Properties

Label 630.6.g.h.379.2
Level $630$
Weight $6$
Character 630.379
Analytic conductor $101.042$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [630,6,Mod(379,630)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(630, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("630.379");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 630.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.041806482\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 1831x^{8} + 1077303x^{6} + 232401393x^{4} + 12760557696x^{2} + 187121995776 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{6}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.2
Root \(6.91835i\) of defining polynomial
Character \(\chi\) \(=\) 630.379
Dual form 630.6.g.h.379.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} -16.0000 q^{4} +(-30.1818 + 47.0538i) q^{5} +49.0000i q^{7} +64.0000i q^{8} +(188.215 + 120.727i) q^{10} -337.260 q^{11} -24.3276i q^{13} +196.000 q^{14} +256.000 q^{16} -1445.07i q^{17} +1197.44 q^{19} +(482.908 - 752.861i) q^{20} +1349.04i q^{22} -2247.26i q^{23} +(-1303.12 - 2840.33i) q^{25} -97.3103 q^{26} -784.000i q^{28} +1182.78 q^{29} +10458.6 q^{31} -1024.00i q^{32} -5780.27 q^{34} +(-2305.64 - 1478.91i) q^{35} +825.831i q^{37} -4789.75i q^{38} +(-3011.44 - 1931.63i) q^{40} -2843.58 q^{41} -9617.84i q^{43} +5396.16 q^{44} -8989.03 q^{46} +10435.0i q^{47} -2401.00 q^{49} +(-11361.3 + 5212.48i) q^{50} +389.241i q^{52} +33934.4i q^{53} +(10179.1 - 15869.4i) q^{55} -3136.00 q^{56} -4731.12i q^{58} +18857.8 q^{59} -26489.1 q^{61} -41834.6i q^{62} -4096.00 q^{64} +(1144.71 + 734.250i) q^{65} +10647.5i q^{67} +23121.1i q^{68} +(-5915.63 + 9222.55i) q^{70} -47989.5 q^{71} +37699.4i q^{73} +3303.32 q^{74} -19159.0 q^{76} -16525.7i q^{77} -62335.6 q^{79} +(-7726.53 + 12045.8i) q^{80} +11374.3i q^{82} -369.796i q^{83} +(67995.9 + 43614.7i) q^{85} -38471.4 q^{86} -21584.6i q^{88} +115397. q^{89} +1192.05 q^{91} +35956.1i q^{92} +41739.9 q^{94} +(-36140.8 + 56344.0i) q^{95} +136508. i q^{97} +9604.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 160 q^{4} + 66 q^{5} - 416 q^{10} - 1496 q^{11} + 1960 q^{14} + 2560 q^{16} + 512 q^{19} - 1056 q^{20} - 4170 q^{25} - 3648 q^{26} + 15424 q^{29} + 824 q^{31} - 6240 q^{34} + 5096 q^{35} + 6656 q^{40}+ \cdots - 215316 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/630\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(281\) \(451\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 0 0
\(4\) −16.0000 −0.500000
\(5\) −30.1818 + 47.0538i −0.539908 + 0.841724i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) 0 0
\(10\) 188.215 + 120.727i 0.595189 + 0.381773i
\(11\) −337.260 −0.840394 −0.420197 0.907433i \(-0.638039\pi\)
−0.420197 + 0.907433i \(0.638039\pi\)
\(12\) 0 0
\(13\) 24.3276i 0.0399246i −0.999801 0.0199623i \(-0.993645\pi\)
0.999801 0.0199623i \(-0.00635462\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1445.07i 1.21273i −0.795185 0.606367i \(-0.792626\pi\)
0.795185 0.606367i \(-0.207374\pi\)
\(18\) 0 0
\(19\) 1197.44 0.760973 0.380486 0.924786i \(-0.375757\pi\)
0.380486 + 0.924786i \(0.375757\pi\)
\(20\) 482.908 752.861i 0.269954 0.420862i
\(21\) 0 0
\(22\) 1349.04i 0.594248i
\(23\) 2247.26i 0.885795i −0.896572 0.442898i \(-0.853950\pi\)
0.896572 0.442898i \(-0.146050\pi\)
\(24\) 0 0
\(25\) −1303.12 2840.33i −0.416999 0.908907i
\(26\) −97.3103 −0.0282310
\(27\) 0 0
\(28\) 784.000i 0.188982i
\(29\) 1182.78 0.261162 0.130581 0.991438i \(-0.458316\pi\)
0.130581 + 0.991438i \(0.458316\pi\)
\(30\) 0 0
\(31\) 10458.6 1.95466 0.977330 0.211721i \(-0.0679068\pi\)
0.977330 + 0.211721i \(0.0679068\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 0 0
\(34\) −5780.27 −0.857533
\(35\) −2305.64 1478.91i −0.318142 0.204066i
\(36\) 0 0
\(37\) 825.831i 0.0991715i 0.998770 + 0.0495857i \(0.0157901\pi\)
−0.998770 + 0.0495857i \(0.984210\pi\)
\(38\) 4789.75i 0.538089i
\(39\) 0 0
\(40\) −3011.44 1931.63i −0.297594 0.190886i
\(41\) −2843.58 −0.264183 −0.132092 0.991238i \(-0.542169\pi\)
−0.132092 + 0.991238i \(0.542169\pi\)
\(42\) 0 0
\(43\) 9617.84i 0.793244i −0.917982 0.396622i \(-0.870182\pi\)
0.917982 0.396622i \(-0.129818\pi\)
\(44\) 5396.16 0.420197
\(45\) 0 0
\(46\) −8989.03 −0.626352
\(47\) 10435.0i 0.689043i 0.938778 + 0.344522i \(0.111959\pi\)
−0.938778 + 0.344522i \(0.888041\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) −11361.3 + 5212.48i −0.642694 + 0.294863i
\(51\) 0 0
\(52\) 389.241i 0.0199623i
\(53\) 33934.4i 1.65940i 0.558212 + 0.829698i \(0.311488\pi\)
−0.558212 + 0.829698i \(0.688512\pi\)
\(54\) 0 0
\(55\) 10179.1 15869.4i 0.453735 0.707380i
\(56\) −3136.00 −0.133631
\(57\) 0 0
\(58\) 4731.12i 0.184669i
\(59\) 18857.8 0.705281 0.352640 0.935759i \(-0.385284\pi\)
0.352640 + 0.935759i \(0.385284\pi\)
\(60\) 0 0
\(61\) −26489.1 −0.911470 −0.455735 0.890115i \(-0.650624\pi\)
−0.455735 + 0.890115i \(0.650624\pi\)
\(62\) 41834.6i 1.38215i
\(63\) 0 0
\(64\) −4096.00 −0.125000
\(65\) 1144.71 + 734.250i 0.0336055 + 0.0215556i
\(66\) 0 0
\(67\) 10647.5i 0.289774i 0.989448 + 0.144887i \(0.0462819\pi\)
