624\pi\)
−0.669374 + 0.742926i \(0.733438\pi\)
\(60\) 0 0
\(61\) 5.74134 4.17132i 0.735103 0.534083i −0.156071 0.987746i \(-0.549883\pi\)
0.891174 + 0.453662i \(0.149883\pi\)
\(62\) 0 0
\(63\) −2.64486 + 8.14003i −0.333221 + 1.02555i
\(64\) 0 0
\(65\) 3.14940 0.390635
\(66\) 0 0
\(67\) 0.889399 0.108657 0.0543287 0.998523i \(-0.482698\pi\)
0.0543287 + 0.998523i \(0.482698\pi\)
\(68\) 0 0
\(69\) 2.30295 7.08774i 0.277242 0.853263i
\(70\) 0 0
\(71\) 3.95035 2.87010i 0.468821 0.340618i −0.328161 0.944622i \(-0.606429\pi\)
0.796981 + 0.604004i \(0.206429\pi\)
\(72\) 0 0
\(73\) −2.83347 8.72052i −0.331632 1.02066i −0.968357 0.249568i \(-0.919711\pi\)
0.636725 0.771091i \(-0.280289\pi\)
\(74\) 0 0
\(75\) −12.4527 9.04740i −1.43791 1.04470i
\(76\) 0 0
\(77\) −3.20250 0.862549i −0.364959 0.0982966i
\(78\) 0 0
\(79\) −12.6433 9.18587i −1.42248 1.03349i −0.991356 0.131198i \(-0.958118\pi\)
−0.431123 0.902293i \(-0.641882\pi\)
\(80\) 0 0
\(81\) 11.9214 + 36.6904i 1.32460 + 4.07671i
\(82\) 0 0
\(83\) −9.79813 + 7.11876i −1.07548 + 0.781385i −0.976890 0.213743i \(-0.931435\pi\)
−0.0985942 + 0.995128i \(0.531435\pi\)
\(84\) 0 0
\(85\) 1.00151 3.08232i 0.108629 0.334325i
\(86\) 0 0
\(87\) 26.7148 2.86412
\(88\) 0 0
\(89\) −15.6209 −1.65582 −0.827908 0.560864i \(-0.810469\pi\)
−0.827908 + 0.560864i \(0.810469\pi\)
\(90\) 0 0
\(91\) −1.41563 + 4.35687i −0.148399 + 0.456725i
\(92\) 0 0
\(93\) −11.3104 + 8.21750i −1.17284 + 0.852115i
\(94\) 0 0
\(95\) 0.318176 + 0.979246i 0.0326442 + 0.100468i
\(96\) 0 0
\(97\) −2.27459 1.65258i −0.230949 0.167795i 0.466292 0.884631i \(-0.345590\pi\)
−0.697242 + 0.716836i \(0.745590\pi\)
\(98\) 0 0
\(99\) −26.5145 + 10.1386i −2.66481 + 1.01897i
\(100\) 0 0
\(101\) 7.77190 + 5.64662i 0.773333 + 0.561860i 0.902971 0.429702i \(-0.141381\pi\)
−0.129637 + 0.991561i \(0.541381\pi\)
\(102\) 0 0
\(103\) −2.06829 6.36555i −0.203795 0.627216i −0.999761 0.0218745i \(-0.993037\pi\)
0.795966 0.605341i \(-0.206963\pi\)
\(104\) 0 0
\(105\) −1.89093 + 1.37384i −0.184536 + 0.134073i
\(106\) 0 0
\(107\) 0.863587 2.65785i 0.0834861 0.256944i −0.900596 0.434657i \(-0.856870\pi\)
0.984082 + 0.177713i \(0.0568698\pi\)
\(108\) 0 0
\(109\) 9.96649 0.954616 0.477308 0.878736i \(-0.341613\pi\)
0.477308 + 0.878736i \(0.341613\pi\)
\(110\) 0 0
\(111\) 0.721710 0.0685017
\(112\) 0 0
\(113\) −5.19640 + 15.9929i −0.488836 + 1.50448i 0.337512 + 0.941321i \(0.390415\pi\)
−0.826347 + 0.563161i \(0.809585\pi\)
\(114\) 0 0
\(115\) 1.21916 0.885769i 0.113687 0.0825983i
\(116\) 0 0
\(117\) 12.1163 + 37.2902i 1.12015 + 3.44748i
\(118\) 0 0
\(119\) 3.81391 + 2.77097i 0.349620 + 0.254014i
\(120\) 0 0
\(121\) −4.44809 10.0605i −0.404372 0.914595i
\(122\) 0 0
\(123\) −0.965425 0.701423i −0.0870495 0.0632452i
\(124\) 0 0
\(125\) −2.02402 6.22929i −0.181034 0.557165i
\(126\) 0 0
\(127\) −4.56217 + 3.31461i −0.404827 + 0.294124i −0.771504 0.636224i \(-0.780495\pi\)
0.366677 + 0.930348i \(0.380495\pi\)
\(128\) 0 0
\(129\) 3.25039 10.0037i 0.286181 0.880775i
\(130\) 0 0
\(131\) −11.2444 −0.982430 −0.491215 0.871038i \(-0.663447\pi\)
−0.491215 + 0.871038i \(0.663447\pi\)
\(132\) 0 0
\(133\) −1.49770 −0.129867
\(134\) 0 0
\(135\) −4.01506 + 12.3571i −0.345562 + 1.06353i
\(136\) 0 0
\(137\) −15.5886 + 11.3258i −1.33182 + 0.967625i −0.332120 + 0.943237i \(0.607764\pi\)
−0.999703 + 0.0243882i \(0.992236\pi\)
\(138\) 0 0
\(139\) 0.918385 + 2.82650i 0.0778964 + 0.239741i 0.982420 0.186682i \(-0.0597735\pi\)
−0.904524 + 0.426423i \(0.859774\pi\)
\(140\) 0 0
\(141\) −22.3129 16.2113i −1.87908 1.36523i
\(142\) 0 0
\(143\) −14.1916 + 5.42660i −1.18676 + 0.453795i
\(144\) 0 0
\(145\) 4.37028 + 3.17520i 0.362932 + 0.263686i
\(146\) 0 0
\(147\) −1.05061 3.23344i −0.0866528 0.266690i
\(148\) 0 0
\(149\) 5.58991 4.06131i 0.457944 0.332715i −0.334780 0.942296i \(-0.608662\pi\)
0.792724 + 0.609581i \(0.208662\pi\)
\(150\) 0 0
\(151\) 0.819507 2.52218i 0.0666906 0.205252i −0.912158 0.409839i \(-0.865585\pi\)
0.978849 + 0.204586i \(0.0655849\pi\)
\(152\) 0 0
\(153\) 40.3490 3.26202
\(154\) 0 0
\(155\) −2.82697 −0.227068
\(156\) 0 0
\(157\) 3.53551 10.8812i 0.282164 0.868412i −0.705070 0.709138i \(-0.749084\pi\)
0.987234 0.159275i \(-0.0509156\pi\)
\(158\) 0 0
\(159\) 35.1192 25.5156i 2.78514 2.02352i
\(160\) 0 0
\(161\) 0.677368 + 2.08472i 0.0533841 + 0.164299i
\(162\) 0 0
\(163\) 6.66271 + 4.84075i 0.521864 + 0.379156i 0.817306 0.576204i \(-0.195467\pi\)
−0.295442 + 0.955361i \(0.595467\pi\)
\(164\) 0 0
\(165\) −7.48527 2.01605i −0.582727 0.156950i
\(166\) 0 0
\(167\) 11.4674 + 8.33155i 0.887373 + 0.644714i 0.935192 0.354142i \(-0.115227\pi\)
−0.0478185 + 0.998856i \(0.515227\pi\)
\(168\) 0 0
\(169\) 2.46793 + 7.59550i 0.189840 + 0.584269i
\(170\) 0 0
