Properties

Label 644.1.r.b
Level $644$
Weight $1$
Character orbit 644.r
Analytic conductor $0.321$
Analytic rank $0$
Dimension $10$
Projective image $D_{22}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [644,1,Mod(83,644)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 11, 21]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("644.83");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 644 = 2^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 644.r (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.321397868136\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{22}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{22} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{22}^{4} q^{2} + \zeta_{22}^{8} q^{4} + \zeta_{22}^{9} q^{7} - \zeta_{22} q^{8} + \zeta_{22}^{3} q^{9} + (\zeta_{22}^{10} + \zeta_{22}^{2}) q^{11} - \zeta_{22}^{2} q^{14} - \zeta_{22}^{5} q^{16} + \cdots + (\zeta_{22}^{5} - \zeta_{22}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - q^{2} - q^{4} + q^{7} - q^{8} + q^{9} - 2 q^{11} + q^{14} - q^{16} + q^{18} - 2 q^{22} + q^{23} + q^{25} + q^{28} + 2 q^{29} - q^{32} - 10 q^{36} + 2 q^{43} - 2 q^{44} + q^{46} - q^{49}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/644\mathbb{Z}\right)^\times\).

\(n\) \(185\) \(281\) \(323\)
\(\chi(n)\) \(-1\) \(\zeta_{22}^{5}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1
−0.841254 0.540641i
0.654861 + 0.755750i
−0.415415 0.909632i
−0.415415 + 0.909632i
−0.841254 + 0.540641i
0.142315 + 0.989821i
0.959493 0.281733i
0.959493 + 0.281733i
0.142315 0.989821i
0.654861 0.755750i
−0.654861 + 0.755750i 0 −0.142315 0.989821i 0 0 −0.415415 + 0.909632i 0.841254 + 0.540641i 0.142315 0.989821i 0
111.1 −0.959493 0.281733i 0 0.841254 + 0.540641i 0 0 0.142315 + 0.989821i −0.654861 0.755750i −0.841254 + 0.540641i 0
195.1 −0.142315 0.989821i 0 −0.959493 + 0.281733i 0 0 0.654861 + 0.755750i 0.415415 + 0.909632i 0.959493 + 0.281733i 0
251.1 −0.142315 + 0.989821i 0 −0.959493 0.281733i 0 0 0.654861 0.755750i 0.415415 0.909632i 0.959493 0.281733i 0
419.1 −0.654861 0.755750i 0 −0.142315 + 0.989821i 0 0 −0.415415 0.909632i 0.841254 0.540641i 0.142315 + 0.989821i 0
447.1 0.841254 0.540641i 0 0.415415 0.909632i 0 0 0.959493 + 0.281733i −0.142315 0.989821i −0.415415 0.909632i 0
475.1 0.415415 0.909632i 0 −0.654861 0.755750i 0 0 −0.841254 0.540641i −0.959493 + 0.281733i 0.654861 0.755750i 0
503.1 0.415415 + 0.909632i 0 −0.654861 + 0.755750i 0 0 −0.841254 + 0.540641i −0.959493 0.281733i 0.654861 + 0.755750i 0
559.1 0.841254 + 0.540641i 0 0.415415 + 0.909632i 0 0 0.959493 0.281733i −0.142315 + 0.989821i −0.415415 + 0.909632i 0
615.1 −0.959493 + 0.281733i 0 0.841254 0.540641i 0 0 0.142315 0.989821i −0.654861 + 0.755750i −0.841254 0.540641i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
92.h even 22 1 inner
644.r odd 22 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 644.1.r.b yes 10
4.b odd 2 1 644.1.r.a 10
7.b odd 2 1 CM 644.1.r.b yes 10
23.d odd 22 1 644.1.r.a 10
28.d even 2 1 644.1.r.a 10
92.h even 22 1 inner 644.1.r.b yes 10
161.k even 22 1 644.1.r.a 10
644.r odd 22 1 inner 644.1.r.b yes 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
644.1.r.a 10 4.b odd 2 1
644.1.r.a 10 23.d odd 22 1
644.1.r.a 10 28.d even 2 1
644.1.r.a 10 161.k even 22 1
644.1.r.b yes 10 1.a even 1 1 trivial
644.1.r.b yes 10 7.b odd 2 1 CM
644.1.r.b yes 10 92.h even 22 1 inner
644.1.r.b yes 10 644.r odd 22 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{10} + 2T_{11}^{9} + 4T_{11}^{8} - 3T_{11}^{7} - 6T_{11}^{6} - 12T_{11}^{5} + 9T_{11}^{4} + 7T_{11}^{3} + 14T_{11}^{2} + 6T_{11} + 1 \) acting on \(S_{1}^{\mathrm{new}}(644, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + T^{9} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{10} \) Copy content Toggle raw display
$17$ \( T^{10} \) Copy content Toggle raw display
$19$ \( T^{10} \) Copy content Toggle raw display
$23$ \( T^{10} - T^{9} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{10} \) Copy content Toggle raw display
$37$ \( T^{10} + 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$41$ \( T^{10} \) Copy content Toggle raw display
$43$ \( T^{10} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{10} \) Copy content Toggle raw display
$53$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$59$ \( T^{10} \) Copy content Toggle raw display
$61$ \( T^{10} \) Copy content Toggle raw display
$67$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{10} - 11 T^{7} + \cdots + 11 \) Copy content Toggle raw display
$73$ \( T^{10} \) Copy content Toggle raw display
$79$ \( T^{10} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{10} \) Copy content Toggle raw display
$89$ \( T^{10} \) Copy content Toggle raw display
$97$ \( T^{10} \) Copy content Toggle raw display
show more
show less