Properties

Label 693.2.m.j.190.3
Level $693$
Weight $2$
Character 693.190
Analytic conductor $5.534$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,2,Mod(64,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 693.m (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.53363286007\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 12 x^{18} - 3 x^{17} + 94 x^{16} - 10 x^{15} + 662 x^{14} - 153 x^{13} + 4638 x^{12} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 231)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.3
Root \(0.383242 + 0.278442i\) of defining polynomial
Character \(\chi\) \(=\) 693.190
Dual form 693.2.m.j.631.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.383242 - 0.278442i) q^{2} +(-0.548689 + 1.68869i) q^{4} +(3.04094 + 2.20937i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(0.552692 + 1.70101i) q^{8} +1.78060 q^{10} +(2.47012 - 2.21326i) q^{11} +(-2.19061 + 1.59157i) q^{13} +(0.146385 + 0.450528i) q^{14} +(-2.18753 - 1.58933i) q^{16} +(2.00865 + 1.45937i) q^{17} +(-0.539130 - 1.65927i) q^{19} +(-5.39949 + 3.92296i) q^{20} +(0.330389 - 1.53600i) q^{22} -3.79843 q^{23} +(2.82092 + 8.68189i) q^{25} +(-0.396374 + 1.21991i) q^{26} +(-1.43649 - 1.04367i) q^{28} +(1.79248 - 5.51669i) q^{29} +(-1.81837 + 1.32112i) q^{31} -4.85799 q^{32} +1.17615 q^{34} +(-3.04094 + 2.20937i) q^{35} +(-2.36494 + 7.27854i) q^{37} +(-0.668627 - 0.485786i) q^{38} +(-2.07747 + 6.39378i) q^{40} +(1.29324 + 3.98017i) q^{41} +7.75162 q^{43} +(2.38219 + 5.38566i) q^{44} +(-1.45572 + 1.05764i) q^{46} +(-3.83399 - 11.7998i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(3.49849 + 2.54180i) q^{50} +(-1.48571 - 4.57254i) q^{52} +(7.15135 - 5.19576i) q^{53} +(12.4014 - 1.27298i) q^{55} -1.78855 q^{56} +(-0.849122 - 2.61333i) q^{58} +(-1.40345 + 4.31938i) q^{59} +(9.28955 + 6.74925i) q^{61} +(-0.329020 + 1.01262i) q^{62} +(2.51327 - 1.82600i) q^{64} -10.1779 q^{65} -12.2041 q^{67} +(-3.56655 + 2.59125i) q^{68} +(-0.550235 + 1.69345i) q^{70} +(6.27787 + 4.56114i) q^{71} +(4.84526 - 14.9122i) q^{73} +(1.12030 + 3.44794i) q^{74} +3.09781 q^{76} +(1.34163 + 3.03316i) q^{77} +(5.70664 - 4.14612i) q^{79} +(-3.14072 - 9.66614i) q^{80} +(1.60387 + 1.16528i) q^{82} +(9.62766 + 6.99490i) q^{83} +(2.88389 + 8.87571i) q^{85} +(2.97075 - 2.15837i) q^{86} +(5.12999 + 2.97845i) q^{88} +1.69179 q^{89} +(-0.836738 - 2.57522i) q^{91} +(2.08416 - 6.41439i) q^{92} +(-4.75491 - 3.45464i) q^{94} +(2.02649 - 6.23689i) q^{95} +(-5.66019 + 4.11237i) q^{97} -0.473713 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 14 q^{4} + 5 q^{5} + 5 q^{7} + 9 q^{8} + 12 q^{10} + q^{11} + 13 q^{13} - 24 q^{16} + q^{17} + 10 q^{19} + 46 q^{20} + 26 q^{22} - 8 q^{25} + 53 q^{26} + 4 q^{28} - 3 q^{29} - 13 q^{31} - 82 q^{32}+ \cdots - 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/693\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.383242 0.278442i 0.270993 0.196888i −0.443986 0.896034i \(-0.646436\pi\)