−0.989448 + 0.144887i \(0.953718\pi\)
\(68\) 23121.1i 0.606367i
\(69\) 0 0
\(70\) −5915.63 + 9222.55i −0.144296 + 0.224960i
\(71\) −47989.5 −1.12980 −0.564899 0.825160i \(-0.691085\pi\)
−0.564899 + 0.825160i \(0.691085\pi\)
\(72\) 0 0
\(73\) 37699.4i 0.827993i 0.910278 + 0.413997i \(0.135868\pi\)
−0.910278 + 0.413997i \(0.864132\pi\)
\(74\) 3303.32 0.0701248
\(75\) 0 0
\(76\) −19159.0 −0.380486
\(77\) 16525.7i 0.317639i
\(78\) 0 0
\(79\) −62335.6 −1.12375 −0.561874 0.827223i \(-0.689919\pi\)
−0.561874 + 0.827223i \(0.689919\pi\)
\(80\) −7726.53 + 12045.8i −0.134977 + 0.210431i
\(81\) 0 0
\(82\) 11374.3i 0.186806i
\(83\) 369.796i 0.00589205i −0.999996 0.00294603i \(-0.999062\pi\)
0.999996 0.00294603i \(-0.000937750\pi\)
\(84\) 0 0
\(85\) 67995.9 + 43614.7i 1.02079 + 0.654765i
\(86\) −38471.4 −0.560908
\(87\) 0 0
\(88\) 21584.6i 0.297124i
\(89\) 115397. 1.54425 0.772126 0.635469i \(-0.219193\pi\)
0.772126 + 0.635469i \(0.219193\pi\)
\(90\) 0 0
\(91\) 1192.05 0.0150901
\(92\) 35956.1i 0.442898i
\(93\) 0 0
\(94\) 41739.9 0.487227
\(95\) −36140.8 + 56344.0i −0.410855 + 0.640529i
\(96\) 0 0
\(97\) 136508.i 1.47309i 0.676390 + 0.736544i \(0.263543\pi\)
−0.676390 + 0.736544i \(0.736457\pi\)
\(98\) 9604.00i 0.101015i
\(99\) 0 0
\(100\) 20849.9 + 45445.4i 0.208499 + 0.454454i
\(101\) −55976.1 −0.546008 −0.273004 0.962013i \(-0.588017\pi\)
−0.273004 + 0.962013i \(0.588017\pi\)
\(102\) 0 0
\(103\) 165176.i 1.53410i 0.641585 + 0.767052i \(0.278277\pi\)
−0.641585 + 0.767052i \(0.721723\pi\)
\(104\) 1556.97 0.0141155
\(105\) 0 0
\(106\) 135737. 1.17337
\(107\) 99801.0i 0.842705i 0.906897 + 0.421352i \(0.138444\pi\)
−0.906897 + 0.421352i \(0.861556\pi\)
\(108\) 0 0
\(109\) −225386. −1.81703 −0.908514 0.417855i \(-0.862782\pi\)
−0.908514 + 0.417855i \(0.862782\pi\)
\(110\) −63477.4 40716.4i −0.500193 0.320839i
\(111\) 0 0
\(112\) 12544.0i 0.0944911i
\(113\) 104503.i 0.769895i 0.922938 + 0.384948i \(0.125781\pi\)
−0.922938 + 0.384948i \(0.874219\pi\)
\(114\) 0 0
\(115\) 105742. + 67826.2i 0.745595 + 0.478248i
\(116\) −18924.5 −0.130581
\(117\) 0 0
\(118\) 75431.4i 0.498709i
\(119\) 70808.3 0.458371
\(120\) 0 0
\(121\) −47306.9 −0.293738
\(122\) 105956.i 0.644507i
\(123\) 0 0
\(124\) −167338. −0.977330
\(125\) 172979. + 24409.5i 0.990190 + 0.139728i
\(126\) 0 0
\(127\) 245433.i 1.35028i −0.737689 0.675141i \(-0.764083\pi\)
0.737689 0.675141i \(-0.235917\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 0 0
\(130\) 2937.00 4578.82i 0.0152421 0.0237627i
\(131\) 101703. 0.517792 0.258896 0.965905i \(-0.416641\pi\)
0.258896 + 0.965905i \(0.416641\pi\)
\(132\) 0 0
\(133\) 58674.5i 0.287621i
\(134\) 42589.9 0.204901
\(135\) 0 0
\(136\) 92484.3 0.428766
\(137\) 63654.7i 0.289754i 0.989450 + 0.144877i \(0.0462786\pi\)
−0.989450 + 0.144877i \(0.953721\pi\)
\(138\) 0 0
\(139\) −277917. −1.22005 −0.610025 0.792382i \(-0.708841\pi\)
−0.610025 + 0.792382i \(0.708841\pi\)
\(140\) 36890.2 + 23662.5i 0.159071 + 0.102033i
\(141\) 0 0
\(142\) 191958.i 0.798888i
\(143\) 8204.71i 0.0335524i
\(144\) 0 0
\(145\) −35698.4 + 55654.4i −0.141003 + 0.219826i
\(146\) 150797. 0.585480
\(147\) 0 0
\(148\) 13213.3i 0.0495857i
\(149\) 456393. 1.68412 0.842060 0.539384i \(-0.181343\pi\)
0.842060 + 0.539384i \(0.181343\pi\)
\(150\) 0 0
\(151\) 318099. 1.13532 0.567662 0.823262i \(-0.307848\pi\)
0.567662 + 0.823262i \(0.307848\pi\)
\(152\) 76636.1i 0.269045i
\(153\) 0 0
\(154\) −66102.9 −0.224605
\(155\) −315661. + 492119.i −1.05534 + 1.64528i
\(156\) 0 0
\(157\) 392920.i 1.27220i −0.771607 0.636099i \(-0.780547\pi\)
0.771607 0.636099i \(-0.219453\pi\)
\(158\) 249342.i 0.794609i
\(159\) 0 0
\(160\) 48183.1 + 30906.1i 0.148797 + 0.0954431i
\(161\) 110116. 0.334799
\(162\) 0 0
\(163\) 56353.1i 0.166130i −0.996544 0.0830652i \(-0.973529\pi\)
0.996544 0.0830652i \(-0.0264710\pi\)
\(164\) 45497.2 0.132092
\(165\) 0 0
\(166\) −1479.18 −0.00416631
\(167\) 312776.i 0.867845i 0.900950 + 0.433922i \(0.142871\pi\)
−0.900950 + 0.433922i \(0.857129\pi\)
\(168\) 0 0
\(169\) 370701. 0.998406
\(170\) 174459. 271984.i 0.462989 0.721806i
\(171\) 0 0
\(172\) 153885.i 0.396622i
\(173\) 307297.i 0.780626i −0.920682 0.390313i \(-0.872367\pi\)
0.920682 0.390313i \(-0.127633\pi\)
\(174\) 0 0
\(175\) 139176. 63852.9i 0.343535 0.157611i
\(176\) −86338.5 −0.210098
\(177\) 0 0
\(178\) 461587.i 1.09195i
\(179\) −804792. −1.87738 −0.938688 0.344768i \(-0.887958\pi\)
−0.938688 + 0.344768i \(0.887958\pi\)
\(180\) 0 0
\(181\) −518678. −1.17680 −0.588399 0.808571i \(-0.700241\pi\)
−0.588399 + 0.808571i \(0.700241\pi\)
\(182\) 4768.21i 0.0106703i
\(183\) 0 0
\(184\) 143825. 0.313176
\(185\) −38858.5 24925.0i −0.0834750 0.0535435i
\(186\) 0 0
\(187\) 487363.i 1.01917i
\(188\) 166960.i 0.344522i
\(189\) 0 0
\(190\) 225376. + 144563.i 0.452923 + 0.290519i
\(191\) 204063. 0.404744 0.202372 0.979309i \(-0.435135\pi\)
0.202372 + 0.979309i \(0.435135\pi\)
\(192\) 0 0
\(193\) 873491.i 1.68797i 0.536365 + 0.843986i \(0.319797\pi\)
−0.536365 + 0.843986i \(0.680203\pi\)
\(194\) 546032. 1.04163