\(171\) −10.3706 + 7.53468i −0.793059 + 0.576191i
\(172\) 0 0
\(173\) 0.0867525 0.266997i 0.00659567 0.0202994i −0.947705 0.319149i \(-0.896603\pi\)
0.954300 + 0.298850i \(0.0966029\pi\)
\(174\) 0 0
\(175\) 4.52737 0.342237
\(176\) 0 0
\(177\) −26.0999 −1.96179
\(178\) 0 0
\(179\) 5.90770 18.1820i 0.441562 1.35899i −0.444648 0.895705i \(-0.646671\pi\)
0.886210 0.463283i \(-0.153329\pi\)
\(180\) 0 0
\(181\) 9.15549 6.65185i 0.680522 0.494428i −0.193009 0.981197i \(-0.561825\pi\)
0.873531 + 0.486769i \(0.161825\pi\)
\(182\) 0 0
\(183\) 7.45584 + 22.9467i 0.551152 + 1.69627i
\(184\) 0 0
\(185\) 0.118065 + 0.0857792i 0.00868030 + 0.00630661i
\(186\) 0 0
\(187\) 0.798095 + 15.6150i 0.0583625 + 1.14188i
\(188\) 0 0
\(189\) −15.2900 11.1089i −1.11219 0.808050i
\(190\) 0 0
\(191\) 4.26518 + 13.1269i 0.308618 + 0.949827i 0.978302 + 0.207182i \(0.0664292\pi\)
−0.669685 + 0.742645i \(0.733571\pi\)
\(192\) 0 0
\(193\) 17.0820 12.4108i 1.22959 0.893348i 0.232728 0.972542i \(-0.425235\pi\)
0.996859 + 0.0791943i \(0.0252348\pi\)
\(194\) 0 0
\(195\) −3.30879 + 10.1834i −0.236947 + 0.729249i
\(196\) 0 0
\(197\) −11.2684 −0.802843 −0.401422 0.915893i \(-0.631484\pi\)
−0.401422 + 0.915893i \(0.631484\pi\)
\(198\) 0 0
\(199\) −3.21305 −0.227767 −0.113883 0.993494i \(-0.536329\pi\)
−0.113883 + 0.993494i \(0.536329\pi\)
\(200\) 0 0
\(201\) −0.934411 + 2.87582i −0.0659083 + 0.202845i
\(202\) 0 0
\(203\) −6.35697 + 4.61861i −0.446172 + 0.324163i
\(204\) 0 0
\(205\) −0.0745665 0.229492i −0.00520795 0.0160284i
\(206\) 0 0
\(207\) 15.1782 + 11.0276i 1.05496 + 0.766471i
\(208\) 0 0
\(209\) −3.12104 3.86438i −0.215887 0.267304i
\(210\) 0 0
\(211\) 15.4008 + 11.1893i 1.06024 + 0.770306i 0.974132 0.225980i \(-0.0725583\pi\)
0.0861038 + 0.996286i \(0.472558\pi\)
\(212\) 0 0
\(213\) 5.13003 + 15.7886i 0.351504 + 1.08182i
\(214\) 0 0
\(215\) 1.72072 1.25018i 0.117352 0.0852615i
\(216\) 0 0
\(217\) 1.27070 3.91082i 0.0862610 0.265484i
\(218\) 0 0
\(219\) 31.1742 2.10655
\(220\) 0 0
\(221\) 21.5964 1.45273
\(222\) 0 0
\(223\) −5.32283 + 16.3820i −0.356443 + 1.09702i 0.598724 + 0.800955i \(0.295674\pi\)
−0.955168 + 0.296065i \(0.904326\pi\)
\(224\) 0 0
\(225\) 31.3490 22.7764i 2.08993 1.51843i
\(226\) 0 0
\(227\) −1.61210 4.96154i −0.106999 0.329309i 0.883195 0.469005i \(-0.155387\pi\)
−0.990194 + 0.139696i \(0.955387\pi\)
\(228\) 0 0
\(229\) −8.74272 6.35195i −0.577735 0.419749i 0.260172 0.965562i \(-0.416221\pi\)
−0.837907 + 0.545813i \(0.816221\pi\)
\(230\) 0 0
\(231\) 6.15358 9.44890i 0.404876 0.621692i
\(232\) 0 0
\(233\) −1.84254 1.33869i −0.120709 0.0877003i 0.525793 0.850613i \(-0.323769\pi\)
−0.646502 + 0.762912i \(0.723769\pi\)
\(234\) 0 0
\(235\) −1.72338 5.30401i −0.112421 0.345996i
\(236\) 0 0
\(237\) 42.9851 31.2305i 2.79218 2.02864i
\(238\) 0 0
\(239\) 0.0308175 0.0948465i 0.00199342 0.00613511i −0.950055 0.312083i \(-0.898973\pi\)
0.952048 + 0.305948i \(0.0989733\pi\)
\(240\) 0 0
\(241\) −28.3692 −1.82742 −0.913711 0.406365i \(-0.866796\pi\)
−0.913711 + 0.406365i \(0.866796\pi\)
\(242\) 0 0
\(243\) −74.4626 −4.77678
\(244\) 0 0
\(245\) 0.212443 0.653831i 0.0135725 0.0417717i
\(246\) 0 0
\(247\) −5.55076 + 4.03286i −0.353186 + 0.256605i
\(248\) 0 0
\(249\) −12.7241 39.1607i −0.806356 2.48171i
\(250\) 0 0
\(251\) 5.65500 + 4.10860i 0.356940 + 0.259332i 0.751775 0.659420i \(-0.229198\pi\)
−0.394834 + 0.918752i \(0.629198\pi\)
\(252\) 0 0
\(253\) −3.96745 + 6.09207i −0.249431 + 0.383005i
\(254\) 0 0
\(255\) 8.91433 + 6.47664i 0.558237 + 0.405583i
\(256\) 0 0
\(257\) −6.78903 20.8945i −0.423488 1.30336i −0.904434 0.426613i \(-0.859707\pi\)
0.480946 0.876750i \(-0.340293\pi\)
\(258\) 0 0
\(259\) −0.171736 + 0.124774i −0.0106712 + 0.00775305i
\(260\) 0 0
\(261\) −20.7824 + 63.9615i −1.28640 + 3.95912i
\(262\) 0 0
\(263\) 13.4087 0.826816 0.413408 0.910546i \(-0.364338\pi\)
0.413408 + 0.910546i \(0.364338\pi\)
\(264\) 0 0
\(265\) 8.77784 0.539218
\(266\) 0 0
\(267\) 16.4115 50.5094i 1.00437 3.09113i
\(268\) 0 0
\(269\) −25.6050 + 18.6031i −1.56116 + 1.13425i −0.626113 + 0.779733i \(0.715355\pi\)
−0.935049 + 0.354518i \(0.884645\pi\)
\(270\) 0 0
\(271\) −6.71934 20.6800i −0.408171 1.25622i −0.918218 0.396075i \(-0.870372\pi\)
0.510047 0.860146i \(-0.329628\pi\)
\(272\) 0 0
\(273\) −12.6004 9.15475i −0.762613 0.554071i
\(274\) 0 0
\(275\) 9.43452 + 11.6815i 0.568923 + 0.704422i
\(276\) 0 0
\(277\) −15.6638 11.3804i −0.941147 0.683783i 0.00754984 0.999971i \(-0.497597\pi\)
−0.948696 + 0.316189i \(0.897597\pi\)
\(278\) 0 0
\(279\) −10.8759 33.4725i −0.651122 2.00395i
\(280\) 0 0
\(281\) −17.1956 + 12.4933i −1.02580 + 0.745290i −0.967464 0.253007i \(-0.918580\pi\)
−0.0583390 + 0.998297i \(0.518580\pi\)
\(282\) 0 0