0.714979 + 0.699146i \(0.246436\pi\)
\(3\) 0 0
\(4\) −0.548689 + 1.68869i −0.274345 + 0.844346i
\(5\) 3.04094 + 2.20937i 1.35995 + 0.988062i 0.998448 + 0.0556917i \(0.0177364\pi\)
0.361503 + 0.932371i \(0.382264\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 0.552692 + 1.70101i 0.195406 + 0.601398i
\(9\) 0 0
\(10\) 1.78060 0.563075
\(11\) 2.47012 2.21326i 0.744768 0.667323i
\(12\) 0 0
\(13\) −2.19061 + 1.59157i −0.607566 + 0.441422i −0.848556 0.529105i \(-0.822528\pi\)
0.240991 + 0.970527i \(0.422528\pi\)
\(14\) 0.146385 + 0.450528i 0.0391231 + 0.120409i
\(15\) 0 0
\(16\) −2.18753 1.58933i −0.546882 0.397333i
\(17\) 2.00865 + 1.45937i 0.487169 + 0.353949i 0.804094 0.594502i \(-0.202651\pi\)
−0.316926 + 0.948450i \(0.602651\pi\)
\(18\) 0 0
\(19\) −0.539130 1.65927i −0.123685 0.380663i 0.869974 0.493097i \(-0.164135\pi\)
−0.993659 + 0.112434i \(0.964135\pi\)
\(20\) −5.39949 + 3.92296i −1.20736 + 0.877200i
\(21\) 0 0
\(22\) 0.330389 1.53600i 0.0704391 0.327476i
\(23\) −3.79843 −0.792028 −0.396014 0.918244i \(-0.629607\pi\)
−0.396014 + 0.918244i \(0.629607\pi\)
\(24\) 0 0
\(25\) 2.82092 + 8.68189i 0.564183 + 1.73638i
\(26\) −0.396374 + 1.21991i −0.0777353 + 0.239245i
\(27\) 0 0
\(28\) −1.43649 1.04367i −0.271471 0.197235i
\(29\) 1.79248 5.51669i 0.332856 1.02442i −0.634913 0.772584i \(-0.718964\pi\)
0.967769 0.251841i \(-0.0810359\pi\)
\(30\) 0 0
\(31\) −1.81837 + 1.32112i −0.326589 + 0.237281i −0.738982 0.673725i \(-0.764693\pi\)
0.412393 + 0.911006i \(0.364693\pi\)
\(32\) −4.85799 −0.858779
\(33\) 0 0
\(34\) 1.17615 0.201707
\(35\) −3.04094 + 2.20937i −0.514013 + 0.373453i
\(36\) 0 0
\(37\) −2.36494 + 7.27854i −0.388794 + 1.19658i 0.544897 + 0.838503i \(0.316569\pi\)
−0.933690 + 0.358081i \(0.883431\pi\)
\(38\) −0.668627 0.485786i −0.108466 0.0788049i
\(39\) 0 0
\(40\) −2.07747 + 6.39378i −0.328476 + 1.01095i
\(41\) 1.29324 + 3.98017i 0.201969 + 0.621598i 0.999824 + 0.0187483i \(0.00596811\pi\)
−0.797855 + 0.602850i \(0.794032\pi\)
\(42\) 0 0
\(43\) 7.75162 1.18211 0.591056 0.806631i \(-0.298711\pi\)
0.591056 + 0.806631i \(0.298711\pi\)
\(44\) 2.38219 + 5.38566i 0.359128 + 0.811919i
\(45\) 0 0
\(46\) −1.45572 + 1.05764i −0.214634 + 0.155941i
\(47\) −3.83399 11.7998i −0.559246 1.72118i −0.684459 0.729051i \(-0.739962\pi\)
