Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [684,2,Mod(23,684)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(684, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 15, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("684.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.bs (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.46176749826\) |
Analytic rank: | \(0\) |
Dimension: | \(696\) |
Relative dimension: | \(116\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −1.41202 | + | 0.0786649i | −1.38928 | + | 1.03436i | 1.98762 | − | 0.222153i | −4.15853 | + | 0.733261i | 1.88033 | − | 1.56983i | − | 3.64991i | −2.78910 | + | 0.470042i | 0.860198 | − | 2.87403i | 5.81426 | − | 1.36251i | |
23.2 | −1.40911 | + | 0.120010i | −0.775266 | + | 1.54886i | 1.97120 | − | 0.338215i | 3.87264 | − | 0.682851i | 0.906558 | − | 2.27556i | 0.103868i | −2.73705 | + | 0.713147i | −1.79793 | − | 2.40155i | −5.37504 | + | 1.42697i | ||
23.3 | −1.40868 | − | 0.125026i | −0.226717 | + | 1.71715i | 1.96874 | + | 0.352243i | 1.04087 | − | 0.183533i | 0.534060 | − | 2.39056i | 1.52016i | −2.72927 | − | 0.742339i | −2.89720 | − | 0.778615i | −1.48919 | + | 0.128403i | ||
23.4 | −1.40831 | + | 0.129087i | −0.356216 | − | 1.69503i | 1.96667 | − | 0.363589i | −1.53473 | + | 0.270614i | 0.720469 | + | 2.34114i | − | 0.923751i | −2.72275 | + | 0.765918i | −2.74622 | + | 1.20759i | 2.12644 | − | 0.579223i | |
23.5 | −1.40681 | + | 0.144565i | 1.40038 | + | 1.01929i | 1.95820 | − | 0.406750i | −1.83392 | + | 0.323370i | −2.11741 | − | 1.23149i | − | 0.495207i | −2.69601 | + | 0.855305i | 0.922103 | + | 2.85477i | 2.53322 | − | 0.720039i | |
23.6 | −1.40179 | − | 0.187006i | 1.60726 | − | 0.645527i | 1.93006 | + | 0.524287i | −0.300003 | + | 0.0528987i | −2.37377 | + | 0.604329i | − | 4.64420i | −2.60750 | − | 1.09588i | 2.16659 | − | 2.07506i | 0.430435 | − | 0.0180508i | |
23.7 | −1.39710 | − | 0.219372i | 1.71213 | − | 0.261969i | 1.90375 | + | 0.612968i | 1.82315 | − | 0.321470i | −2.44947 | − | 0.00959719i | 3.37875i | −2.52525 | − | 1.27401i | 2.86274 | − | 0.897047i | −2.61763 | + | 0.0491764i | ||
23.8 | −1.37799 | − | 0.318047i | −1.72498 | − | 0.156369i | 1.79769 | + | 0.876530i | 0.975388 | − | 0.171987i | 2.32726 | + | 0.764099i | − | 0.0214153i | −2.19842 | − | 1.77960i | 2.95110 | + | 0.539468i | −1.39877 | − | 0.0732235i | |
23.9 | −1.37141 | + | 0.345309i | −1.40038 | − | 1.01929i | 1.76152 | − | 0.947120i | −1.83392 | + | 0.323370i | 2.27246 | + | 0.914298i | 0.495207i | −2.08872 | + | 1.90716i | 0.922103 | + | 2.85477i | 2.40339 | − | 1.07674i | ||
23.10 | −1.36862 | − | 0.356187i | −1.19183 | − | 1.25680i | 1.74626 | + | 0.974972i | 2.67723 | − | 0.472068i | 1.18351 | + | 2.14460i | − | 4.72128i | −2.04270 | − | 1.95637i | −0.159081 | + | 2.99578i | −3.83226 | − | 0.307512i | |
23.11 | −1.36753 | + | 0.360368i | 0.356216 | + | 1.69503i | 1.74027 | − | 0.985628i | −1.53473 | + | 0.270614i | −1.09797 | − | 2.18963i | 0.923751i | −2.02468 | + | 1.97501i | −2.74622 | + | 1.20759i | 2.00127 | − | 0.923141i | ||