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 114332.i 0.209895i −0.994478 0.104948i \(-0.966532\pi\)
0.994478 0.104948i \(-0.0334675\pi\)
\(198\) 0 0
\(199\) 262148. 0.469261 0.234630 0.972085i \(-0.424612\pi\)
0.234630 + 0.972085i \(0.424612\pi\)
\(200\) 181781. 83399.7i 0.321347 0.147431i
\(201\) 0 0
\(202\) 223904.i 0.386086i
\(203\) 57956.3i 0.0987098i
\(204\) 0 0
\(205\) 85824.2 133801.i 0.142635 0.222369i
\(206\) 660705. 1.08478
\(207\) 0 0
\(208\) 6227.86i 0.00998115i
\(209\) −403848. −0.639517
\(210\) 0 0
\(211\) 878765. 1.35883 0.679417 0.733752i \(-0.262233\pi\)
0.679417 + 0.733752i \(0.262233\pi\)
\(212\) 542950.i 0.829698i
\(213\) 0 0
\(214\) 399204. 0.595882
\(215\) 452556. + 290284.i 0.667692 + 0.428279i
\(216\) 0 0
\(217\) 512474.i 0.738792i
\(218\) 901546.i 1.28483i
\(219\) 0 0
\(220\) −162866. + 253910.i −0.226868 + 0.353690i
\(221\) −35155.0 −0.0484179
\(222\) 0 0
\(223\) 540539.i 0.727888i −0.931421 0.363944i \(-0.881430\pi\)
0.931421 0.363944i \(-0.118570\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 418011. 0.544398
\(227\) 135234.i 0.174189i 0.996200 + 0.0870947i \(0.0277583\pi\)
−0.996200 + 0.0870947i \(0.972242\pi\)
\(228\) 0 0
\(229\) 118878. 0.149800 0.0749000 0.997191i \(-0.476136\pi\)
0.0749000 + 0.997191i \(0.476136\pi\)
\(230\) 271305. 422968.i 0.338172 0.527215i
\(231\) 0 0
\(232\) 75698.0i 0.0923346i
\(233\) 659512.i 0.795854i 0.917417 + 0.397927i \(0.130270\pi\)
−0.917417 + 0.397927i \(0.869730\pi\)
\(234\) 0 0
\(235\) −491005. 314946.i −0.579984 0.372020i
\(236\) −301726. −0.352640
\(237\) 0 0
\(238\) 283233.i 0.324117i
\(239\) 467946. 0.529908 0.264954 0.964261i \(-0.414643\pi\)
0.264954 + 0.964261i \(0.414643\pi\)
\(240\) 0 0
\(241\) −215104. −0.238564 −0.119282 0.992860i \(-0.538059\pi\)
−0.119282 + 0.992860i \(0.538059\pi\)
\(242\) 189228.i 0.207704i
\(243\) 0 0
\(244\) 423826. 0.455735
\(245\) 72466.4 112976.i 0.0771297 0.120246i
\(246\) 0 0
\(247\) 29130.8i 0.0303815i
\(248\) 669353.i 0.691077i
\(249\) 0 0
\(250\) 97638.1 691916.i 0.0988028 0.700170i
\(251\) 874948. 0.876593 0.438297 0.898830i \(-0.355582\pi\)
0.438297 + 0.898830i \(0.355582\pi\)
\(252\) 0 0
\(253\) 757910.i 0.744417i
\(254\) −981734. −0.954793
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 227843.i 0.215180i 0.994195 + 0.107590i \(0.0343134\pi\)
−0.994195 + 0.107590i \(0.965687\pi\)
\(258\) 0 0
\(259\) −40465.7 −0.0374833
\(260\) −18315.3 11748.0i −0.0168027 0.0107778i
\(261\) 0 0
\(262\) 406812.i 0.366134i
\(263\) 1.56138e6i 1.39194i 0.718073 + 0.695968i \(0.245024\pi\)
−0.718073 + 0.695968i \(0.754976\pi\)
\(264\) 0 0
\(265\) −1.59674e6 1.02420e6i −1.39675 0.895921i
\(266\) 234698. 0.203379
\(267\) 0 0
\(268\) 170360.i 0.144887i
\(269\) −1.58500e6 −1.33551 −0.667756 0.744380i \(-0.732745\pi\)
−0.667756 + 0.744380i \(0.732745\pi\)
\(270\) 0 0
\(271\) 477067. 0.394599 0.197300 0.980343i \(-0.436783\pi\)
0.197300 + 0.980343i \(0.436783\pi\)
\(272\) 369937.i 0.303184i
\(273\) 0 0
\(274\) 254619. 0.204887
\(275\) 439490. + 957930.i 0.350443 + 0.763840i
\(276\) 0 0
\(277\) 138751.i 0.108652i −0.998523 0.0543258i \(-0.982699\pi\)
0.998523 0.0543258i \(-0.0173010\pi\)
\(278\) 1.11167e6i 0.862706i
\(279\) 0 0
\(280\) 94650.0 147561.i 0.0721482 0.112480i
\(281\) 2.51115e6 1.89717 0.948585 0.316522i \(-0.102515\pi\)
0.948585 + 0.316522i \(0.102515\pi\)
\(282\) 0 0
\(283\) 2.29079e6i 1.70027i 0.526563 + 0.850136i \(0.323480\pi\)
−0.526563 + 0.850136i \(0.676520\pi\)
\(284\) 767833. 0.564899
\(285\) 0 0
\(286\) 32818.9 0.0237251
\(287\) 139335.i 0.0998519i
\(288\) 0 0
\(289\) −668362. −0.470725
\(290\) 222617. + 142794.i 0.155440 + 0.0997044i
\(291\) 0 0
\(292\) 603190.i 0.413997i
\(293\) 446400.i 0.303777i −0.988398 0.151888i \(-0.951465\pi\)
0.988398 0.151888i \(-0.0485354\pi\)
\(294\) 0 0
\(295\) −569163. + 887333.i −0.380787 + 0.593652i
\(296\) −52853.2 −0.0350624
\(297\) 0 0
\(298\) 1.82557e6i 1.19085i
\(299\) −54670.4 −0.0353650
\(300\) 0 0
\(301\) 471274. 0.299818
\(302\) 1.27240e6i 0.802795i
\(303\) 0 0
\(304\) 306544. 0.190243
\(305\) 799488. 1.24641e6i 0.492110 0.767207i
\(306\) 0 0
\(307\) 132928.i 0.0804956i −0.999190 0.0402478i \(-0.987185\pi\)
0.999190 0.0402478i \(-0.0128147\pi\)
\(308\) 264412.i 0.158819i
\(309\) 0 0
\(310\) 1.96848e6 + 1.26264e6i 1.16339 + 0.746236i
\(311\) 1.02347e6 0.600029 0.300015 0.953935i \(-0.403008\pi\)
0.300015 + 0.953935i \(0.403008\pi\)
\(312\) 0 0
\(313\) 2.03277e6i 1.17281i 0.810018 + 0.586404i \(0.199457\pi\)
−0.810018 + 0.586404i \(0.800543\pi\)
\(314\) −1.57168e6 −0.899580
\(315\) 0 0
\(316\) 997370. 0.561874
\(317\) 2.42685e6i 1.35642i 0.734866 + 0.678212i \(0.237245\pi\)
−0.734866 + 0.678212i \(0.762755\pi\)
\(318\) 0 0
\(319\) −398904. −0.219479
\(320\) 123625. 192732.i 0.0674885 0.105216i
\(321\) 0 0
\(322\) 440463.i 0.236739i
\(323\) 1.73038e6i 0.922858i
\(324\) 0 0
\(325\) −69098.5 + 31701.8i −0.0362878 + 0.0166485i
\(326\) −225412. −0.117472
\(327\) 0 0
\(328\) 181989.i 0.0934029i
\(329\) −511314. −0.260434
\(330\) 0 0
\(331\) 552981. 0.277422 0.138711 0.990333i \(-0.455704\pi\)
0.138711 + 0.990333i \(0.455704\pi\)
\(332\) 5916.73i 0.00294603i