0.125214 0.992130i \(-0.460038\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 3.49849 + 2.54180i 0.494761 + 0.359465i
\(51\) 0 0
\(52\) −1.48571 4.57254i −0.206031 0.634098i
\(53\) 7.15135 5.19576i 0.982314 0.713693i 0.0240892 0.999710i \(-0.492331\pi\)
0.958225 + 0.286017i \(0.0923314\pi\)
\(54\) 0 0
\(55\) 12.4014 1.27298i 1.67221 0.171649i
\(56\) −1.78855 −0.239005
\(57\) 0 0
\(58\) −0.849122 2.61333i −0.111495 0.343147i
\(59\) −1.40345 + 4.31938i −0.182714 + 0.562335i −0.999901 0.0140367i \(-0.995532\pi\)
0.817188 + 0.576371i \(0.195532\pi\)
\(60\) 0 0
\(61\) 9.28955 + 6.74925i 1.18940 + 0.864153i 0.993201 0.116410i \(-0.0371386\pi\)
0.196204 + 0.980563i \(0.437139\pi\)
\(62\) −0.329020 + 1.01262i −0.0417856 + 0.128603i
\(63\) 0 0
\(64\) 2.51327 1.82600i 0.314159 0.228250i
\(65\) −10.1779 −1.26241
\(66\) 0 0
\(67\) −12.2041 −1.49096 −0.745481 0.666527i \(-0.767780\pi\)
−0.745481 + 0.666527i \(0.767780\pi\)
\(68\) −3.56655 + 2.59125i −0.432507 + 0.314235i
\(69\) 0 0
\(70\) −0.550235 + 1.69345i −0.0657657 + 0.202406i
\(71\) 6.27787 + 4.56114i 0.745047 + 0.541308i 0.894288 0.447493i \(-0.147683\pi\)
−0.149241 + 0.988801i \(0.547683\pi\)
\(72\) 0 0
\(73\) 4.84526 14.9122i 0.567095 1.74534i −0.0945471 0.995520i \(-0.530140\pi\)
0.661642 0.749820i \(-0.269860\pi\)
\(74\) 1.12030 + 3.44794i 0.130233 + 0.400815i
\(75\) 0 0
\(76\) 3.09781 0.355344
\(77\) 1.34163 + 3.03316i 0.152893 + 0.345660i
\(78\) 0 0
\(79\) 5.70664 4.14612i 0.642048 0.466475i −0.218505 0.975836i \(-0.570118\pi\)
0.860553 + 0.509361i \(0.170118\pi\)
\(80\) −3.14072 9.66614i −0.351143 1.08071i
\(81\) 0 0
\(82\) 1.60387 + 1.16528i 0.177117 + 0.128683i
\(83\) 9.62766 + 6.99490i 1.05677 + 0.767790i 0.973489 0.228735i \(-0.0734591\pi\)
0.0832842 + 0.996526i \(0.473459\pi\)
\(84\) 0 0
\(85\) 2.88389 + 8.87571i 0.312802 + 0.962706i
\(86\) 2.97075 2.15837i 0.320344 0.232743i
\(87\) 0 0
\(88\) 5.12999 + 2.97845i 0.546859 + 0.317503i
\(89\) 1.69179 0.179329 0.0896647 0.995972i \(-0.471420\pi\)
0.0896647 + 0.995972i \(0.471420\pi\)
\(90\) 0 0
\(91\) −0.836738 2.57522i −0.0877140 0.269956i
\(92\) 2.08416 6.41439i 0.217289 0.668746i
\(93\) 0 0
\(94\) −4.75491 3.45464i −0.490431 0.356319i
\(95\) 2.02649 6.23689i 0.207913 0.639892i
\(96\) 0 0
\(97\) −5.66019 + 4.11237i −0.574706 + 0.417548i −0.836812 0.547491i \(-0.815583\pi\)
0.262106 + 0.965039i \(0.415583\pi\)
\(98\) −0.473713 −0.0478522
\(99\) 0 0
\(100\) −16.2088 −1.62088
\(101\) 2.19796 1.59691i 0.218705 0.158899i −0.473038 0.881042i \(-0.656843\pi\)
0.691744 + 0.722143i \(0.256843\pi\)
\(102\) 0 0
\(103\) −0.0790429 + 0.243269i −0.00778833 + 0.0239700i −0.954875 0.297007i \(-0.904011\pi\)
