Properties

Label 630.2.bv.c
Level $630$
Weight $2$
Character orbit 630.bv
Analytic conductor $5.031$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,2,Mod(73,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 9, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 630.bv (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.03057532734\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{13} q^{2} + ( - \beta_{14} + \beta_{11}) q^{4} + ( - \beta_{9} - \beta_{7} + \cdots + \beta_{5}) q^{5} + ( - \beta_{14} + \beta_{13} - \beta_{12} + \cdots + 1) q^{7} + \beta_{7} q^{8} + (\beta_{13} - \beta_{4} + \beta_{2} - 1) q^{10}+ \cdots + (\beta_{15} + 4 \beta_{14} - 5 \beta_{11} + \cdots - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{5} + 8 q^{7} - 12 q^{10} + 12 q^{11} + 8 q^{16} + 36 q^{17} - 8 q^{22} + 4 q^{23} + 12 q^{25} - 12 q^{26} + 4 q^{28} + 24 q^{31} - 8 q^{35} + 4 q^{37} - 24 q^{38} - 8 q^{43} - 8 q^{46} - 12 q^{47}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 171 \nu^{14} + 2802 \nu^{12} + 20266 \nu^{10} + 96110 \nu^{8} + 343988 \nu^{6} + 866714 \nu^{4} + \cdots + 1302910 ) / 1020740 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 6279 \nu^{15} - 6023 \nu^{14} - 94829 \nu^{13} - 319853 \nu^{12} - 291088 \nu^{11} + \cdots - 204554077 ) / 224562800 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 6279 \nu^{15} - 6023 \nu^{14} + 94829 \nu^{13} - 319853 \nu^{12} + 291088 \nu^{11} + \cdots - 204554077 ) / 224562800 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 657161 \nu^{14} + 6218761 \nu^{12} + 35853172 \nu^{10} + 144339958 \nu^{8} + 433352890 \nu^{6} + \cdots + 1019822349 ) / 785969800 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 623003 \nu^{14} - 5366258 \nu^{12} - 30938216 \nu^{10} - 125675214 \nu^{8} + \cdots - 1273004222 ) / 392984900 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4174573 \nu^{15} + 307671 \nu^{14} + 41450603 \nu^{13} + 4646621 \nu^{12} + 238976156 \nu^{11} + \cdots + 8000085009 ) / 11003577200 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 4174573 \nu^{15} + 307671 \nu^{14} - 41450603 \nu^{13} + 4646621 \nu^{12} + \cdots + 8000085009 ) / 11003577200 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 5413027 \nu^{15} - 6673919 \nu^{14} - 53207257 \nu^{13} - 67697189 \nu^{12} + \cdots - 11101746201 ) / 11003577200 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 5413027 \nu^{15} + 6673919 \nu^{14} - 53207257 \nu^{13} + 67697189 \nu^{12} + \cdots + 11101746201 ) / 11003577200 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 26590 \nu^{15} + 257521 \nu^{13} + 1484692 \nu^{11} + 6079906 \nu^{9} + 17945290 \nu^{7} + \cdots + 42231189 \nu ) / 50016260 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 154017 \nu^{15} - 1553547 \nu^{13} - 9597064 \nu^{11} - 41588666 \nu^{9} + \cdots - 477500443 \nu ) / 239208200 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 7738601 \nu^{15} - 12843957 \nu^{14} + 58163261 \nu^{13} - 106723897 \nu^{12} + \cdots - 17501784573 ) / 11003577200 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 5179651 \nu^{15} - 39396031 \nu^{13} - 212402552 \nu^{11} - 802913678 \nu^{9} + \cdots - 6839548919 \nu ) / 5501788600 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 850941 \nu^{15} - 939402 \nu^{14} - 7115276 \nu^{13} - 7955037 \nu^{12} - 39448752 \nu^{11} + \cdots - 1821562113 ) / 785969800 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{15} + \beta_{13} + \beta_{7} - 2\beta_{6} - \beta_{5} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} - 2 \beta_{14} - \beta_{13} - 2 \beta_{12} - 3 \beta_{11} + \beta_{10} + \beta_{9} + \cdots - 2 \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{15} - 5\beta_{13} + 5\beta_{8} + 8\beta_{6} + 2\beta_{4} + 2\beta_{3} + 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -14\beta_{15} + 22\beta_{14} + 14\beta_{13} + 3\beta_{12} - 3\beta_{10} - 