\(333\) 0 0
\(334\) 1.25110e6 0.613659
\(335\) −501005. 321360.i −0.243910 0.156452i
\(336\) 0 0
\(337\) 202099.i 0.0969371i 0.998825 + 0.0484685i \(0.0154341\pi\)
−0.998825 + 0.0484685i \(0.984566\pi\)
\(338\) 1.48280e6i 0.705980i
\(339\) 0 0
\(340\) −1.08793e6 697835.i −0.510394 0.327382i
\(341\) −3.52728e6 −1.64268
\(342\) 0 0
\(343\) 117649.i 0.0539949i
\(344\) 615542. 0.280454
\(345\) 0 0
\(346\) −1.22919e6 −0.551986
\(347\) 1.04617e6i 0.466419i −0.972426 0.233210i \(-0.925077\pi\)
0.972426 0.233210i \(-0.0749229\pi\)
\(348\) 0 0
\(349\) 2.72359e6 1.19696 0.598479 0.801139i \(-0.295772\pi\)
0.598479 + 0.801139i \(0.295772\pi\)
\(350\) −255412. 556706.i −0.111448 0.242916i
\(351\) 0 0
\(352\) 345354.i 0.148562i
\(353\) 1.73711e6i 0.741979i 0.928637 + 0.370989i \(0.120981\pi\)
−0.928637 + 0.370989i \(0.879019\pi\)
\(354\) 0 0
\(355\) 1.44841e6 2.25809e6i 0.609987 0.950978i
\(356\) −1.84635e6 −0.772126
\(357\) 0 0
\(358\) 3.21917e6i 1.32751i
\(359\) 1.68699e6 0.690837 0.345419 0.938449i \(-0.387737\pi\)
0.345419 + 0.938449i \(0.387737\pi\)
\(360\) 0 0
\(361\) −1.04224e6 −0.420920
\(362\) 2.07471e6i 0.832121i
\(363\) 0 0
\(364\) −19072.8 −0.00754504
\(365\) −1.77390e6 1.13783e6i −0.696942 0.447040i
\(366\) 0 0
\(367\) 3.25743e6i 1.26244i 0.775605 + 0.631219i \(0.217445\pi\)
−0.775605 + 0.631219i \(0.782555\pi\)
\(368\) 575298.i 0.221449i
\(369\) 0 0
\(370\) −99700.2 + 155434.i −0.0378610 + 0.0590258i
\(371\) −1.66278e6 −0.627193
\(372\) 0 0
\(373\) 3.36622e6i 1.25277i −0.779514 0.626384i \(-0.784534\pi\)
0.779514 0.626384i \(-0.215466\pi\)
\(374\) 1.94945e6 0.720665
\(375\) 0 0
\(376\) −667838. −0.243614
\(377\) 28774.2i 0.0104268i
\(378\) 0 0
\(379\) −4.98342e6 −1.78209 −0.891044 0.453917i \(-0.850026\pi\)
−0.891044 + 0.453917i \(0.850026\pi\)
\(380\) 578253. 901505.i 0.205428 0.320265i
\(381\) 0 0
\(382\) 816252.i 0.286197i
\(383\) 1.14076e6i 0.397374i −0.980063 0.198687i \(-0.936332\pi\)
0.980063 0.198687i \(-0.0636677\pi\)
\(384\) 0 0
\(385\) 777598. + 498776.i 0.267364 + 0.171496i
\(386\) 3.49396e6 1.19358
\(387\) 0 0
\(388\) 2.18413e6i 0.736544i
\(389\) −4.58469e6 −1.53616 −0.768080 0.640354i \(-0.778788\pi\)
−0.768080 + 0.640354i \(0.778788\pi\)
\(390\) 0 0
\(391\) −3.24744e6 −1.07423
\(392\) 153664.i 0.0505076i
\(393\) 0 0
\(394\) −457329. −0.148418
\(395\) 1.88140e6 2.93313e6i 0.606720 0.945885i
\(396\) 0 0
\(397\) 4.12709e6i 1.31422i −0.753795 0.657110i \(-0.771779\pi\)
0.753795 0.657110i \(-0.228221\pi\)
\(398\) 1.04859e6i 0.331817i
\(399\) 0 0
\(400\) −333599. 727126.i −0.104250 0.227227i
\(401\) −2.33931e6 −0.726487 −0.363243 0.931694i \(-0.618331\pi\)
−0.363243 + 0.931694i \(0.618331\pi\)
\(402\) 0 0
\(403\) 254434.i 0.0780390i
\(404\) 895617. 0.273004
\(405\) 0 0
\(406\) 231825. 0.0697984
\(407\) 278520.i 0.0833431i
\(408\) 0 0
\(409\) −5.04134e6 −1.49018 −0.745088 0.666966i \(-0.767592\pi\)
−0.745088 + 0.666966i \(0.767592\pi\)
\(410\) −535204. 343297.i −0.157239 0.100858i
\(411\) 0 0
\(412\) 2.64282e6i 0.767052i
\(413\) 924034.i 0.266571i
\(414\) 0 0
\(415\) 17400.3 + 11161.1i 0.00495948 + 0.00318117i
\(416\) −24911.4 −0.00705774
\(417\) 0 0
\(418\) 1.61539e6i 0.452207i
\(419\) 66941.5 0.0186277 0.00931387 0.999957i \(-0.497035\pi\)
0.00931387 + 0.999957i \(0.497035\pi\)
\(420\) 0 0
\(421\) 670296. 0.184315 0.0921576 0.995744i \(-0.470624\pi\)
0.0921576 + 0.995744i \(0.470624\pi\)
\(422\) 3.51506e6i 0.960841i
\(423\) 0 0
\(424\) −2.17180e6 −0.586685
\(425\) −4.10447e6 + 1.88310e6i −1.10226 + 0.505709i
\(426\) 0 0
\(427\) 1.29797e6i 0.344503i
\(428\) 1.59682e6i 0.421352i
\(429\) 0 0
\(430\) 1.16113e6 1.81022e6i 0.302839 0.472130i
\(431\) 365337. 0.0947329 0.0473664 0.998878i \(-0.484917\pi\)
0.0473664 + 0.998878i \(0.484917\pi\)
\(432\) 0 0
\(433\) 1.30294e6i 0.333967i −0.985960 0.166984i \(-0.946597\pi\)
0.985960 0.166984i \(-0.0534027\pi\)
\(434\) 2.04989e6 0.522405
\(435\) 0 0
\(436\) 3.60618e6 0.908514
\(437\) 2.69095e6i 0.674066i
\(438\) 0 0
\(439\) −5.16315e6 −1.27865 −0.639327 0.768935i \(-0.720787\pi\)
−0.639327 + 0.768935i \(0.720787\pi\)
\(440\) 1.01564e6 + 651462.i 0.250096 + 0.160420i
\(441\) 0 0
\(442\) 140620.i 0.0342367i
\(443\) 7.64624e6i 1.85114i 0.378579 + 0.925569i \(0.376413\pi\)
−0.378579 + 0.925569i \(0.623587\pi\)
\(444\) 0 0
\(445\) −3.48288e6 + 5.42985e6i −0.833754 + 1.29983i
\(446\) −2.16216e6 −0.514695
\(447\) 0 0
\(448\) 200704.i 0.0472456i
\(449\) 4.83346e6 1.13147 0.565734 0.824588i \(-0.308593\pi\)
0.565734 + 0.824588i \(0.308593\pi\)
\(450\) 0 0
\(451\) 959024. 0.222018
\(452\) 1.67204e6i 0.384948i
\(453\) 0 0
\(454\) 540936. 0.123170
\(455\) −35978.2 + 56090.6i −0.00814726 + 0.0127017i
\(456\) 0 0
\(457\) 3.51870e6i 0.788119i 0.919085 + 0.394060i \(0.128930\pi\)
−0.919085 + 0.394060i \(0.871070\pi\)
\(458\) 475511.i 0.105925i
\(459\) 0 0
\(460\) −1.69187e6 1.08522e6i −0.372798 0.239124i
\(461\) −3.55938e6 −0.780049 −0.390024 0.920805i \(-0.627533\pi\)
−0.390024 + 0.920805i \(0.627533\pi\)
\(462\) 0 0
\(463\) 4.39317e6i 0.952413i 0.879333 + 0.476207i \(0.157989\pi\)
−0.879333 + 0.476207i \(0.842011\pi\)