0.947087 + 0.320977i \(0.104011\pi\)
\(104\) −3.91801 2.84660i −0.384193 0.279132i
\(105\) 0 0
\(106\) 1.29398 3.98247i 0.125683 0.386811i
\(107\) −3.66517 11.2802i −0.354326 1.09050i −0.956399 0.292062i \(-0.905659\pi\)
0.602074 0.798441i \(-0.294341\pi\)
\(108\) 0 0
\(109\) −15.8720 −1.52026 −0.760129 0.649772i \(-0.774864\pi\)
−0.760129 + 0.649772i \(0.774864\pi\)
\(110\) 4.39829 3.94093i 0.419360 0.375753i
\(111\) 0 0
\(112\) 2.18753 1.58933i 0.206702 0.150178i
\(113\) 1.58109 + 4.86608i 0.148736 + 0.457763i 0.997473 0.0710535i \(-0.0226361\pi\)
−0.848736 + 0.528816i \(0.822636\pi\)
\(114\) 0 0
\(115\) −11.5508 8.39217i −1.07712 0.782573i
\(116\) 8.33248 + 6.05390i 0.773652 + 0.562091i
\(117\) 0 0
\(118\) 0.664833 + 2.04614i 0.0612028 + 0.188363i
\(119\) −2.00865 + 1.45937i −0.184132 + 0.133780i
\(120\) 0 0
\(121\) 1.20296 10.9340i 0.109360 0.994002i
\(122\) 5.43942 0.492462
\(123\) 0 0
\(124\) −1.23325 3.79556i −0.110749 0.340851i
\(125\) −4.79561 + 14.7594i −0.428932 + 1.32012i
\(126\) 0 0
\(127\) −0.164504 0.119519i −0.0145974 0.0106056i 0.580463 0.814287i \(-0.302872\pi\)
−0.595060 + 0.803681i \(0.702872\pi\)
\(128\) 3.45716 10.6400i 0.305572 0.940455i
\(129\) 0 0
\(130\) −3.90060 + 2.83395i −0.342105 + 0.248554i
\(131\) 10.2788 0.898067 0.449034 0.893515i \(-0.351768\pi\)
0.449034 + 0.893515i \(0.351768\pi\)
\(132\) 0 0
\(133\) 1.74466 0.151281
\(134\) −4.67710 + 3.39812i −0.404040 + 0.293552i
\(135\) 0 0
\(136\) −1.37224 + 4.22331i −0.117668 + 0.362146i
\(137\) −13.8420 10.0568i −1.18260 0.859209i −0.190137 0.981758i \(-0.560893\pi\)
−0.992463 + 0.122549i \(0.960893\pi\)
\(138\) 0 0
\(139\) 6.02612 18.5465i 0.511129 1.57309i −0.279089 0.960265i \(-0.590032\pi\)
0.790217 0.612827i \(-0.209968\pi\)
\(140\) −2.06242 6.34748i −0.174306 0.536460i
\(141\) 0 0
\(142\) 3.67596 0.308479
\(143\) −1.88850 + 8.77976i −0.157924 + 0.734200i
\(144\) 0 0
\(145\) 17.6393 12.8157i 1.46486 1.06429i
\(146\) −2.29526 7.06410i −0.189957 0.584629i
\(147\) 0 0
\(148\) −10.9936 7.98731i −0.903668 0.656553i
\(149\) −8.00148 5.81342i −0.655507 0.476254i 0.209636 0.977780i \(-0.432772\pi\)
−0.865143 + 0.501526i \(0.832772\pi\)
\(150\) 0 0
\(151\) −4.79018 14.7427i −0.389819 1.19974i −0.932923 0.360075i \(-0.882751\pi\)
0.543104 0.839666i \(-0.317249\pi\)
\(152\) 2.52447 1.83413i 0.204761 0.148768i
\(153\) 0 0
\(154\) 1.35872 + 0.788868i 0.109489 + 0.0635688i
\(155\) −8.44843 −0.678594
\(156\) 0 0
\(157\) 5.23896 + 16.1238i 0.418114 + 1.28682i 0.909436 + 0.415845i \(0.136514\pi\)
−0.491321 + 0.870978i \(0.663486\pi\)
\(158\) 1.03257 3.17793i 0.0821471 0.252823i