\(283\) 0.807861 2.48634i 0.0480224 0.147798i −0.924170 0.381982i \(-0.875242\pi\)
0.972192 + 0.234184i \(0.0752418\pi\)
\(284\) 0 0
\(285\) −3.50061 −0.207358
\(286\) 0 0
\(287\) 0.350996 0.0207186
\(288\) 0 0
\(289\) 1.61436 4.96847i 0.0949621 0.292263i
\(290\) 0 0
\(291\) 7.73324 5.61853i 0.453331 0.329364i
\(292\) 0 0
\(293\) 5.75975 + 17.7267i 0.336488 + 1.03560i 0.965984 + 0.258601i \(0.0832614\pi\)
−0.629496 + 0.777004i \(0.716739\pi\)
\(294\) 0 0
\(295\) −4.26969 3.10211i −0.248591 0.180612i
\(296\) 0 0
\(297\) −3.19958 62.6009i −0.185658 3.63247i
\(298\) 0 0
\(299\) 8.12398 + 5.90241i 0.469822 + 0.341345i
\(300\) 0 0
\(301\) 0.956042 + 2.94239i 0.0551053 + 0.169597i
\(302\) 0 0
\(303\) −26.4233 + 19.1976i −1.51798 + 1.10287i
\(304\) 0 0
\(305\) −1.50764 + 4.64003i −0.0863271 + 0.265687i
\(306\) 0 0
\(307\) −5.45702 −0.311448 −0.155724 0.987801i \(-0.549771\pi\)
−0.155724 + 0.987801i \(0.549771\pi\)
\(308\) 0 0
\(309\) 22.7556 1.29452
\(310\) 0 0
\(311\) −1.81887 + 5.59792i −0.103139 + 0.317429i −0.989289 0.145969i \(-0.953370\pi\)
0.886150 + 0.463398i \(0.153370\pi\)
\(312\) 0 0
\(313\) 17.2655 12.5441i 0.975902 0.709034i 0.0191128 0.999817i \(-0.493916\pi\)
0.956789 + 0.290783i \(0.0939158\pi\)
\(314\) 0 0
\(315\) −1.81828 5.59610i −0.102449 0.315304i
\(316\) 0 0
\(317\) 5.87387 + 4.26762i 0.329910 + 0.239693i 0.740392 0.672175i \(-0.234640\pi\)
−0.410483 + 0.911868i \(0.634640\pi\)
\(318\) 0 0
\(319\) −25.1641 6.77761i −1.40892 0.379473i
\(320\) 0 0
\(321\) 7.68671 + 5.58472i 0.429030 + 0.311709i
\(322\) 0 0
\(323\) 2.18183 + 6.71499i 0.121400 + 0.373632i
\(324\) 0 0
\(325\) 16.7793 12.1908i 0.930746 0.676226i
\(326\) 0 0
\(327\) −10.4709 + 32.2261i −0.579041 + 1.78211i
\(328\) 0 0
\(329\) 8.11221 0.447241
\(330\) 0 0
\(331\) 11.8008 0.648629 0.324315 0.945949i \(-0.394866\pi\)
0.324315 + 0.945949i \(0.394866\pi\)
\(332\) 0 0
\(333\) −0.561443 + 1.72795i −0.0307669 + 0.0946908i
\(334\) 0 0
\(335\) −0.494668 + 0.359397i −0.0270266 + 0.0196360i
\(336\) 0 0
\(337\) 5.38106 + 16.5612i 0.293125 + 0.902146i 0.983845 + 0.179024i \(0.0572938\pi\)
−0.690720 + 0.723123i \(0.742706\pi\)
\(338\) 0 0
\(339\) −46.2526 33.6045i −2.51210 1.82515i
\(340\) 0 0
\(341\) 12.7387 4.87103i 0.689840 0.263781i
\(342\) 0 0
\(343\) 0.809017 + 0.587785i 0.0436828 + 0.0317374i
\(344\) 0 0
\(345\) 1.58323 + 4.87267i 0.0852380 + 0.262336i
\(346\) 0 0
\(347\) −8.48193 + 6.16248i −0.455334 + 0.330819i −0.791698 0.610913i \(-0.790803\pi\)
0.336364 + 0.941732i \(0.390803\pi\)
\(348\) 0 0
\(349\) −4.83339 + 14.8757i −0.258726 + 0.796276i 0.734347 + 0.678774i \(0.237488\pi\)
−0.993073 + 0.117501i \(0.962512\pi\)
\(350\) 0 0
\(351\) −86.5804 −4.62132
\(352\) 0 0
\(353\) 12.3757 0.658692 0.329346 0.944209i \(-0.393172\pi\)
0.329346 + 0.944209i \(0.393172\pi\)
\(354\) 0 0
\(355\) −1.03734 + 3.19259i −0.0550561 + 0.169445i
\(356\) 0 0
\(357\) −12.9667 + 9.42086i −0.686270 + 0.498605i
\(358\) 0 0
\(359\) −1.70334 5.24233i −0.0898987 0.276680i 0.895992 0.444070i \(-0.146466\pi\)
−0.985891 + 0.167390i \(0.946466\pi\)
\(360\) 0 0
\(361\) 13.5566 + 9.84945i 0.713505 + 0.518392i
\(362\) 0 0
\(363\) 37.2034 3.81294i 1.95267 0.200128i
\(364\) 0 0
\(365\) 5.09980 + 3.70522i 0.266936 + 0.193940i
\(366\) 0 0
\(367\) 7.68865 + 23.6632i 0.401344 + 1.23521i 0.923909 + 0.382612i \(0.124975\pi\)
−0.522565 + 0.852600i \(0.675025\pi\)
\(368\) 0 0
\(369\) 2.43041 1.76580i 0.126522 0.0919237i
\(370\) 0 0
\(371\) −3.94558 + 12.1432i −0.204844 + 0.630446i
\(372\) 0 0
\(373\) 11.2320 0.581573 0.290786 0.956788i \(-0.406083\pi\)
0.290786 + 0.956788i \(0.406083\pi\)
\(374\) 0 0
\(375\) 22.2685 1.14994
\(376\) 0 0
\(377\) −11.1236 + 34.2348i −0.572892 + 1.76318i
\(378\) 0 0
\(379\) −3.25121 + 2.36214i −0.167003 + 0.121335i −0.668148 0.744029i \(-0.732913\pi\)
0.501144 + 0.865364i \(0.332913\pi\)
\(380\) 0 0
\(381\) −5.92455 18.2339i −0.303524 0.934150i
\(382\) 0 0
\(383\) −11.0907 8.05786i −0.566708 0.411737i 0.267200 0.963641i \(-0.413902\pi\)
−0.833908 + 0.551904i \(0.813902\pi\)
\(384\) 0 0
\(385\) 2.12972 0.814364i 0.108541 0.0415038i
\(386\) 0 0
\(387\) 21.4226 + 15.5644i 1.08897 + 0.791184i
\(388\) 0 0
\(389\) −9.92146 30.5351i −0.503038 1.54819i −0.804045 0.594569i \(-0.797323\pi\)
0.301007 0.953622i \(-0.402677\pi\)
\(390\) 0 0
\(391\) 8.36012 6.07398i 0.422790 0.307175i
\(392\) 0 0
\(393\) 11.8135 36.3582i 0.595912 1.83403i
\(394\) 0 0
\(395\) 10.7439 0.540583
\(396\) 0 0
\(397\) 23.1477 1.16175 0.580875 0.813993i \(-0.302711\pi\)
0.580875 + 0.813993i \(0.302711\pi\)
\(398\) 0 0
\(399\) 1.57350 4.84274i 0.0787736 0.242440i
\(400\) 0 0
\(401\) 4.51921 3.28340i 0.225678 0.163965i −0.469201 0.883092i \(-0.655458\pi\)
0.694879 + 0.719127i \(0.255458\pi\)
\(402\) 0 0
\(403\) −5.82121 17.9158i −0.289975 0.892451i