\(464\) 302792. 0.0652904
\(465\) 0 0
\(466\) 2.63805e6 0.562754
\(467\) 7.46723e6i 1.58441i −0.610256 0.792205i \(-0.708933\pi\)
0.610256 0.792205i \(-0.291067\pi\)
\(468\) 0 0
\(469\) −521727. −0.109524
\(470\) −1.25978e6 + 1.96402e6i −0.263058 + 0.410111i
\(471\) 0 0
\(472\) 1.20690e6i 0.249354i
\(473\) 3.24371e6i 0.666637i
\(474\) 0 0
\(475\) −1.56041e6 3.40113e6i −0.317325 0.691654i
\(476\) −1.13293e6 −0.229185
\(477\) 0 0
\(478\) 1.87178e6i 0.374702i
\(479\) −5.07249e6 −1.01014 −0.505070 0.863078i \(-0.668534\pi\)
−0.505070 + 0.863078i \(0.668534\pi\)
\(480\) 0 0
\(481\) 20090.5 0.00395938
\(482\) 860414.i 0.168690i
\(483\) 0 0
\(484\) 756910. 0.146869
\(485\) −6.42322e6 4.12005e6i −1.23993 0.795332i
\(486\) 0 0
\(487\) 8.40987e6i 1.60682i 0.595428 + 0.803409i \(0.296983\pi\)
−0.595428 + 0.803409i \(0.703017\pi\)
\(488\) 1.69530e6i 0.322253i
\(489\) 0 0
\(490\) −451905. 289866.i −0.0850270 0.0545389i
\(491\) 1.07319e6 0.200896 0.100448 0.994942i \(-0.467972\pi\)
0.100448 + 0.994942i \(0.467972\pi\)
\(492\) 0 0
\(493\) 1.70920e6i 0.316720i
\(494\) −116523. −0.0214830
\(495\) 0 0
\(496\) 2.67741e6 0.488665
\(497\) 2.35149e6i 0.427023i
\(498\) 0 0
\(499\) −4.34278e6 −0.780758 −0.390379 0.920654i \(-0.627656\pi\)
−0.390379 + 0.920654i \(0.627656\pi\)
\(500\) −2.76766e6 390553.i −0.495095 0.0698642i
\(501\) 0 0
\(502\) 3.49979e6i 0.619845i
\(503\) 1.03452e6i 0.182313i −0.995837 0.0911564i \(-0.970944\pi\)
0.995837 0.0911564i \(-0.0290563\pi\)
\(504\) 0 0
\(505\) 1.68946e6 2.63389e6i 0.294794 0.459588i
\(506\) 3.03164e6 0.526382
\(507\) 0 0
\(508\) 3.92693e6i 0.675141i
\(509\) −1.12485e6 −0.192442 −0.0962208 0.995360i \(-0.530675\pi\)
−0.0962208 + 0.995360i \(0.530675\pi\)
\(510\) 0 0
\(511\) −1.84727e6 −0.312952
\(512\) 262144.i 0.0441942i
\(513\) 0 0
\(514\) 911371. 0.152155
\(515\) −7.77218e6 4.98532e6i −1.29129 0.828275i
\(516\) 0 0
\(517\) 3.51930e6i 0.579068i
\(518\) 161863.i 0.0265047i
\(519\) 0 0
\(520\) −46992.0 + 73261.1i −0.00762106 + 0.0118813i
\(521\) 193877. 0.0312919 0.0156460 0.999878i \(-0.495020\pi\)
0.0156460 + 0.999878i \(0.495020\pi\)
\(522\) 0 0
\(523\) 6.31332e6i 1.00926i 0.863336 + 0.504630i \(0.168371\pi\)
−0.863336 + 0.504630i \(0.831629\pi\)
\(524\) −1.62725e6 −0.258896
\(525\) 0 0
\(526\) 6.24552e6 0.984247
\(527\) 1.51134e7i 2.37048i
\(528\) 0 0
\(529\) 1.38617e6 0.215367
\(530\) −4.09680e6 + 6.38697e6i −0.633512 + 0.987654i
\(531\) 0 0
\(532\) 938792.i 0.143810i
\(533\) 69177.3i 0.0105474i
\(534\) 0 0
\(535\) −4.69602e6 3.01217e6i −0.709325 0.454983i
\(536\) −681439. −0.102451
\(537\) 0 0
\(538\) 6.33999e6i 0.944349i
\(539\) 809761. 0.120056
\(540\) 0 0
\(541\) −4.19872e6 −0.616770 −0.308385 0.951262i \(-0.599789\pi\)
−0.308385 + 0.951262i \(0.599789\pi\)
\(542\) 1.90827e6i 0.279024i
\(543\) 0 0
\(544\) −1.47975e6 −0.214383
\(545\) 6.80256e6 1.06053e7i 0.981028 1.52944i
\(546\) 0 0
\(547\) 6.84530e6i 0.978192i 0.872230 + 0.489096i \(0.162673\pi\)
−0.872230 + 0.489096i \(0.837327\pi\)
\(548\) 1.01848e6i 0.144877i
\(549\) 0 0
\(550\) 3.83172e6 1.75796e6i 0.540116 0.247801i
\(551\) 1.41631e6 0.198737
\(552\) 0 0
\(553\) 3.05445e6i 0.424736i
\(554\) −555003. −0.0768283
\(555\) 0 0
\(556\) 4.44667e6 0.610025
\(557\) 9.43023e6i 1.28791i 0.765065 + 0.643953i \(0.222707\pi\)
−0.765065 + 0.643953i \(0.777293\pi\)
\(558\) 0 0
\(559\) −233979. −0.0316699
\(560\) −590243. 378600.i −0.0795354 0.0510165i
\(561\) 0 0
\(562\) 1.00446e7i 1.34150i
\(563\) 1.27111e7i 1.69010i 0.534685 + 0.845052i \(0.320430\pi\)
−0.534685 + 0.845052i \(0.679570\pi\)
\(564\) 0 0
\(565\) −4.91725e6 3.15408e6i −0.648039 0.415673i
\(566\) 9.16315e6 1.20227
\(567\) 0 0
\(568\) 3.07133e6i 0.399444i
\(569\) 7.92638e6 1.02635 0.513173 0.858285i \(-0.328470\pi\)
0.513173 + 0.858285i \(0.328470\pi\)
\(570\) 0 0
\(571\) 1.10620e6 0.141985 0.0709927 0.997477i \(-0.477383\pi\)
0.0709927 + 0.997477i \(0.477383\pi\)
\(572\) 131275.i 0.0167762i
\(573\) 0 0
\(574\) −557341. −0.0706059
\(575\) −6.38297e6 + 2.92845e6i −0.805106 + 0.369376i
\(576\) 0 0
\(577\) 4.53166e6i 0.566654i −0.959023 0.283327i \(-0.908562\pi\)
0.959023 0.283327i \(-0.0914381\pi\)
\(578\) 2.67345e6i 0.332853i
\(579\) 0 0
\(580\) 571175. 890470.i 0.0705016 0.109913i
\(581\) 18120.0 0.00222699
\(582\) 0 0
\(583\) 1.14447e7i 1.39455i
\(584\) −2.41276e6 −0.292740
\(585\) 0 0
\(586\) −1.78560e6 −0.214803
\(587\) 201145.i 0.0240943i 0.999927 + 0.0120472i \(0.00383482\pi\)
−0.999927 + 0.0120472i \(0.996165\pi\)
\(588\) 0 0
\(589\) 1.25236e7 1.48744
\(590\) 3.54933e6 + 2.27665e6i 0.419775 + 0.269257i
\(591\) 0 0
\(592\) 211413.i 0.0247929i
\(593\) 1.56210e7i 1.82420i −0.409973 0.912098i \(-0.634462\pi\)
0.409973 0.912098i \(-0.365538\pi\)
\(594\) 0 0
\(595\) −2.13712e6 + 3.33180e6i −0.247478 + 0.385821i
\(596\) −7.30228e6 −0.842060
\(597\) 0 0
\(598\) 218681.i 0.0250069i
\(599\) −2.80468e6 −0.319386 −0.159693 0.987167i \(-0.551050\pi\)
−0.159693 + 0.987167i \(0.551050\pi\)
\(600\) 0 0
\(601\) 7.57493e6 0.855446 0.427723 0.903910i \(-0.359316\pi\)
0.427723 + 0.903910i \(0.359316\pi\)
\(602\) 1.88510e6i 0.212003i
\(603\) 0 0