23.12 | −1.36518 | + | 0.369172i | 0.775266 | − | 1.54886i | 1.72742 | − | 1.00797i | 3.87264 | − | 0.682851i | −0.486581 | + | 2.40067i | − | 0.103868i | −1.98613 | + | 2.01378i | −1.79793 | − | 2.40155i | −5.03475 | + | 2.36188i | |
23.13 | −1.35377 | + | 0.409020i | 1.38928 | − | 1.03436i | 1.66541 | − | 1.10744i | −4.15853 | + | 0.733261i | −1.45770 | + | 1.96853i | 3.64991i | −1.80162 | + | 2.18041i | 0.860198 | − | 2.87403i | 5.32979 | − | 2.69359i | ||
23.14 | −1.35302 | − | 0.411502i | 0.219865 | − | 1.71804i | 1.66133 | + | 1.11354i | −0.859989 | + | 0.151639i | −1.00446 | + | 2.23407i | 3.05338i | −1.78959 | − | 2.19029i | −2.90332 | − | 0.755474i | 1.22598 | + | 0.148716i | ||
23.15 | −1.28409 | − | 0.592547i | −0.707659 | + | 1.58089i | 1.29778 | + | 1.52177i | −3.14727 | + | 0.554948i | 1.84545 | − | 1.61069i | 5.13171i | −0.764742 | − | 2.72308i | −1.99844 | − | 2.23747i | 4.37021 | + | 1.15230i | ||
23.16 | −1.28096 | + | 0.599282i | 0.226717 | − | 1.71715i | 1.28172 | − | 1.53531i | 1.04087 | − | 0.183533i | 0.738640 | + | 2.33547i | − | 1.52016i | −0.721752 | + | 2.73479i | −2.89720 | − | 0.778615i | −1.22332 | + | 0.858872i | |
23.17 | −1.25666 | − | 0.648697i | −1.62202 | − | 0.607495i | 1.15839 | + | 1.63038i | −2.64599 | + | 0.466559i | 1.64425 | + | 1.81561i | 1.11605i | −0.398073 | − | 2.80027i | 2.26190 | + | 1.97074i | 3.62776 | + | 1.13014i | ||
23.18 | −1.25330 | + | 0.655170i | −1.60726 | + | 0.645527i | 1.14150 | − | 1.64224i | −0.300003 | + | 0.0528987i | 1.59145 | − | 1.86207i | 4.64420i | −0.354695 | + | 2.80610i | 2.16659 | − | 2.07506i | 0.341336 | − | 0.262851i | ||
23.19 | −1.24014 | − | 0.679748i | 1.64569 | + | 0.540095i | 1.07589 | + | 1.68596i | −3.25234 | + | 0.573476i | −1.67376 | − | 1.78845i | − | 0.838984i | −0.188220 | − | 2.82216i | 2.41659 | + | 1.77766i | 4.42317 | + | 1.49958i | |
23.20 | −1.23781 | + | 0.683977i | −1.71213 | + | 0.261969i | 1.06435 | − | 1.69327i | 1.82315 | − | 0.321470i | 1.94011 | − | 1.49532i | − | 3.37875i | −0.159307 | + | 2.82394i | 2.86274 | − | 0.897047i | −2.03683 | + | 1.64491i | |
See next 80 embeddings (of 696 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
171.bf | odd | 18 | 1 | inner |
684.bs | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 684.2.bs.a | ✓ | 696 |
4.b | odd | 2 | 1 | inner | 684.2.bs.a | ✓ | 696 |
9.d | odd | 6 | 1 | 684.2.ch.a | yes | 696 | |
19.e | even | 9 | 1 | 684.2.ch.a | yes | 696 | |
36.h | even | 6 | 1 | 684.2.ch.a | yes | 696 | |
76.l | odd | 18 | 1 | 684.2.ch.a | yes | 696 | |
171.bf | odd | 18 | 1 | inner | 684.2.bs.a | ✓ | 696 |
684.bs | even | 18 | 1 | inner | 684.2.bs.a | ✓ | 696 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
684.2.bs.a | ✓ | 696 | 1.a | even | 1 | 1 | trivial |
684.2.bs.a | ✓ | 696 | 4.b | odd | 2 | 1 | inner |
684.2.bs.a | ✓ | 696 | 171.bf | odd | 18 | 1 | inner |
684.2.bs.a | ✓ | 696 | 684.bs | even | 18 | 1 | inner |
684.2.ch.a | yes | 696 | 9.d | odd | 6 | 1 | |
684.2.ch.a | yes | 696 | 19.e | even | 9 | 1 | |
684.2.ch.a | yes | 696 | 36.h | even | 6 | 1 | |
684.2.ch.a | yes | 696 | 76.l | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(684, [\chi])\).