\(404\) 0 0
\(405\) −21.4567 15.5892i −1.06619 0.774634i
\(406\) 0 0
\(407\) −0.679819 0.183100i −0.0336974 0.00907592i
\(408\) 0 0
\(409\) 25.9473 + 18.8518i 1.28301 + 0.932164i 0.999640 0.0268460i \(-0.00854639\pi\)
0.283374 + 0.959010i \(0.408546\pi\)
\(410\) 0 0
\(411\) −20.2437 62.3037i −0.998549 3.07322i
\(412\) 0 0
\(413\) 6.21065 4.51230i 0.305606 0.222036i
\(414\) 0 0
\(415\) 2.57292 7.91865i 0.126300 0.388711i
\(416\) 0 0
\(417\) −10.1042 −0.494804
\(418\) 0 0
\(419\) −3.02921 −0.147987 −0.0739934 0.997259i \(-0.523574\pi\)
−0.0739934 + 0.997259i \(0.523574\pi\)
\(420\) 0 0
\(421\) −0.960654 + 2.95659i −0.0468194 + 0.144095i −0.971733 0.236081i \(-0.924137\pi\)
0.924914 + 0.380177i \(0.124137\pi\)
\(422\) 0 0
\(423\) 56.1716 40.8110i 2.73116 1.98430i
\(424\) 0 0
\(425\) −6.59540 20.2986i −0.319924 0.984625i
\(426\) 0 0
\(427\) −5.74134 4.17132i −0.277843 0.201865i
\(428\) 0 0
\(429\) −2.63675 51.5890i −0.127304 2.49074i
\(430\) 0 0
\(431\) 17.9314 + 13.0280i 0.863727 + 0.627534i 0.928896 0.370340i \(-0.120759\pi\)
−0.0651693 + 0.997874i \(0.520759\pi\)
\(432\) 0 0
\(433\) 0.684143 + 2.10558i 0.0328778 + 0.101188i 0.966149 0.257986i \(-0.0830587\pi\)
−0.933271 + 0.359173i \(0.883059\pi\)
\(434\) 0 0
\(435\) −14.8583 + 10.7952i −0.712400 + 0.517589i
\(436\) 0 0
\(437\) −1.01450 + 3.12230i −0.0485300 + 0.149360i
\(438\) 0 0
\(439\) −9.12789 −0.435651 −0.217825 0.975988i \(-0.569896\pi\)
−0.217825 + 0.975988i \(0.569896\pi\)
\(440\) 0 0
\(441\) 8.55894 0.407568
\(442\) 0 0
\(443\) −3.03131 + 9.32940i −0.144022 + 0.443253i −0.996884 0.0788829i \(-0.974865\pi\)
0.852862 + 0.522136i \(0.174865\pi\)
\(444\) 0 0
\(445\) 8.68808 6.31226i 0.411855 0.299230i
\(446\) 0 0
\(447\) 7.25920 + 22.3415i 0.343348 + 1.05672i
\(448\) 0 0
\(449\) 0.832689 + 0.604984i 0.0392970 + 0.0285510i 0.607260 0.794503i \(-0.292268\pi\)
−0.567963 + 0.823054i \(0.692268\pi\)
\(450\) 0 0
\(451\) 0.731435 + 0.905640i 0.0344419 + 0.0426449i
\(452\) 0 0
\(453\) 7.29436 + 5.29966i 0.342719 + 0.249000i
\(454\) 0 0
\(455\) −0.973219 2.99526i −0.0456252 0.140420i
\(456\) 0 0
\(457\) 25.4777 18.5106i 1.19179 0.865889i 0.198342 0.980133i \(-0.436444\pi\)
0.993453 + 0.114244i \(0.0364445\pi\)
\(458\) 0 0
\(459\) −27.5325 + 84.7363i −1.28511 + 3.95515i
\(460\) 0 0
\(461\) −14.9537 −0.696461 −0.348231 0.937409i \(-0.613217\pi\)
−0.348231 + 0.937409i \(0.613217\pi\)
\(462\) 0 0
\(463\) 41.6713 1.93663 0.968315 0.249731i \(-0.0803423\pi\)
0.968315 + 0.249731i \(0.0803423\pi\)
\(464\) 0 0
\(465\) 2.97004 9.14085i 0.137732 0.423897i
\(466\) 0 0
\(467\) −14.4022 + 10.4638i −0.666455 + 0.484208i −0.868837 0.495099i \(-0.835132\pi\)
0.202382 + 0.979307i \(0.435132\pi\)
\(468\) 0 0
\(469\) −0.274839 0.845869i −0.0126909 0.0390586i
\(470\) 0 0
\(471\) 31.4692 + 22.8637i 1.45003 + 1.05351i
\(472\) 0 0
\(473\) −5.59968 + 8.59838i −0.257474 + 0.395354i
\(474\) 0 0
\(475\) 5.48567 + 3.98558i 0.251700 + 0.182871i
\(476\) 0 0
\(477\) 33.7700 + 103.933i 1.54622 + 4.75878i
\(478\) 0 0
\(479\) 22.9900 16.7032i 1.05044 0.763190i 0.0781452 0.996942i \(-0.475100\pi\)
0.972296 + 0.233752i \(0.0751002\pi\)
\(480\) 0 0
\(481\) −0.300507 + 0.924866i −0.0137019 + 0.0421703i
\(482\) 0 0
\(483\) −7.45249 −0.339100
\(484\) 0 0
\(485\) 1.93288 0.0877674
\(486\) 0 0
\(487\) 13.4010 41.2439i 0.607256 1.86894i 0.126786 0.991930i \(-0.459534\pi\)
0.480470 0.877011i \(-0.340466\pi\)
\(488\) 0 0
\(489\) −22.6522 + 16.4578i −1.02437 + 0.744246i
\(490\) 0 0
\(491\) −1.35385 4.16673i −0.0610986 0.188042i 0.915848 0.401524i \(-0.131519\pi\)
−0.976947 + 0.213482i \(0.931519\pi\)
\(492\) 0 0
\(493\) 29.9684 + 21.7733i 1.34971 + 0.980619i
\(494\) 0 0
\(495\) 10.6500 16.3532i 0.478680 0.735020i
\(496\) 0 0
\(497\) −3.95035 2.87010i −0.177198 0.128742i
\(498\) 0 0
\(499\) −2.63267 8.10251i −0.117854 0.362718i 0.874677 0.484706i \(-0.161073\pi\)
−0.992532 + 0.121987i \(0.961073\pi\)
\(500\) 0 0
\(501\) −38.9873 + 28.3260i −1.74183 + 1.26551i
\(502\) 0 0
\(503\) −4.88999 + 15.0499i −0.218034 + 0.671040i 0.780890 + 0.624668i \(0.214766\pi\)
−0.998924 + 0.0463716i \(0.985234\pi\)
\(504\) 0 0
\(505\) −6.60433 −0.293889
\(506\) 0 0
\(507\) −27.1524 −1.20588
\(508\) 0 0
\(509\) −0.0789642 + 0.243027i −0.00350002 + 0.0107720i −0.952791 0.303626i \(-0.901803\pi\)
0.949291 + 0.314398i \(0.101803\pi\)
\(510\) 0 0
\(511\) −7.41811 + 5.38958i −0.328158 + 0.238421i
\(512\) 0 0
\(513\) −8.74700 26.9205i −0.386189 1.18857i
\(514\) 0 0
\(515\) 3.72260 + 2.70463i 0.164037 + 0.119180i
\(516\) 0 0
\(517\) 16.9049 + 20.9311i 0.743477 + 0.920549i
\(518\) 0 0
\(519\) 0.772175 + 0.561018i 0.0338947 + 0.0246260i
\(520\) 0 0
\(521\) 2.26388 + 6.96751i 0.0991824 + 0.305252i 0.988321 0.152386i \(-0.0486956\pi\)