3\beta_{9} - 14\beta_{7} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 14 \beta_{15} + 14 \beta_{13} - 14 \beta_{10} + 14 \beta_{9} - 12 \beta_{8} + 2 \beta_{7} - 22 \beta_{6} + \cdots - 7 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 64\beta_{15} - 94\beta_{14} - 64\beta_{13} + 94\beta_{11} + 64\beta_{8} + 2\beta_{4} - 2\beta_{3} - 7\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -75\beta_{15} - 75\beta_{13} + 62\beta_{10} - 62\beta_{9} - 75\beta_{7} + 112\beta_{6} - 87\beta_{5} + 112 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 75 \beta_{15} + 112 \beta_{14} + 75 \beta_{13} + 112 \beta_{12} - 385 \beta_{11} - 75 \beta_{10} + \cdots + 112 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 337\beta_{15} + 337\beta_{13} - 337\beta_{8} - 486\beta_{6} + 198\beta_{4} + 198\beta_{3} + 273\beta_{2} \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -332\beta_{15} + 456\beta_{14} + 332\beta_{13} - 759\beta_{12} + 535\beta_{10} + 535\beta_{9} - 332\beta_{7} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 332 \beta_{15} + 332 \beta_{13} - 332 \beta_{10} + 332 \beta_{9} + 2364 \beta_{8} + 2696 \beta_{7} + \cdots - 3803 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 1452 \beta_{15} - 2032 \beta_{14} - 1452 \beta_{13} + 2032 \beta_{11} + 1452 \beta_{8} + \cdots - 3803 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 10647 \beta_{15} - 10647 \beta_{13} - 1244 \beta_{10} + 1244 \beta_{9} - 10647 \beta_{7} + \cdots + 15030 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 10647 \beta_{15} + 15030 \beta_{14} + 10647 \beta_{13} + 15030 \beta_{12} + 7801 \beta_{11} + \cdots + 15030 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-\beta_{11}\) \(1\) \(1 + \beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
−0.587308 + 2.01725i
1.45333 1.51725i
1.01089 0.750919i
−0.144868 + 1.25092i
−0.587308 2.01725i
1.45333 + 1.51725i
1.01089 + 0.750919i
−0.144868 1.25092i
−1.01089 0.750919i
0.144868 + 1.25092i
−1.45333 1.51725i
0.587308 + 2.01725i
−1.01089 + 0.750919i
0.144868 1.25092i
−1.45333 + 1.51725i
0.587308 2.01725i
−0.965926 0.258819i 0 0.866025 + 0.500000i 1.38266 1.75735i 0 2.58583 0.559876i −0.707107 0.707107i 0 −1.79038 + 1.33961i
73.2 −0.965926 0.258819i 0 0.866025 + 0.500000i 1.79038 + 1.33961i 0 −2.55176 0.698943i −0.707107 0.707107i 0 −1.38266 1.75735i
73.3 0.965926 + 0.258819i 0 0.866025 + 0.500000i −2.20382 0.378409i 0 0.126334 2.64273i 0.707107 + 0.707107i 0 −2.03078 0.935904i
73.4 0.965926 + 0.258819i 0 0.866025 + 0.500000i 2.03078 0.935904i 0 1.83959 + 1.90155i 0.707107 + 0.707107i 0 2.20382 0.378409i
397.1 −0.965926 + 0.258819i 0 0.866025 0.500000i 1.38266 + 1.75735i 0 2.58583 + 0.559876i −0.707107 + 0.707107i 0 −1.79038 1.33961i
397.2 −0.965926 + 0.258819i 0 0.866025 0.500000i 1.79038 1.33961i 0 −2.55176 + 0.698943i −0.707107 + 0.707107i 0 −1.38266 + 1.75735i
397.3 0.965926 0.258819i 0 0.866025 0.500000i −2.20382 + 0.378409i 0 0.126334 + 2.64273i 0.707107 0.707107i 0 −2.03078 + 0.935904i
397.4 0.965926 0.258819i 0 0.866025 0.500000i 2.03078 + 0.935904i 0 1.83959 1.90155i 0.707107 0.707107i 0 2.20382 + 0.378409i
523.1 −0.258819 0.965926i 0 −0.866025 + 0.500000i −0.774197 2.09777i 0 2.64273 0.126334i 0.707107 + 0.707107i 0 −1.82591 + 1.29076i
523.2 −0.258819 0.965926i 0 −0.866025 + 0.500000i 1.82591 + 1.29076i 0 −1.90155 1.83959i 0.707107 + 0.707107i 0 0.774197 2.09777i
523.3 0.258819 + 0.965926i 0 −0.866025 + 0.500000i −0.264946 + 2.22032i 0 0.698943 + 2.55176i −0.707107 0.707107i 0 −2.21323 + 0.318742i
523.4 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 2.21323 + 0.318742i 0 0.559876 2.58583i −0.707107 0.707107i 0 0.264946 + 2.22032i
577.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i −0.774197 + 2.09777i 0 2.64273 + 0.126334i 0.707107 0.707107i 0 −1.82591 1.29076i
577.2 −0.258819 + 0.965926i 0 −0.866025 0.500000i 1.82591 1.29076i 0 −1.90155 + 1.83959i 0.707107 0.707107i 0 0.774197 + 2.09777i