\(604\) −5.08958e6 −0.567662
\(605\) 1.42781e6 2.22597e6i 0.158592 0.247247i
\(606\) 0 0
\(607\) 1.71170e7i 1.88562i −0.333324 0.942812i \(-0.608170\pi\)
0.333324 0.942812i \(-0.391830\pi\)
\(608\) 1.22618e6i 0.134522i
\(609\) 0 0
\(610\) −4.98565e6 3.19795e6i −0.542497 0.347974i
\(611\) 253858. 0.0275098
\(612\) 0 0
\(613\) 1.57603e7i 1.69400i −0.531590 0.847002i \(-0.678405\pi\)
0.531590 0.847002i \(-0.321595\pi\)
\(614\) −531714. −0.0569190
\(615\) 0 0
\(616\) 1.05765e6 0.112302
\(617\) 1.16536e7i 1.23239i 0.787594 + 0.616194i \(0.211326\pi\)
−0.787594 + 0.616194i \(0.788674\pi\)
\(618\) 0 0
\(619\) 9.20111e6 0.965192 0.482596 0.875843i \(-0.339694\pi\)
0.482596 + 0.875843i \(0.339694\pi\)
\(620\) 5.05057e6 7.87391e6i 0.527668 0.822642i
\(621\) 0 0
\(622\) 4.09386e6i 0.424285i
\(623\) 5.65444e6i 0.583673i
\(624\) 0 0
\(625\) −6.36938e6 + 7.40260e6i −0.652224 + 0.758026i
\(626\) 8.13108e6 0.829301
\(627\) 0 0
\(628\) 6.28672e6i 0.636099i
\(629\) 1.19338e6 0.120269
\(630\) 0 0
\(631\) 1.50421e7 1.50395 0.751976 0.659191i \(-0.229101\pi\)
0.751976 + 0.659191i \(0.229101\pi\)
\(632\) 3.98948e6i 0.397305i
\(633\) 0 0
\(634\) 9.70742e6 0.959137
\(635\) 1.15486e7 + 7.40761e6i 1.13656 + 0.729028i
\(636\) 0 0
\(637\) 58410.5i 0.00570351i
\(638\) 1.59562e6i 0.155195i
\(639\) 0 0
\(640\) −770930. 494498.i −0.0743986 0.0477216i
\(641\) 1.15445e7 1.10976 0.554879 0.831931i \(-0.312765\pi\)
0.554879 + 0.831931i \(0.312765\pi\)
\(642\) 0 0
\(643\) 4.82038e6i 0.459784i 0.973216 + 0.229892i \(0.0738373\pi\)
−0.973216 + 0.229892i \(0.926163\pi\)
\(644\) −1.76185e6 −0.167400
\(645\) 0 0
\(646\) −6.92152e6 −0.652559
\(647\) 7.53202e6i 0.707377i 0.935363 + 0.353688i \(0.115073\pi\)
−0.935363 + 0.353688i \(0.884927\pi\)
\(648\) 0 0
\(649\) −6.35999e6 −0.592713
\(650\) 126807. + 276394.i 0.0117723 + 0.0256593i
\(651\) 0 0
\(652\) 901650.i 0.0830652i
\(653\) 4.07749e6i 0.374205i −0.982340 0.187103i \(-0.940090\pi\)
0.982340 0.187103i \(-0.0599097\pi\)
\(654\) 0 0
\(655\) −3.06958e6 + 4.78551e6i −0.279560 + 0.435838i
\(656\) −727956. −0.0660458
\(657\) 0 0
\(658\) 2.04525e6i 0.184155i
\(659\) −1.52918e7 −1.37165 −0.685826 0.727765i \(-0.740559\pi\)
−0.685826 + 0.727765i \(0.740559\pi\)
\(660\) 0 0
\(661\) 2.03724e7 1.81359 0.906796 0.421570i \(-0.138521\pi\)
0.906796 + 0.421570i \(0.138521\pi\)
\(662\) 2.21193e6i 0.196167i
\(663\) 0 0
\(664\) 23666.9 0.00208315
\(665\) −2.76086e6 1.77090e6i −0.242097 0.155289i
\(666\) 0 0
\(667\) 2.65802e6i 0.231336i
\(668\) 5.00442e6i 0.433922i
\(669\) 0 0
\(670\) −1.28544e6 + 2.00402e6i −0.110628 + 0.172470i
\(671\) 8.93371e6 0.765994
\(672\) 0 0
\(673\) 4.09627e6i 0.348619i 0.984691 + 0.174309i \(0.0557692\pi\)
−0.984691 + 0.174309i \(0.944231\pi\)
\(674\) 808397. 0.0685449
\(675\) 0 0
\(676\) −5.93122e6 −0.499203
\(677\) 7.73865e6i 0.648924i 0.945899 + 0.324462i \(0.105183\pi\)
−0.945899 + 0.324462i \(0.894817\pi\)
\(678\) 0 0
\(679\) −6.68889e6 −0.556775
\(680\) −2.79134e6 + 4.35174e6i −0.231494 + 0.360903i
\(681\) 0 0
\(682\) 1.41091e7i 1.16155i
\(683\) 2.24027e7i 1.83759i 0.394734 + 0.918795i \(0.370837\pi\)
−0.394734 + 0.918795i \(0.629163\pi\)
\(684\) 0 0
\(685\) −2.99520e6 1.92121e6i −0.243893 0.156440i
\(686\) −470596. −0.0381802
\(687\) 0 0
\(688\) 2.46217e6i 0.198311i
\(689\) 825541. 0.0662507
\(690\) 0 0
\(691\) −2.60639e6 −0.207656 −0.103828 0.994595i \(-0.533109\pi\)
−0.103828 + 0.994595i \(0.533109\pi\)
\(692\) 4.91675e6i 0.390313i
\(693\) 0 0
\(694\) −4.18466e6 −0.329808
\(695\) 8.38802e6 1.30770e7i 0.658715 1.02695i
\(696\) 0 0
\(697\) 4.10916e6i 0.320384i
\(698\) 1.08944e7i 0.846377i
\(699\) 0 0
\(700\) −2.22682e6 + 1.02165e6i −0.171767 + 0.0788054i
\(701\) 5.34202e6 0.410592 0.205296 0.978700i \(-0.434184\pi\)
0.205296 + 0.978700i \(0.434184\pi\)
\(702\) 0 0
\(703\) 988882.i 0.0754668i
\(704\) 1.38142e6 0.105049
\(705\) 0 0
\(706\) 6.94846e6 0.524658
\(707\) 2.74283e6i 0.206372i
\(708\) 0 0
\(709\) 1.78376e7 1.33266 0.666332 0.745656i \(-0.267864\pi\)
0.666332 + 0.745656i \(0.267864\pi\)
\(710\) −9.03236e6 5.79364e6i −0.672443 0.431326i
\(711\) 0 0
\(712\) 7.38539e6i 0.545976i
\(713\) 2.35033e7i 1.73143i
\(714\) 0 0
\(715\) −386063. 247633.i −0.0282418 0.0181152i
\(716\) 1.28767e7 0.938688
\(717\) 0 0
\(718\) 6.74795e6i 0.488496i
\(719\) −1.93072e7 −1.39283 −0.696414 0.717640i \(-0.745222\pi\)
−0.696414 + 0.717640i \(0.745222\pi\)
\(720\) 0 0
\(721\) −8.09364e6 −0.579837
\(722\) 4.16896e6i 0.297636i
\(723\) 0 0
\(724\) 8.29885e6 0.588399
\(725\) −1.54131e6 3.35949e6i −0.108904 0.237372i
\(726\) 0 0
\(727\) 2.11119e7i 1.48147i 0.671800 + 0.740733i \(0.265522\pi\)
−0.671800 + 0.740733i \(0.734478\pi\)
\(728\) 76291.3i 0.00533515i
\(729\) 0 0
\(730\) −4.55134e6 + 7.09559e6i −0.316105 + 0.492812i
\(731\) −1.38984e7 −0.961994
\(732\) 0 0
\(733\) 2.35579e7i 1.61948i 0.586786 + 0.809742i \(0.300393\pi\)
−0.586786 + 0.809742i \(0.699607\pi\)
\(734\) 1.30297e7 0.892678
\(735\) 0 0
\(736\) −2.30119e6 −0.156588
\(737\) 3.59097e6i 0.243525i
\(738\) 0 0
\(739\) 8.49978e6 0.572528 0.286264 0.958151i \(-0.407587\pi\)
0.286264 + 0.958151i \(0.407587\pi\)