\(159\) 0 0
\(160\) −14.7729 10.7331i −1.16790 0.848527i
\(161\) 1.17378 3.61253i 0.0925069 0.284707i
\(162\) 0 0
\(163\) −16.1592 + 11.7403i −1.26569 + 0.919574i −0.999022 0.0442152i \(-0.985921\pi\)
−0.266664 + 0.963790i \(0.585921\pi\)
\(164\) −7.43086 −0.580253
\(165\) 0 0
\(166\) 5.63739 0.437547
\(167\) 14.1186 10.2578i 1.09253 0.793771i 0.112706 0.993628i \(-0.464048\pi\)
0.979825 + 0.199858i \(0.0640480\pi\)
\(168\) 0 0
\(169\) −1.75155 + 5.39071i −0.134735 + 0.414670i
\(170\) 3.57660 + 2.59855i 0.274312 + 0.199300i
\(171\) 0 0
\(172\) −4.25323 + 13.0901i −0.324306 + 0.998111i
\(173\) 2.89223 + 8.90136i 0.219892 + 0.676758i 0.998770 + 0.0495825i \(0.0157891\pi\)
−0.778878 + 0.627175i \(0.784211\pi\)
\(174\) 0 0
\(175\) −9.12868 −0.690063
\(176\) −8.92106 + 0.915732i −0.672450 + 0.0690259i
\(177\) 0 0
\(178\) 0.648365 0.471064i 0.0485970 0.0353078i
\(179\) −1.69758 5.22460i −0.126883 0.390505i 0.867357 0.497687i \(-0.165817\pi\)
−0.994239 + 0.107182i \(0.965817\pi\)
\(180\) 0 0
\(181\) 9.04839 + 6.57404i 0.672562 + 0.488645i 0.870882 0.491493i \(-0.163549\pi\)
−0.198320 + 0.980137i \(0.563549\pi\)
\(182\) −1.03772 0.753948i −0.0769209 0.0558863i
\(183\) 0 0
\(184\) −2.09936 6.46118i −0.154767 0.476324i
\(185\) −23.2727 + 16.9086i −1.71104 + 1.24314i
\(186\) 0 0
\(187\) 8.19156 0.840850i 0.599026 0.0614891i
\(188\) 22.0299 1.60670
\(189\) 0 0
\(190\) −0.959974 2.95450i −0.0696438 0.214342i
\(191\) 1.77939 5.47639i 0.128752 0.396258i −0.865814 0.500366i \(-0.833199\pi\)
0.994566 + 0.104108i \(0.0331988\pi\)
\(192\) 0 0
\(193\) 12.0419 + 8.74893i 0.866793 + 0.629762i 0.929725 0.368256i \(-0.120045\pi\)
−0.0629313 + 0.998018i \(0.520045\pi\)
\(194\) −1.02417 + 3.15207i −0.0735310 + 0.226305i
\(195\) 0 0
\(196\) 1.43649 1.04367i 0.102606 0.0745478i
\(197\) −12.5476 −0.893978 −0.446989 0.894540i \(-0.647504\pi\)
−0.446989 + 0.894540i \(0.647504\pi\)
\(198\) 0 0
\(199\) 0.834418 0.0591503 0.0295752 0.999563i \(-0.490585\pi\)
0.0295752 + 0.999563i \(0.490585\pi\)
\(200\) −13.2089 + 9.59682i −0.934009 + 0.678598i
\(201\) 0 0
\(202\) 0.397704 1.22401i 0.0279824 0.0861209i
\(203\) 4.69278 + 3.40950i 0.329369 + 0.239300i
\(204\) 0 0
\(205\) −4.86103 + 14.9607i −0.339509 + 1.04490i
\(206\) 0.0374437 + 0.115240i 0.00260882 + 0.00802913i
\(207\) 0 0
\(208\) 7.32155 0.507658
\(209\) −5.00411 2.90536i −0.346142 0.200968i
\(210\) 0 0
\(211\) 21.7385 15.7940i 1.49654 1.08730i 0.524809 0.851220i \(-0.324137\pi\)
0.971733 0.236082i \(-0.0758633\pi\)
\(212\) 4.85017 + 14.9273i 0.333111 + 1.02521i
\(213\) 0 0
\(214\) −4.54554 3.30253i −0.310727 0.225756i
\(215\) 23.5722 + 17.1262i 1.60761 + 1.16800i