−0.889139 + 0.457638i \(0.848696\pi\)
\(522\) 0 0
\(523\) 8.72460 6.33879i 0.381500 0.277176i −0.380463 0.924796i \(-0.624235\pi\)
0.761964 + 0.647620i \(0.224235\pi\)
\(524\) 0 0
\(525\) −4.75650 + 14.6390i −0.207591 + 0.638899i
\(526\) 0 0
\(527\) −19.3854 −0.844441
\(528\) 0 0
\(529\) −18.1951 −0.791091
\(530\) 0 0
\(531\) 20.3040 62.4893i 0.881119 2.71180i
\(532\) 0 0
\(533\) 1.30085 0.945126i 0.0563462 0.0409379i
\(534\) 0 0
\(535\) 0.593698 + 1.82721i 0.0256678 + 0.0789973i
\(536\) 0 0
\(537\) 52.5839 + 38.2044i 2.26916 + 1.64864i
\(538\) 0 0
\(539\) 0.169294 + 3.31230i 0.00729201 + 0.142671i
\(540\) 0 0
\(541\) 6.70061 + 4.86828i 0.288082 + 0.209304i 0.722435 0.691439i \(-0.243023\pi\)
−0.434353 + 0.900743i \(0.643023\pi\)
\(542\) 0 0
\(543\) 11.8895 + 36.5923i 0.510229 + 1.57032i
\(544\) 0 0
\(545\) −5.54318 + 4.02736i −0.237444 + 0.172513i
\(546\) 0 0
\(547\) 0.398348 1.22599i 0.0170321 0.0524195i −0.942179 0.335109i \(-0.891227\pi\)
0.959211 + 0.282690i \(0.0912267\pi\)
\(548\) 0 0
\(549\) −60.7401 −2.59232
\(550\) 0 0
\(551\) −11.7684 −0.501352
\(552\) 0 0
\(553\) −4.82930 + 14.8631i −0.205363 + 0.632041i
\(554\) 0 0
\(555\) −0.401402 + 0.291636i −0.0170386 + 0.0123792i
\(556\) 0 0
\(557\) 4.07289 + 12.5351i 0.172574 + 0.531127i 0.999514 0.0311618i \(-0.00992073\pi\)
−0.826941 + 0.562289i \(0.809921\pi\)
\(558\) 0 0
\(559\) 11.4662 + 8.33071i 0.484970 + 0.352351i
\(560\) 0 0
\(561\) −51.3288 13.8247i −2.16710 0.583679i
\(562\) 0 0
\(563\) 9.32128 + 6.77231i 0.392845 + 0.285419i 0.766620 0.642101i \(-0.221937\pi\)
−0.373775 + 0.927519i \(0.621937\pi\)
\(564\) 0 0
\(565\) −3.57241 10.9948i −0.150293 0.462553i
\(566\) 0 0
\(567\) 31.2107 22.6759i 1.31073 0.952299i
\(568\) 0 0
\(569\) −13.3186 + 40.9905i −0.558346 + 1.71841i 0.128593 + 0.991697i \(0.458954\pi\)
−0.686939 + 0.726715i \(0.741046\pi\)
\(570\) 0 0
\(571\) −33.9904 −1.42245 −0.711227 0.702962i \(-0.751860\pi\)
−0.711227 + 0.702962i \(0.751860\pi\)
\(572\) 0 0
\(573\) −46.9260 −1.96036
\(574\) 0 0
\(575\) 3.06670 9.43832i 0.127890 0.393605i
\(576\) 0 0
\(577\) −32.1619 + 23.3670i −1.33892 + 0.972781i −0.339435 + 0.940629i \(0.610236\pi\)
−0.999483 + 0.0321518i \(0.989764\pi\)
\(578\) 0 0
\(579\) 22.1831 + 68.2725i 0.921897 + 2.83731i
\(580\) 0 0
\(581\) 9.79813 + 7.11876i 0.406495 + 0.295336i
\(582\) 0 0
\(583\) −39.5541 + 15.1247i −1.63816 + 0.626402i
\(584\) 0 0
\(585\) −21.8075 15.8441i −0.901628 0.655071i
\(586\) 0 0
\(587\) −11.7049 36.0241i −0.483114 1.48687i −0.834694 0.550714i \(-0.814355\pi\)
0.351580 0.936158i \(-0.385645\pi\)
\(588\) 0 0
\(589\) 4.98248 3.61998i 0.205300 0.149159i
\(590\) 0 0
\(591\) 11.8387 36.4359i 0.486980 1.49877i
\(592\) 0 0
\(593\) −2.34186 −0.0961686 −0.0480843 0.998843i \(-0.515312\pi\)
−0.0480843 + 0.998843i \(0.515312\pi\)
\(594\) 0 0
\(595\) −3.24095 −0.132866
\(596\) 0 0
\(597\) 3.37566 10.3892i 0.138156 0.425202i
\(598\) 0 0
\(599\) 14.0649 10.2188i 0.574677 0.417527i −0.262124 0.965034i \(-0.584423\pi\)
0.836801 + 0.547507i \(0.184423\pi\)
\(600\) 0 0
\(601\) −4.42219 13.6101i −0.180385 0.555168i 0.819453 0.573146i \(-0.194277\pi\)
−0.999838 + 0.0179781i \(0.994277\pi\)
\(602\) 0 0
\(603\) −6.15849 4.47440i −0.250793 0.182212i
\(604\) 0 0
\(605\) 6.53931 + 3.79806i 0.265861 + 0.154413i
\(606\) 0 0
\(607\) 19.8396 + 14.4143i 0.805263 + 0.585058i 0.912453 0.409181i \(-0.134185\pi\)
−0.107190 + 0.994239i \(0.534185\pi\)
\(608\) 0 0
\(609\) −8.25532 25.4073i −0.334522 1.02955i
\(610\) 0 0
\(611\) 30.0653 21.8437i 1.21631 0.883702i
\(612\) 0 0
\(613\) 11.8827 36.5713i 0.479939 1.47710i −0.359241 0.933245i \(-0.616964\pi\)
0.839180 0.543854i \(-0.183036\pi\)
\(614\) 0 0
\(615\) 0.820390 0.0330813
\(616\) 0 0
\(617\) −4.44911 −0.179114 −0.0895572 0.995982i \(-0.528545\pi\)
−0.0895572 + 0.995982i \(0.528545\pi\)
\(618\) 0 0
\(619\) −7.92092 + 24.3781i −0.318369 + 0.979838i 0.655977 + 0.754781i \(0.272257\pi\)
−0.974346 + 0.225057i \(0.927743\pi\)
\(620\) 0 0
\(621\) −33.5159 + 24.3507i −1.34495 + 0.977160i
\(622\) 0 0
\(623\) 4.82713 + 14.8564i 0.193395 + 0.595209i
\(624\) 0 0
\(625\) −14.6707 10.6589i −0.586828 0.426355i
\(626\) 0 0
\(627\) 15.7742 6.03176i 0.629962 0.240885i
\(628\) 0 0
\(629\) 0.809607 + 0.588214i 0.0322811 + 0.0234536i
\(630\) 0 0
\(631\) −4.63016 14.2502i −0.184324 0.567291i 0.815612 0.578599i \(-0.196400\pi\)
−0.999936 + 0.0113084i \(0.996400\pi\)
\(632\) 0 0
\(633\) −52.3604 + 38.0420i −2.08114 + 1.51203i
\(634\) 0 0
\(635\) 1.19800 3.68705i 0.0475410 0.146316i
\(636\) 0 0
\(637\) 4.58109 0.181509
\(638\) 0 0
\(639\) −41.7925 −1.65328
\(640\) 0 0
\(641\) 8.35393 25.7108i 0.329960 1.01551i −0.639191 0.769048i \(-0.720731\pi\)
0.969151 0.246466i \(-0.0792693\pi\)
\(642\) 0 0