577.3 0.258819 0.965926i 0 −0.866025 0.500000i −0.264946 2.22032i 0 0.698943 2.55176i −0.707107 + 0.707107i 0 −2.21323 0.318742i
577.4 0.258819 0.965926i 0 −0.866025 0.500000i 2.21323 0.318742i 0 0.559876 + 2.58583i −0.707107 + 0.707107i 0 0.264946 2.22032i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.d odd 6 1 inner
35.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 630.2.bv.c 16
3.b odd 2 1 70.2.k.a 16
5.c odd 4 1 inner 630.2.bv.c 16
7.d odd 6 1 inner 630.2.bv.c 16
12.b even 2 1 560.2.ci.c 16
15.d odd 2 1 350.2.o.c 16
15.e even 4 1 70.2.k.a 16
15.e even 4 1 350.2.o.c 16
21.c even 2 1 490.2.l.c 16
21.g even 6 1 70.2.k.a 16
21.g even 6 1 490.2.g.c 16
21.h odd 6 1 490.2.g.c 16
21.h odd 6 1 490.2.l.c 16
35.k even 12 1 inner 630.2.bv.c 16
60.l odd 4 1 560.2.ci.c 16
84.j odd 6 1 560.2.ci.c 16
105.k odd 4 1 490.2.l.c 16
105.p even 6 1 350.2.o.c 16
105.w odd 12 1 70.2.k.a 16
105.w odd 12 1 350.2.o.c 16
105.w odd 12 1 490.2.g.c 16
105.x even 12 1 490.2.g.c 16
105.x even 12 1 490.2.l.c 16
420.br even 12 1 560.2.ci.c 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.2.k.a 16 3.b odd 2 1
70.2.k.a 16 15.e even 4 1
70.2.k.a 16 21.g even 6 1
70.2.k.a 16 105.w odd 12 1
350.2.o.c 16 15.d odd 2 1
350.2.o.c 16 15.e even 4 1
350.2.o.c 16 105.p even 6 1
350.2.o.c 16 105.w odd 12 1
490.2.g.c 16 21.g even 6 1
490.2.g.c 16 21.h odd 6 1
490.2.g.c 16 105.w odd 12 1
490.2.g.c 16 105.x even 12 1
490.2.l.c 16 21.c even 2 1
490.2.l.c 16 21.h odd 6 1
490.2.l.c 16 105.k odd 4 1
490.2.l.c 16 105.x even 12 1
560.2.ci.c 16 12.b even 2 1
560.2.ci.c 16 60.l odd 4 1
560.2.ci.c 16 84.j odd 6 1
560.2.ci.c 16 420.br even 12 1
630.2.bv.c 16 1.a even 1 1 trivial
630.2.bv.c 16 5.c odd 4 1 inner
630.2.bv.c 16 7.d odd 6 1 inner
630.2.bv.c 16 35.k even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(630, [\chi])\):

\( T_{11}^{8} - 6T_{11}^{7} + 49T_{11}^{6} - 114T_{11}^{5} + 807T_{11}^{4} - 1992T_{11}^{3} + 8410T_{11}^{2} - 5952T_{11} + 3844 \) Copy content Toggle raw display
\( T_{13}^{16} + 90T_{13}^{12} + 1361T_{13}^{8} + 2280T_{13}^{4} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - T^{4} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 12 T^{15} + \cdots + 390625 \) Copy content Toggle raw display
$7$ \( T^{16} - 8 T^{15} + \cdots + 5764801 \) Copy content Toggle raw display
$11$ \( (T^{8} - 6 T^{7} + \cdots + 3844)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} + 90 T^{12} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{16} - 36 T^{15} + \cdots + 9834496 \) Copy content Toggle raw display
$19$ \( T^{16} + \cdots + 100000000 \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 260144641 \) Copy content Toggle raw display
$29$ \( (T^{8} + 162 T^{6} + \cdots + 329476)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} - 12 T^{7} + \cdots + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{16} - 4 T^{15} + \cdots + 65536 \) Copy content Toggle raw display
$41$ \( (T^{8} + 140 T^{6} + \cdots + 18769)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + 4 T^{7} + \cdots + 784)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} + 12 T^{15} + \cdots + 9834496 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 41740124416 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 268435456 \) Copy content Toggle raw display
$61$ \( (T^{8} + 6 T^{7} + \cdots + 148996)^{2} \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 3429742096 \) Copy content Toggle raw display
$71$ \( (T^{4} + 4 T^{3} + \cdots - 4424)^{4} \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 10\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 61465600000000 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 38\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 9971220736 \) Copy content Toggle raw display
$97$ \( (T^{8} + 8136 T^{4} + 3111696)^{2} \) Copy content Toggle raw display
show more
show less