\(216\) 0 0
\(217\) −0.694556 2.13762i −0.0471495 0.145111i
\(218\) −6.08280 + 4.41941i −0.411979 + 0.299320i
\(219\) 0 0
\(220\) −4.65484 + 21.6406i −0.313829 + 1.45901i
\(221\) −6.72285 −0.452228
\(222\) 0 0
\(223\) 1.24199 + 3.82247i 0.0831701 + 0.255971i 0.983991 0.178221i \(-0.0570340\pi\)
−0.900820 + 0.434192i \(0.857034\pi\)
\(224\) 1.50120 4.62022i 0.100303 0.308701i
\(225\) 0 0
\(226\) 1.96086 + 1.42465i 0.130434 + 0.0947661i
\(227\) 3.61612 11.1293i 0.240010 0.738676i −0.756407 0.654102i \(-0.773047\pi\)
0.996417 0.0845746i \(-0.0269531\pi\)
\(228\) 0 0
\(229\) 5.29505 3.84708i 0.349906 0.254222i −0.398923 0.916984i \(-0.630616\pi\)
0.748830 + 0.662762i \(0.230616\pi\)
\(230\) −6.76349 −0.445971
\(231\) 0 0
\(232\) 10.3746 0.681129
\(233\) 0.139610 0.101432i 0.00914614 0.00664506i −0.583203 0.812327i \(-0.698201\pi\)
0.592349 + 0.805682i \(0.298201\pi\)
\(234\) 0 0
\(235\) 14.4113 44.3533i 0.940088 2.89329i
\(236\) −6.52404 4.73999i −0.424679 0.308547i
\(237\) 0 0
\(238\) −0.363449 + 1.11858i −0.0235589 + 0.0725069i
\(239\) 3.22936 + 9.93895i 0.208890 + 0.642897i 0.999531 + 0.0306176i \(0.00974741\pi\)
−0.790641 + 0.612280i \(0.790253\pi\)
\(240\) 0 0
\(241\) −3.41821 −0.220186 −0.110093 0.993921i \(-0.535115\pi\)
−0.110093 + 0.993921i \(0.535115\pi\)
\(242\) −2.58346 4.52533i −0.166071 0.290899i
\(243\) 0 0
\(244\) −16.4945 + 11.9839i −1.05595 + 0.767194i
\(245\) −1.16154 3.57484i −0.0742079 0.228388i
\(246\) 0 0
\(247\) 3.82187 + 2.77675i 0.243180 + 0.176681i
\(248\) −3.25225 2.36290i −0.206518 0.150044i
\(249\) 0 0
\(250\) 2.27174 + 6.99171i 0.143678 + 0.442194i
\(251\) 10.2544 7.45026i 0.647252 0.470256i −0.215082 0.976596i \(-0.569002\pi\)
0.862334 + 0.506340i \(0.169002\pi\)
\(252\) 0 0
\(253\) −9.38258 + 8.40692i −0.589878 + 0.528539i
\(254\) −0.0963238 −0.00604389
\(255\) 0 0
\(256\) 0.282269 + 0.868734i 0.0176418 + 0.0542959i
\(257\) 5.61954 17.2952i 0.350538 1.07884i −0.608014 0.793926i \(-0.708034\pi\)
0.958552 0.284918i \(-0.0919663\pi\)
\(258\) 0 0
\(259\) −6.19149 4.49838i −0.384721 0.279516i
\(260\) 5.58450 17.1873i 0.346336 1.06591i
\(261\) 0 0
\(262\) 3.93929 2.86206i 0.243370 0.176819i
\(263\) −15.7837 −0.973264 −0.486632 0.873607i \(-0.661775\pi\)
−0.486632 + 0.873607i \(0.661775\pi\)
\(264\) 0 0
\(265\) 33.2262 2.04107
\(266\) 0.668627 0.485786i 0.0409962 0.0297855i
\(267\) 0 0
\(268\) 6.69623 20.6089i 0.409038 1.25889i
\(269\) 18.5990 + 13.5130i 1.13400 + 0.823900i 0.986272 0.165128i \(-0.0528039\pi\)
0.147728 + 0.989028i \(0.452804\pi\)
\(270\) 0 0
\(271\) 2.88628 8.88306i 0.175329 0.539608i −0.824319 0.566125i \(-0.808442\pi\)