\(643\) −20.4006 + 14.8219i −0.804522 + 0.584519i −0.912237 0.409663i \(-0.865646\pi\)
0.107716 + 0.994182i \(0.465646\pi\)
\(644\) 0 0
\(645\) 2.23458 + 6.87732i 0.0879863 + 0.270794i
\(646\) 0 0
\(647\) 5.54113 + 4.02587i 0.217844 + 0.158273i 0.691356 0.722514i \(-0.257014\pi\)
−0.473511 + 0.880788i \(0.657014\pi\)
\(648\) 0 0
\(649\) 24.5849 + 6.62161i 0.965042 + 0.259921i
\(650\) 0 0
\(651\) 11.3104 + 8.21750i 0.443290 + 0.322069i
\(652\) 0 0
\(653\) −11.1896 34.4382i −0.437885 1.34767i −0.890102 0.455762i \(-0.849367\pi\)
0.452217 0.891908i \(-0.350633\pi\)
\(654\) 0 0
\(655\) 6.25394 4.54376i 0.244362 0.177539i
\(656\) 0 0
\(657\) −24.2515 + 74.6384i −0.946140 + 2.91192i
\(658\) 0 0
\(659\) −26.9081 −1.04819 −0.524096 0.851659i \(-0.675597\pi\)
−0.524096 + 0.851659i \(0.675597\pi\)
\(660\) 0 0
\(661\) −37.9406 −1.47572 −0.737858 0.674956i \(-0.764163\pi\)
−0.737858 + 0.674956i \(0.764163\pi\)
\(662\) 0 0
\(663\) −22.6894 + 69.8308i −0.881183 + 2.71200i
\(664\) 0 0
\(665\) 0.832996 0.605207i 0.0323022 0.0234689i
\(666\) 0 0
\(667\) 5.32252 + 16.3810i 0.206089 + 0.634276i
\(668\) 0 0
\(669\) −47.3781 34.4222i −1.83174 1.33084i
\(670\) 0 0
\(671\) −1.20143 23.5063i −0.0463805 0.907452i
\(672\) 0 0
\(673\) 22.3883 + 16.2660i 0.863005 + 0.627010i 0.928701 0.370830i \(-0.120927\pi\)
−0.0656956 + 0.997840i \(0.520927\pi\)
\(674\) 0 0
\(675\) 26.4411 + 81.3773i 1.01772 + 3.13221i
\(676\) 0 0
\(677\) 4.98739 3.62355i 0.191681 0.139264i −0.487806 0.872952i \(-0.662203\pi\)
0.679487 + 0.733688i \(0.262203\pi\)
\(678\) 0 0
\(679\) −0.868815 + 2.67394i −0.0333421 + 0.102616i
\(680\) 0 0
\(681\) 17.7366 0.679667
\(682\) 0 0
\(683\) 7.80638 0.298703 0.149351 0.988784i \(-0.452281\pi\)
0.149351 + 0.988784i \(0.452281\pi\)
\(684\) 0 0
\(685\) 4.09346 12.5984i 0.156403 0.481359i
\(686\) 0 0
\(687\) 29.7239 21.5957i 1.13404 0.823926i
\(688\) 0 0
\(689\) 18.0750 + 55.6293i 0.688605 + 2.11931i
\(690\) 0 0
\(691\) −13.2484 9.62555i −0.503994 0.366173i 0.306547 0.951856i \(-0.400826\pi\)
−0.810540 + 0.585683i \(0.800826\pi\)
\(692\) 0 0
\(693\) 17.8358 + 22.0838i 0.677527 + 0.838893i
\(694\) 0 0
\(695\) −1.65295 1.20094i −0.0626999 0.0455542i
\(696\) 0 0
\(697\) −0.511325 1.57370i −0.0193678 0.0596080i
\(698\) 0 0
\(699\) 6.26436 4.55132i 0.236940 0.172147i
\(700\) 0 0
\(701\) −0.353613 + 1.08831i −0.0133558 + 0.0411048i −0.957512 0.288392i \(-0.906879\pi\)
0.944157 + 0.329497i \(0.106879\pi\)
\(702\) 0 0
\(703\) −0.317929 −0.0119909
\(704\) 0 0
\(705\) 18.9608 0.714106
\(706\) 0 0
\(707\) 2.96860 9.13642i 0.111646 0.343610i
\(708\) 0 0
\(709\) −7.89654 + 5.73718i −0.296561 + 0.215464i −0.726109 0.687580i \(-0.758673\pi\)
0.429548 + 0.903044i \(0.358673\pi\)
\(710\) 0 0
\(711\) 41.3337 + 127.212i 1.55013 + 4.77082i
\(712\) 0 0
\(713\) −7.29226 5.29813i −0.273097 0.198417i
\(714\) 0 0
\(715\) 5.70029 8.75287i 0.213179 0.327339i
\(716\) 0 0
\(717\) 0.274304 + 0.199293i 0.0102441 + 0.00744274i
\(718\) 0 0
\(719\) −0.397370 1.22298i −0.0148194 0.0456094i 0.943373 0.331733i \(-0.107633\pi\)
−0.958193 + 0.286123i \(0.907633\pi\)
\(720\) 0 0
\(721\) −5.41486 + 3.93412i −0.201660 + 0.146514i
\(722\) 0 0
\(723\) 29.8050 91.7302i 1.10846 3.41148i
\(724\) 0 0
\(725\) 35.5745 1.32120
\(726\) 0 0
\(727\) −46.5455 −1.72628 −0.863138 0.504968i \(-0.831504\pi\)
−0.863138 + 0.504968i \(0.831504\pi\)
\(728\) 0 0
\(729\) 42.4668 130.699i 1.57285 4.84072i
\(730\) 0 0
\(731\) 11.7995 8.57286i 0.436421 0.317079i
\(732\) 0 0
\(733\) −8.75507 26.9453i −0.323376 0.995249i −0.972168 0.234284i \(-0.924726\pi\)
0.648792 0.760966i \(-0.275274\pi\)
\(734\) 0 0
\(735\) 1.89093 + 1.37384i 0.0697481 + 0.0506749i
\(736\) 0 0
\(737\) 1.60978 2.47183i 0.0592969 0.0910511i
\(738\) 0 0
\(739\) 33.5180 + 24.3523i 1.23298 + 0.895812i 0.997110 0.0759722i \(-0.0242060\pi\)
0.235870 + 0.971785i \(0.424206\pi\)
\(740\) 0 0
\(741\) −7.20835 22.1850i −0.264805 0.814987i
\(742\) 0 0
\(743\) 4.91182 3.56865i 0.180197 0.130921i −0.494030 0.869445i \(-0.664477\pi\)
0.674227 + 0.738524i \(0.264477\pi\)
\(744\) 0 0
\(745\) −1.46788 + 4.51765i −0.0537788 + 0.165514i
\(746\) 0 0
\(747\) 103.659 3.79267
\(748\) 0 0
\(749\) −2.79463 −0.102113
\(750\) 0 0
\(751\) −6.71573 + 20.6689i −0.245060 + 0.754218i 0.750566 + 0.660795i \(0.229781\pi\)
−0.995627 + 0.0934229i \(0.970219\pi\)
\(752\) 0 0
\(753\) −19.2261 + 13.9686i −0.700639 + 0.509044i
\(754\) 0 0
\(755\) 0.563394 + 1.73395i 0.0205040 + 0.0631048i
\(756\) 0 0
\(757\) 12.7860 + 9.28954i 0.464713 + 0.337634i 0.795377 0.606115i \(-0.207273\pi\)
−0.330664 + 0.943749i \(0.607273\pi\)
\(758\) 0 0
\(759\) −15.5301 19.2289i −0.563708 0.697965i
\(760\) 0 0
\(761\) −14.9993 10.8977i −0.543726 0.395040i 0.281741 0.959490i \(-0.409088\pi\)