\(740\) 621736. + 398801.i 0.0417375 + 0.0267717i
\(741\) 0 0
\(742\) 6.65114e6i 0.443492i
\(743\) 5.28179e6i 0.351001i −0.984479 0.175501i \(-0.943846\pi\)
0.984479 0.175501i \(-0.0561544\pi\)
\(744\) 0 0
\(745\) −1.37747e7 + 2.14750e7i −0.909270 + 1.41756i
\(746\) −1.34649e7 −0.885841
\(747\) 0 0
\(748\) 7.79781e6i 0.509587i
\(749\) −4.89025e6 −0.318512
\(750\) 0 0
\(751\) 1.72132e7 1.11368 0.556842 0.830619i \(-0.312013\pi\)
0.556842 + 0.830619i \(0.312013\pi\)
\(752\) 2.67135e6i 0.172261i
\(753\) 0 0
\(754\) −115097. −0.00737284
\(755\) −9.60079e6 + 1.49678e7i −0.612970 + 0.955629i
\(756\) 0 0
\(757\) 1.95610e7i 1.24066i −0.784343 0.620328i \(-0.787000\pi\)
0.784343 0.620328i \(-0.213000\pi\)
\(758\) 1.99337e7i 1.26013i
\(759\) 0 0
\(760\) −3.60602e6 2.31301e6i −0.226461 0.145259i
\(761\) 2.65917e7 1.66450 0.832250 0.554401i \(-0.187052\pi\)
0.832250 + 0.554401i \(0.187052\pi\)
\(762\) 0 0
\(763\) 1.10439e7i 0.686772i
\(764\) −3.26501e6 −0.202372
\(765\) 0 0
\(766\) −4.56306e6 −0.280986
\(767\) 458766.i 0.0281581i
\(768\) 0 0
\(769\) −3.32124e6 −0.202528 −0.101264 0.994860i \(-0.532289\pi\)
−0.101264 + 0.994860i \(0.532289\pi\)
\(770\) 1.99510e6 3.11039e6i 0.121266 0.189055i
\(771\) 0 0
\(772\) 1.39759e7i 0.843986i
\(773\) 3.03574e7i 1.82732i 0.406476 + 0.913662i \(0.366758\pi\)
−0.406476 + 0.913662i \(0.633242\pi\)
\(774\) 0 0
\(775\) −1.36289e7 2.97061e7i −0.815091 1.77660i
\(776\) −8.73651e6 −0.520815
\(777\) 0 0
\(778\) 1.83388e7i 1.08623i
\(779\) −3.40501e6 −0.201036
\(780\) 0 0
\(781\) 1.61849e7 0.949475
\(782\) 1.29898e7i 0.759599i
\(783\) 0 0
\(784\) −614656. −0.0357143
\(785\) 1.84884e7 + 1.18590e7i 1.07084 + 0.686870i
\(786\) 0 0
\(787\) 1.37541e7i 0.791583i 0.918340 + 0.395792i \(0.129530\pi\)
−0.918340 + 0.395792i \(0.870470\pi\)
\(788\) 1.82932e6i 0.104948i
\(789\) 0 0
\(790\) −1.17325e7 7.52560e6i −0.668842 0.429016i
\(791\) −5.12064e6 −0.290993
\(792\) 0 0
\(793\) 644416.i 0.0363901i
\(794\) −1.65084e7 −0.929294
\(795\) 0 0
\(796\) −4.19437e6 −0.234630
\(797\) 2.68171e6i 0.149543i 0.997201 + 0.0747715i \(0.0238227\pi\)
−0.997201 + 0.0747715i \(0.976177\pi\)
\(798\) 0 0
\(799\) 1.50792e7 0.835627
\(800\) −2.90850e6 + 1.33440e6i −0.160674 + 0.0737157i
\(801\) 0 0
\(802\) 9.35726e6i 0.513704i
\(803\) 1.27145e7i 0.695840i
\(804\) 0 0
\(805\) −3.32349e6 + 5.18136e6i −0.180761 + 0.281809i
\(806\) −1.01773e6 −0.0551819
\(807\) 0 0
\(808\) 3.58247e6i 0.193043i
\(809\) 3.35759e7 1.80367 0.901834 0.432083i \(-0.142221\pi\)
0.901834 + 0.432083i \(0.142221\pi\)
\(810\) 0 0
\(811\) 5.24303e6 0.279917 0.139959 0.990157i \(-0.455303\pi\)
0.139959 + 0.990157i \(0.455303\pi\)
\(812\) 927300.i 0.0493549i
\(813\) 0 0
\(814\) −1.11408e6 −0.0589325
\(815\) 2.65163e6 + 1.70084e6i 0.139836 + 0.0896951i
\(816\) 0 0
\(817\) 1.15168e7i 0.603637i
\(818\) 2.01653e7i 1.05371i
\(819\) 0 0
\(820\) −1.37319e6 + 2.14082e6i −0.0713173 + 0.111185i
\(821\) 1.95688e7 1.01323 0.506614 0.862173i \(-0.330897\pi\)
0.506614 + 0.862173i \(0.330897\pi\)
\(822\) 0 0
\(823\) 6.20206e6i 0.319181i 0.987183 + 0.159590i \(0.0510173\pi\)
−0.987183 + 0.159590i \(0.948983\pi\)
\(824\) −1.05713e7 −0.542388
\(825\) 0 0
\(826\) 3.69614e6 0.188494
\(827\) 2.30838e7i 1.17366i −0.809710 0.586831i \(-0.800375\pi\)
0.809710 0.586831i \(-0.199625\pi\)
\(828\) 0 0
\(829\) −2.73598e7 −1.38270 −0.691348 0.722522i \(-0.742983\pi\)
−0.691348 + 0.722522i \(0.742983\pi\)
\(830\) 44644.3 69601.2i 0.00224942 0.00350688i
\(831\) 0 0
\(832\) 99645.8i 0.00499058i
\(833\) 3.46961e6i 0.173248i
\(834\) 0 0
\(835\) −1.47173e7 9.44013e6i −0.730486 0.468556i
\(836\) 6.46156e6 0.319758
\(837\) 0 0
\(838\) 267766.i 0.0131718i
\(839\) 1.15303e7 0.565504 0.282752 0.959193i \(-0.408753\pi\)
0.282752 + 0.959193i \(0.408753\pi\)
\(840\) 0 0
\(841\) −1.91122e7 −0.931795
\(842\) 2.68118e6i 0.130331i
\(843\) 0 0
\(844\) −1.40602e7 −0.679417
\(845\) −1.11884e7 + 1.74429e7i −0.539047 + 0.840382i
\(846\) 0 0
\(847\) 2.31804e6i 0.111023i
\(848\) 8.68720e6i 0.414849i
\(849\) 0 0
\(850\) 7.53239e6 + 1.64179e7i 0.357590 + 0.779418i
\(851\) 1.85586e6 0.0878456
\(852\) 0 0
\(853\) 1.31074e7i 0.616800i 0.951257 + 0.308400i \(0.0997936\pi\)
−0.951257 + 0.308400i \(0.900206\pi\)
\(854\) −5.19186e6 −0.243601
\(855\) 0 0
\(856\) −6.38726e6 −0.297941
\(857\) 3.48607e7i 1.62138i 0.585477 + 0.810689i \(0.300907\pi\)
−0.585477 + 0.810689i \(0.699093\pi\)
\(858\) 0 0
\(859\) −2.14838e7 −0.993410 −0.496705 0.867919i \(-0.665457\pi\)
−0.496705 + 0.867919i \(0.665457\pi\)
\(860\) −7.24090e6 4.64454e6i −0.333846 0.214139i
\(861\) 0 0
\(862\) 1.46135e6i 0.0669863i
\(863\) 3.37660e6i 0.154331i −0.997018 0.0771654i \(-0.975413\pi\)
0.997018 0.0771654i \(-0.0245870\pi\)
\(864\) 0 0
\(865\) 1.44595e7 + 9.27477e6i 0.657072 + 0.421466i
\(866\) −5.21175e6 −0.236151
\(867\) 0 0
\(868\) 8.19958e6i 0.369396i
\(869\) 2.10233e7 0.944390
\(870\) 0 0
\(871\) 259028. 0.0115691
\(872\) 1.44247e7i 0.642416i
\(873\) 0 0
\(874\) −1.07638e7 −0.476637
\(875\) −1.19607e6 + 8.47597e6i −0.0528123 + 0.374257i
\(876\) 0 0
\(877\) 1.58283e7i 0.694921i 0.937695 + 0.347461i \(0.112956\pi\)