0.999648 + 0.0265176i \(0.00844182\pi\)
\(272\) −2.07455 6.38482i −0.125788 0.387136i
\(273\) 0 0
\(274\) −8.10505 −0.489644
\(275\) 26.1833 + 15.2019i 1.57891 + 0.916706i
\(276\) 0 0
\(277\) −15.7246 + 11.4246i −0.944799 + 0.686437i −0.949571 0.313552i \(-0.898481\pi\)
0.00477176 + 0.999989i \(0.498481\pi\)
\(278\) −2.85465 8.78571i −0.171211 0.526932i
\(279\) 0 0
\(280\) −5.43888 3.95157i −0.325035 0.236152i
\(281\) −3.59493 2.61187i −0.214456 0.155811i 0.475372 0.879785i \(-0.342314\pi\)
−0.689827 + 0.723974i \(0.742314\pi\)
\(282\) 0 0
\(283\) 4.27947 + 13.1708i 0.254388 + 0.782925i 0.993950 + 0.109837i \(0.0350328\pi\)
−0.739562 + 0.673089i \(0.764967\pi\)
\(284\) −11.1470 + 8.09875i −0.661451 + 0.480572i
\(285\) 0 0
\(286\) 1.72090 + 3.89061i 0.101759 + 0.230056i
\(287\) −4.18500 −0.247033
\(288\) 0 0
\(289\) −3.34838 10.3052i −0.196963 0.606191i
\(290\) 3.19169 9.82302i 0.187423 0.576828i
\(291\) 0 0
\(292\) 22.5236 + 16.3643i 1.31809 + 0.957649i
\(293\) 5.94422 18.2944i 0.347265 1.06877i −0.613095 0.790009i \(-0.710076\pi\)
0.960360 0.278763i \(-0.0899243\pi\)
\(294\) 0 0
\(295\) −13.8109 + 10.0342i −0.804104 + 0.584215i
\(296\) −13.6880 −0.795596
\(297\) 0 0
\(298\) −4.68520 −0.271406
\(299\) 8.32089 6.04548i 0.481209 0.349619i
\(300\) 0 0
\(301\) −2.39538 + 7.37223i −0.138068 + 0.424928i
\(302\) −5.94077 4.31622i −0.341853 0.248371i
\(303\) 0 0
\(304\) −1.45777 + 4.48656i −0.0836089 + 0.257322i
\(305\) 13.3374 + 41.0482i 0.763695 + 2.35041i
\(306\) 0 0
\(307\) 2.24474 0.128114 0.0640571 0.997946i \(-0.479596\pi\)
0.0640571 + 0.997946i \(0.479596\pi\)
\(308\) −5.85820 + 0.601335i −0.333802 + 0.0342643i
\(309\) 0 0
\(310\) −3.23779 + 2.35239i −0.183894 + 0.133607i
\(311\) −3.90260 12.0110i −0.221296 0.681080i −0.998646 0.0520116i \(-0.983437\pi\)
0.777350 0.629068i \(-0.216563\pi\)
\(312\) 0 0
\(313\) −0.862781 0.626847i −0.0487673 0.0354315i 0.563135 0.826365i \(-0.309595\pi\)
−0.611902 + 0.790934i \(0.709595\pi\)
\(314\) 6.49734 + 4.72059i 0.366666 + 0.266398i
\(315\) 0 0
\(316\) 3.87035 + 11.9117i 0.217724 + 0.670085i
\(317\) −20.3638 + 14.7951i −1.14374 + 0.830978i −0.987636 0.156763i \(-0.949894\pi\)
−0.156106 + 0.987740i \(0.549894\pi\)
\(318\) 0 0
\(319\) −7.78224 17.5941i −0.435722 0.985081i
\(320\) 11.6770 0.652766
\(321\) 0 0
\(322\) −0.556035 1.71130i −0.0309866 0.0953670i
\(323\) 1.33857 4.11968i 0.0744798 0.229225i
\(324\) 0 0
\(325\) −19.9974 14.5289i −1.10925 0.805920i
\(326\) −2.92388 + 8.99878i −0.161939 + 0.498396i
\(327\) 0 0
\(328\) −6.05555 + 4.39961i −0.334362 + 0.242928i
\(329\) 12.4071 0.684024
\(330\) 0 0