−0.825467 + 0.564451i \(0.809088\pi\)
\(762\) 0 0
\(763\) −3.07981 9.47869i −0.111497 0.343152i
\(764\) 0 0
\(765\) −22.4414 + 16.3046i −0.811370 + 0.589495i
\(766\) 0 0
\(767\) 10.8675 33.4468i 0.392404 1.20769i
\(768\) 0 0
\(769\) 35.3343 1.27419 0.637093 0.770787i \(-0.280137\pi\)
0.637093 + 0.770787i \(0.280137\pi\)
\(770\) 0 0
\(771\) 74.6938 2.69003
\(772\) 0 0
\(773\) 6.57884 20.2476i 0.236625 0.728256i −0.760277 0.649599i \(-0.774937\pi\)
0.996902 0.0786567i \(-0.0250631\pi\)
\(774\) 0 0
\(775\) −15.0614 + 10.9428i −0.541022 + 0.393076i
\(776\) 0 0
\(777\) −0.223021 0.686387i −0.00800082 0.0246240i
\(778\) 0 0
\(779\) 0.425291 + 0.308992i 0.0152376 + 0.0110708i
\(780\) 0 0
\(781\) −0.826647 16.1736i −0.0295797 0.578739i
\(782\) 0 0
\(783\) −120.144 87.2895i −4.29358 3.11947i
\(784\) 0 0
\(785\) 2.43059 + 7.48058i 0.0867514 + 0.266993i
\(786\) 0 0
\(787\) −21.4875 + 15.6116i −0.765945 + 0.556492i −0.900728 0.434383i \(-0.856966\pi\)
0.134783 + 0.990875i \(0.456966\pi\)
\(788\) 0 0
\(789\) −14.0873 + 43.3563i −0.501521 + 1.54352i
\(790\) 0 0
\(791\) 16.8159 0.597904
\(792\) 0 0
\(793\) −32.5105 −1.15448
\(794\) 0 0
\(795\) −9.22208 + 28.3827i −0.327074 + 1.00663i
\(796\) 0 0
\(797\) 11.8866 8.63608i 0.421043 0.305906i −0.357014 0.934099i \(-0.616205\pi\)
0.778057 + 0.628193i \(0.216205\pi\)
\(798\) 0 0
\(799\) −11.8177 36.3712i −0.418081 1.28672i
\(800\) 0 0
\(801\) 108.164 + 78.5861i 3.82180 + 2.77670i
\(802\) 0 0
\(803\) −29.3647 7.90897i −1.03626 0.279101i
\(804\) 0 0
\(805\) −1.21916 0.885769i −0.0429696 0.0312192i
\(806\) 0 0
\(807\) −33.2512 102.337i −1.17050 3.60243i
\(808\) 0 0
\(809\) 12.5236 9.09895i 0.440307 0.319902i −0.345450 0.938437i \(-0.612274\pi\)
0.785757 + 0.618535i \(0.212274\pi\)
\(810\) 0 0
\(811\) 5.18583 15.9604i 0.182099 0.560444i −0.817787 0.575521i \(-0.804799\pi\)
0.999886 + 0.0150770i \(0.00479933\pi\)
\(812\) 0 0
\(813\) 73.9270 2.59273
\(814\) 0 0
\(815\) −5.66178 −0.198323
\(816\) 0 0
\(817\) −1.43187 + 4.40684i −0.0500947 + 0.154176i
\(818\) 0 0
\(819\) 31.7210 23.0466i 1.10842 0.805314i
\(820\) 0 0
\(821\) −4.23855 13.0449i −0.147926 0.455270i 0.849449 0.527670i \(-0.176934\pi\)
−0.997376 + 0.0723998i \(0.976934\pi\)
\(822\) 0 0
\(823\) −37.2133 27.0370i −1.29717 0.942451i −0.297249 0.954800i \(-0.596069\pi\)
−0.999924 + 0.0123492i \(0.996069\pi\)
\(824\) 0 0
\(825\) −47.6835 + 18.2333i −1.66013 + 0.634801i
\(826\) 0 0
\(827\) 1.26848 + 0.921606i 0.0441094 + 0.0320474i 0.609622 0.792693i \(-0.291321\pi\)
−0.565512 + 0.824740i \(0.691321\pi\)
\(828\) 0 0
\(829\) −3.45203 10.6243i −0.119894 0.368996i 0.873042 0.487644i \(-0.162144\pi\)
−0.992936 + 0.118649i \(0.962144\pi\)
\(830\) 0 0
\(831\) 53.2545 38.6916i 1.84738 1.34220i
\(832\) 0 0
\(833\) 1.45678 4.48352i 0.0504746 0.155345i
\(834\) 0 0
\(835\) −9.74465 −0.337228
\(836\) 0 0
\(837\) 77.7164 2.68627
\(838\) 0 0
\(839\) −14.0113 + 43.1224i −0.483724 + 1.48875i 0.350097 + 0.936714i \(0.386149\pi\)
−0.833821 + 0.552036i \(0.813851\pi\)
\(840\) 0 0
\(841\) −26.4893 + 19.2456i −0.913425 + 0.663642i
\(842\) 0 0
\(843\) −22.3306 68.7266i −0.769108 2.36707i
\(844\) 0 0
\(845\) −4.44188 3.22721i −0.152805 0.111020i
\(846\) 0 0
\(847\) −8.19361 + 7.33926i −0.281536 + 0.252180i
\(848\) 0 0
\(849\) 7.19070 + 5.22435i 0.246784 + 0.179299i
\(850\) 0 0
\(851\) 0.143790 + 0.442540i 0.00492906 + 0.0151701i
\(852\) 0 0
\(853\) 14.8508 10.7897i 0.508482 0.369434i −0.303766 0.952747i \(-0.598244\pi\)
0.812247 + 0.583313i \(0.198244\pi\)
\(854\) 0 0
\(855\) 2.72325 8.38130i 0.0931332 0.286634i
\(856\) 0 0
\(857\) 6.55371 0.223870 0.111935 0.993716i \(-0.464295\pi\)
0.111935 + 0.993716i \(0.464295\pi\)
\(858\) 0 0
\(859\) −30.9945 −1.05752 −0.528759 0.848772i \(-0.677343\pi\)
−0.528759 + 0.848772i \(0.677343\pi\)
\(860\) 0 0
\(861\) −0.368760 + 1.13493i −0.0125673 + 0.0386782i
\(862\) 0 0
\(863\) −20.1805 + 14.6620i −0.686952 + 0.499100i −0.875657 0.482934i \(-0.839571\pi\)
0.188705 + 0.982034i \(0.439571\pi\)
\(864\) 0 0
\(865\) 0.0596405 + 0.183554i 0.00202784 + 0.00624104i
\(866\) 0 0
\(867\) 14.3692 + 10.4399i 0.488004 + 0.354556i
\(868\) 0 0
\(869\) −48.4133 + 18.5123i −1.64231 + 0.627987i
\(870\) 0 0
\(871\) −3.29627 2.39488i −0.111690 0.0811475i
\(872\) 0 0
\(873\) 7.43613 + 22.8861i 0.251675 + 0.774576i
\(874\) 0 0
\(875\) −5.29895 + 3.84991i −0.179137 + 0.130151i
\(876\) 0 0
\(877\) 9.86414 30.3587i 0.333088 1.02514i −0.634568 0.772867i \(-0.718822\pi\)
0.967656 0.252273i \(-0.0811782\pi\)
\(878\) 0 0
\(879\) −63.3695 −2.13740
\(880\) 0 0
\(881\) 30.7462 1.03587 0.517933 0.855421i \(-0.326702\pi\)
0.517933 + 0.855421i \(0.326702\pi\)
\(882\) 0 0
\(883\) 14.1731 43.6202i 0.476961 1.46794i −0.366333 0.930484i \(-0.619387\pi\)
