Properties

Label 624.4.a.j
Level $624$
Weight $4$
Character orbit 624.a
Self dual yes
Analytic conductor $36.817$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(1,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.8171918436\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta - 9) q^{5} + ( - 5 \beta + 5) q^{7} + 9 q^{9} + (14 \beta - 2) q^{11} + 13 q^{13} + (3 \beta + 27) q^{15} + (12 \beta - 26) q^{17} + ( - 11 \beta + 71) q^{19} + (15 \beta - 15) q^{21}+ \cdots + (126 \beta - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 18 q^{5} + 10 q^{7} + 18 q^{9} - 4 q^{11} + 26 q^{13} + 54 q^{15} - 52 q^{17} + 142 q^{19} - 30 q^{21} + 280 q^{23} - 54 q^{25} - 54 q^{27} - 424 q^{29} + 178 q^{31} + 12 q^{33} + 80 q^{35}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.56155
−1.56155
0 −3.00000 0 −13.1231 0 −15.6155 0 9.00000 0
1.2 0 −3.00000 0 −4.87689 0 25.6155 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.a.j 2
3.b odd 2 1 1872.4.a.bi 2
4.b odd 2 1 312.4.a.d 2
8.b even 2 1 2496.4.a.bj 2
8.d odd 2 1 2496.4.a.ba 2
12.b even 2 1 936.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.4.a.d 2 4.b odd 2 1
624.4.a.j 2 1.a even 1 1 trivial
936.4.a.j 2 12.b even 2 1
1872.4.a.bi 2 3.b odd 2 1
2496.4.a.ba 2 8.d odd 2 1
2496.4.a.bj 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(624))\):

\( T_{5}^{2} + 18T_{5} + 64 \) Copy content Toggle raw display
\( T_{7}^{2} - 10T_{7} - 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 18T + 64 \) Copy content Toggle raw display
$7$ \( T^{2} - 10T - 400 \) Copy content Toggle raw display
$11$ \( T^{2} + 4T - 3328 \) Copy content Toggle raw display
$13$ \( (T - 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 52T - 1772 \) Copy content Toggle raw display
$19$ \( T^{2} - 142T + 2984 \) Copy content Toggle raw display
$23$ \( T^{2} - 280T + 17152 \) Copy content Toggle raw display
$29$ \( T^{2} + 424T + 44332 \) Copy content Toggle raw display
$31$ \( T^{2} - 178T - 10592 \) Copy content Toggle raw display
$37$ \( T^{2} - 136T - 44948 \) Copy content Toggle raw display
$41$ \( T^{2} + 226T + 6632 \) Copy content Toggle raw display
$43$ \( T^{2} - 72T - 130352 \) Copy content Toggle raw display
$47$ \( T^{2} + 176T - 237056 \) Copy content Toggle raw display
$53$ \( T^{2} + 788T + 154148 \) Copy content Toggle raw display
$59$ \( T^{2} + 728T + 131408 \) Copy content Toggle raw display
$61$ \( T^{2} + 736T + 110876 \) Copy content Toggle raw display
$67$ \( T^{2} + 1054T + 83096 \) Copy content Toggle raw display
$71$ \( T^{2} - 660T + 5472 \) Copy content Toggle raw display
$73$ \( T^{2} - 24T - 837684 \) Copy content Toggle raw display
$79$ \( T^{2} + 40T - 1294592 \) Copy content Toggle raw display
$83$ \( T^{2} + 1344 T + 372976 \) Copy content Toggle raw display
$89$ \( T^{2} - 314T - 790688 \) Copy content Toggle raw display
$97$ \( T^{2} + 264T + 15724 \) Copy content Toggle raw display
show more
show less