−0.937695 + 0.347461i \(0.887044\pi\)
\(878\) 2.06526e7i 0.904145i
\(879\) 0 0
\(880\) 2.60585e6 4.06255e6i 0.113434 0.176845i
\(881\) 1.50941e7 0.655191 0.327596 0.944818i \(-0.393762\pi\)
0.327596 + 0.944818i \(0.393762\pi\)
\(882\) 0 0
\(883\) 4.20608e7i 1.81542i 0.419603 + 0.907708i \(0.362169\pi\)
−0.419603 + 0.907708i \(0.637831\pi\)
\(884\) 562480. 0.0242090
\(885\) 0 0
\(886\) 3.05850e7 1.30895
\(887\) 2.83691e7i 1.21070i 0.795959 + 0.605351i \(0.206967\pi\)
−0.795959 + 0.605351i \(0.793033\pi\)
\(888\) 0 0
\(889\) 1.20262e7 0.510358
\(890\) 2.17194e7 + 1.39315e7i 0.919122 + 0.589553i
\(891\) 0 0
\(892\) 8.64862e6i 0.363944i
\(893\) 1.24952e7i 0.524343i
\(894\) 0 0
\(895\) 2.42901e7 3.78685e7i 1.01361 1.58023i
\(896\) −802816. −0.0334077
\(897\) 0 0
\(898\) 1.93338e7i 0.800068i
\(899\) 1.23703e7 0.510482
\(900\) 0 0
\(901\) 4.90374e7 2.01241
\(902\) 3.83610e6i 0.156990i
\(903\) 0 0
\(904\) −6.68818e6 −0.272199
\(905\) 1.56546e7 2.44058e7i 0.635362 0.990539i
\(906\) 0 0
\(907\) 1.00151e7i 0.404236i 0.979361 + 0.202118i \(0.0647825\pi\)
−0.979361 + 0.202118i \(0.935217\pi\)
\(908\) 2.16375e6i 0.0870947i
\(909\) 0 0
\(910\) 224362. + 143913.i 0.00898145 + 0.00576098i
\(911\) 2.06987e7 0.826317 0.413158 0.910659i \(-0.364426\pi\)
0.413158 + 0.910659i \(0.364426\pi\)
\(912\) 0 0
\(913\) 124717.i 0.00495164i
\(914\) 1.40748e7 0.557284
\(915\) 0 0
\(916\) −1.90204e6 −0.0749000
\(917\) 4.98345e6i 0.195707i
\(918\) 0 0
\(919\) −6.79248e6 −0.265301 −0.132651 0.991163i \(-0.542349\pi\)
−0.132651 + 0.991163i \(0.542349\pi\)
\(920\) −4.34088e6 + 6.76749e6i −0.169086 + 0.263608i
\(921\) 0 0
\(922\) 1.42375e7i 0.551578i
\(923\) 1.16747e6i 0.0451067i
\(924\) 0 0
\(925\) 2.34564e6 1.07616e6i 0.0901377 0.0413544i
\(926\) 1.75727e7 0.673458
\(927\) 0 0
\(928\) 1.21117e6i 0.0461673i
\(929\) −2.18354e7 −0.830085 −0.415042 0.909802i \(-0.636233\pi\)
−0.415042 + 0.909802i \(0.636233\pi\)
\(930\) 0 0
\(931\) −2.87505e6 −0.108710
\(932\) 1.05522e7i 0.397927i
\(933\) 0 0
\(934\) −2.98689e7 −1.12035
\(935\) −2.29323e7 1.47095e7i −0.857864 0.550260i
\(936\) 0 0
\(937\) 3.76114e7i 1.39949i −0.714391 0.699747i \(-0.753296\pi\)
0.714391 0.699747i \(-0.246704\pi\)
\(938\) 2.08691e6i 0.0774455i
\(939\) 0 0
\(940\) 7.85608e6 + 5.03913e6i 0.289992 + 0.186010i
\(941\) −3.13453e7 −1.15398 −0.576989 0.816752i \(-0.695773\pi\)
−0.576989 + 0.816752i \(0.695773\pi\)
\(942\) 0 0
\(943\) 6.39025e6i 0.234012i
\(944\) 4.82761e6 0.176320
\(945\) 0 0
\(946\) 1.29748e7 0.471383
\(947\) 2.16274e6i 0.0783664i −0.999232 0.0391832i \(-0.987524\pi\)
0.999232 0.0391832i \(-0.0124756\pi\)
\(948\) 0 0
\(949\) 917134. 0.0330573
\(950\) −1.36045e7 + 6.24163e6i −0.489073 + 0.224382i
\(951\) 0 0
\(952\) 4.53173e6i 0.162058i
\(953\) 2.60248e7i 0.928230i −0.885775 0.464115i \(-0.846372\pi\)
0.885775 0.464115i \(-0.153628\pi\)
\(954\) 0 0
\(955\) −6.15898e6 + 9.60194e6i −0.218525 + 0.340683i
\(956\) −7.48713e6 −0.264954
\(957\) 0 0
\(958\) 2.02899e7i 0.714278i
\(959\) −3.11908e6 −0.109517
\(960\) 0 0
\(961\) 8.07542e7 2.82070
\(962\) 80361.9i 0.00279971i
\(963\) 0 0
\(964\) 3.44166e6 0.119282
\(965\) −4.11011e7 2.63635e7i −1.42081 0.911349i
\(966\) 0 0
\(967\) 3.85997e7i 1.32745i 0.747977 + 0.663725i \(0.231025\pi\)
−0.747977 + 0.663725i \(0.768975\pi\)
\(968\) 3.02764e6i 0.103852i
\(969\) 0 0
\(970\) −1.64802e7 + 2.56929e7i −0.562384 + 0.876765i
\(971\) −1.98202e7 −0.674621 −0.337310 0.941393i \(-0.609517\pi\)
−0.337310 + 0.941393i \(0.609517\pi\)
\(972\) 0 0
\(973\) 1.36179e7i 0.461136i
\(974\) 3.36395e7 1.13619
\(975\) 0 0
\(976\) −6.78121e6 −0.227868
\(977\) 6.29461e6i 0.210976i 0.994421 + 0.105488i \(0.0336404\pi\)
−0.994421 + 0.105488i \(0.966360\pi\)
\(978\) 0 0
\(979\) −3.89187e7 −1.29778
\(980\) −1.15946e6 + 1.80762e6i −0.0385649 + 0.0601231i
\(981\) 0 0
\(982\) 4.29275e6i 0.142055i
\(983\) 3.54716e7i 1.17084i −0.810731 0.585419i \(-0.800930\pi\)
0.810731 0.585419i \(-0.199070\pi\)
\(984\) 0 0
\(985\) 5.37977e6 + 3.45075e6i 0.176674 + 0.113324i
\(986\) −6.83679e6 −0.223955
\(987\) 0 0
\(988\) 466093.i 0.0151908i
\(989\) −2.16138e7 −0.702652
\(990\) 0 0
\(991\) −1.49772e7 −0.484446 −0.242223 0.970221i \(-0.577877\pi\)
−0.242223 + 0.970221i \(0.577877\pi\)
\(992\) 1.07097e7i 0.345538i
\(993\) 0 0
\(994\) −9.40595e6 −0.301951
\(995\) −7.91210e6 + 1.23351e7i −0.253358 + 0.394988i
\(996\) 0 0
\(997\) 3.79210e7i 1.20821i −0.796905 0.604104i \(-0.793531\pi\)
0.796905 0.604104i \(-0.206469\pi\)
\(998\) 1.73711e7i 0.552079i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 630.6.g.h.379.2 10
3.2 odd 2 70.6.c.d.29.9 yes 10
5.4 even 2 inner 630.6.g.h.379.7 10
12.11 even 2 560.6.g.d.449.4 10
15.2 even 4 350.6.a.y.1.4 5
15.8 even 4 350.6.a.z.1.2 5
15.14 odd 2 70.6.c.d.29.2 10
60.59 even 2 560.6.g.d.449.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.6.c.d.29.2 10 15.14 odd 2
70.6.c.d.29.9 yes 10 3.2 odd 2
350.6.a.y.1.4 5 15.2 even 4
350.6.a.z.1.2 5 15.8 even 4
560.6.g.d.449.4 10 12.11 even 2
560.6.g.d.449.7 10 60.59 even 2
630.6.g.h.379.2 10 1.1 even 1 trivial
630.6.g.h.379.7 10 5.4 even 2 inner