0.843294 0.537452i \(-0.180613\pi\)
\(884\) 0 0
\(885\) 14.5163 10.5467i 0.487959 0.354523i
\(886\) 0 0
\(887\) −13.5824 41.8022i −0.456051 1.40358i −0.869897 0.493234i \(-0.835815\pi\)
0.413846 0.910347i \(-0.364185\pi\)
\(888\) 0 0
\(889\) 4.56217 + 3.31461i 0.153010 + 0.111168i
\(890\) 0 0
\(891\) 123.548 + 33.2759i 4.13901 + 1.11479i
\(892\) 0 0
\(893\) 9.82930 + 7.14141i 0.328925 + 0.238978i
\(894\) 0 0
\(895\) 4.06142 + 12.4998i 0.135758 + 0.417821i
\(896\) 0 0
\(897\) −27.6203 + 20.0673i −0.922213 + 0.670027i
\(898\) 0 0
\(899\) 9.98474 30.7299i 0.333010 1.02490i
\(900\) 0 0
\(901\) 60.1923 2.00530
\(902\) 0 0
\(903\) −10.5185 −0.350033
\(904\) 0 0
\(905\) −2.40417 + 7.39928i −0.0799174 + 0.245961i
\(906\) 0 0
\(907\) −10.3097 + 7.49045i −0.342329 + 0.248716i −0.745644 0.666345i \(-0.767858\pi\)
0.403315 + 0.915061i \(0.367858\pi\)
\(908\) 0 0
\(909\) −25.4081 78.1981i −0.842733 2.59367i
\(910\) 0 0
\(911\) −10.1547 7.37785i −0.336441 0.244439i 0.406718 0.913554i \(-0.366673\pi\)
−0.743159 + 0.669115i \(0.766673\pi\)
\(912\) 0 0
\(913\) 2.05035 + 40.1158i 0.0678566 + 1.32764i
\(914\) 0 0
\(915\) −13.4193 9.74972i −0.443630 0.322316i
\(916\) 0 0
\(917\) 3.47472 + 10.6941i 0.114745 + 0.353150i
\(918\) 0 0
\(919\) 28.3212 20.5766i 0.934230 0.678758i −0.0127946 0.999918i \(-0.504073\pi\)
0.947025 + 0.321160i \(0.104073\pi\)
\(920\) 0 0
\(921\) 5.73319 17.6450i 0.188915 0.581421i
\(922\) 0 0
\(923\) −22.3690 −0.736285
\(924\) 0 0
\(925\) 0.961059 0.0315994
\(926\) 0 0
\(927\) −17.7024 + 54.4823i −0.581422 + 1.78943i
\(928\) 0 0
\(929\) −24.3329 + 17.6789i −0.798336 + 0.580025i −0.910426 0.413673i \(-0.864246\pi\)
0.112089 + 0.993698i \(0.464246\pi\)
\(930\) 0 0
\(931\) 0.462816 + 1.42440i 0.0151682 + 0.0466829i
\(932\) 0 0
\(933\) −16.1896 11.7625i −0.530025 0.385086i
\(934\) 0 0
\(935\) −6.75376 8.36229i −0.220871 0.273476i
\(936\) 0 0
\(937\) 2.16391 + 1.57217i 0.0706917 + 0.0513605i 0.622570 0.782564i \(-0.286089\pi\)
−0.551878 + 0.833925i \(0.686089\pi\)
\(938\) 0 0
\(939\) 22.4214 + 69.0058i 0.731693 + 2.25192i
\(940\) 0 0
\(941\) −14.4251 + 10.4805i −0.470246 + 0.341654i −0.797537 0.603270i \(-0.793864\pi\)
0.327291 + 0.944924i \(0.393864\pi\)
\(942\) 0 0
\(943\) 0.237753 0.731730i 0.00774232 0.0238284i
\(944\) 0 0
\(945\) 12.9930 0.422663
\(946\) 0 0
\(947\) 27.4082 0.890647 0.445323 0.895370i \(-0.353089\pi\)
0.445323 + 0.895370i \(0.353089\pi\)
\(948\) 0 0
\(949\) −12.9804 + 39.9495i −0.421361 + 1.29681i
\(950\) 0 0
\(951\) −19.9703 + 14.5092i −0.647580 + 0.470494i
\(952\) 0 0
\(953\) −12.5821 38.7239i −0.407576 1.25439i −0.918725 0.394897i \(-0.870780\pi\)
0.511150 0.859492i \(-0.329220\pi\)
\(954\) 0 0
\(955\) −7.67665 5.57742i −0.248411 0.180481i
\(956\) 0 0
\(957\) 48.3527 74.2461i 1.56302 2.40004i
\(958\) 0 0
\(959\) 15.5886 + 11.3258i 0.503381 + 0.365728i
\(960\) 0 0
\(961\) −4.35429 13.4011i −0.140461 0.432294i
\(962\) 0 0
\(963\) −19.3509 + 14.0593i −0.623574 + 0.453053i
\(964\) 0 0
\(965\) −4.48562 + 13.8053i −0.144397 + 0.444408i
\(966\) 0 0
\(967\) −59.5033 −1.91350 −0.956749 0.290915i \(-0.906040\pi\)
−0.956749 + 0.290915i \(0.906040\pi\)
\(968\) 0 0
\(969\) −24.0048 −0.771145
\(970\) 0 0
\(971\) 12.9013 39.7061i 0.414022 1.27423i −0.499100 0.866544i \(-0.666336\pi\)
0.913122 0.407685i \(-0.133664\pi\)
\(972\) 0 0
\(973\) 2.40436 1.74687i 0.0770804 0.0560022i
\(974\) 0 0
\(975\) 21.7900 + 67.0626i 0.697837 + 2.14772i
\(976\) 0 0
\(977\) −7.56447 5.49591i −0.242009 0.175830i 0.460169 0.887831i \(-0.347789\pi\)
−0.702178 + 0.712002i \(0.747789\pi\)
\(978\) 0 0
\(979\) −28.2733 + 43.4140i −0.903618 + 1.38752i
\(980\) 0 0
\(981\) −69.0112 50.1396i −2.20336 1.60083i
\(982\) 0 0
\(983\) −2.16872 6.67464i −0.0691715 0.212888i 0.910495 0.413519i \(-0.135701\pi\)
−0.979667 + 0.200631i \(0.935701\pi\)
\(984\) 0 0
\(985\) 6.26730 4.55346i 0.199693 0.145085i
\(986\) 0 0
\(987\) −8.52276 + 26.2304i −0.271283 + 0.834922i
\(988\) 0 0
\(989\) 6.78167 0.215645
\(990\) 0 0
\(991\) −17.8273 −0.566303 −0.283152 0.959075i \(-0.591380\pi\)
−0.283152 + 0.959075i \(0.591380\pi\)
\(992\) 0 0
\(993\) −12.3980 + 38.1571i −0.393439 + 1.21088i
\(994\) 0 0
\(995\) 1.78704 1.29836i 0.0566529 0.0411607i
\(996\) 0 0
\(997\) −16.0391 49.3632i −0.507963 1.56335i −0.795731 0.605650i \(-0.792913\pi\)
0.287768 0.957700i \(-0.407087\pi\)
\(998\) 0 0
\(999\) −3.24573 2.35816i −0.102690 0.0746089i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.r.f.169.1 yes 20
11.3 even 5 inner 616.2.r.f.113.1 20
11.5 even 5 6776.2.a.bm.1.1 10
11.6 odd 10 6776.2.a.bn.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.r.f.113.1 20 11.3 even 5 inner
616.2.r.f.169.1 yes 20 1.1 even 1 trivial
6776.2.a.bm.1.1 10 11.5 even 5
6776.2.a.bn.1.1 10 11.6 odd 10