\(331\) −8.53640 −0.469203 −0.234601 0.972092i \(-0.575378\pi\)
−0.234601 + 0.972092i \(0.575378\pi\)
\(332\) −17.0948 + 12.4201i −0.938201 + 0.681643i
\(333\) 0 0
\(334\) 2.55465 7.86242i 0.139784 0.430212i
\(335\) −37.1118 26.9633i −2.02764 1.47316i
\(336\) 0 0
\(337\) −5.33254 + 16.4119i −0.290482 + 0.894012i 0.694219 + 0.719763i \(0.255750\pi\)
−0.984702 + 0.174249i \(0.944250\pi\)
\(338\) 0.829732 + 2.55365i 0.0451315 + 0.138900i
\(339\) 0 0
\(340\) −16.5707 −0.898673
\(341\) −1.56760 + 7.28786i −0.0848903 + 0.394660i
\(342\) 0 0
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 4.28426 + 13.1856i 0.230992 + 0.710920i
\(345\) 0 0
\(346\) 3.58693 + 2.60606i 0.192835 + 0.140103i
\(347\) 3.36307 + 2.44341i 0.180539 + 0.131169i 0.674384 0.738380i \(-0.264409\pi\)
−0.493845 + 0.869550i \(0.664409\pi\)
\(348\) 0 0
\(349\) 2.38186 + 7.33060i 0.127498 + 0.392398i 0.994348 0.106171i \(-0.0338590\pi\)
−0.866850 + 0.498569i \(0.833859\pi\)
\(350\) −3.49849 + 2.54180i −0.187002 + 0.135865i
\(351\) 0 0
\(352\) −11.9998 + 10.7520i −0.639591 + 0.573083i
\(353\) 4.84242 0.257736 0.128868 0.991662i \(-0.458866\pi\)
0.128868 + 0.991662i \(0.458866\pi\)
\(354\) 0 0
\(355\) 9.01339 + 27.7404i 0.478381 + 1.47231i
\(356\) −0.928267 + 2.85691i −0.0491980 + 0.151416i
\(357\) 0 0
\(358\) −2.10533 1.52961i −0.111270 0.0808425i
\(359\) −1.36534 + 4.20209i −0.0720600 + 0.221778i −0.980600 0.196020i \(-0.937198\pi\)
0.908540 + 0.417798i \(0.137198\pi\)
\(360\) 0 0
\(361\) 12.9088 9.37879i 0.679411 0.493621i
\(362\) 5.29821 0.278468
\(363\) 0 0
\(364\) 4.80786 0.252000
\(365\) 47.6808 34.6421i 2.49573 1.81325i
\(366\) 0 0
\(367\) −9.12574 + 28.0861i −0.476360 + 1.46608i 0.367756 + 0.929922i \(0.380126\pi\)
−0.844115 + 0.536161i \(0.819874\pi\)
\(368\) 8.30918 + 6.03697i 0.433146 + 0.314699i
\(369\) 0 0
\(370\) −4.21101 + 12.9602i −0.218920 + 0.673766i
\(371\) 2.73157 + 8.40692i 0.141816 + 0.436465i
\(372\) 0 0
\(373\) 7.64965 0.396084 0.198042 0.980194i \(-0.436542\pi\)
0.198042 + 0.980194i \(0.436542\pi\)
\(374\) 2.90522 2.60312i 0.150225 0.134604i
\(375\) 0 0
\(376\) 17.9526 13.0433i 0.925835 0.672659i
\(377\) 4.85358 + 14.9378i 0.249972 + 0.769335i
\(378\) 0 0
\(379\) 9.06860 + 6.58872i 0.465823 + 0.338440i 0.795811 0.605545i \(-0.207045\pi\)
−0.329988 + 0.943985i \(0.607045\pi\)
\(380\) 9.42028 + 6.84423i 0.483250 + 0.351102i
\(381\) 0 0
\(382\) −0.842919 2.59424i −0.0431275 0.132733i
\(383\) −20.0189 + 14.5446i −1.02292 + 0.743194i −0.966879 0.255235i \(-0.917847\pi\)
−0.0560396 + 0.998429i \(0.517847\pi\)
\(384\) 0 0
\(385\) −2.62157 + 12.1878i −0.133607 + 0.621149i
\(386\) 7.05102 0.358887
\(387\) 0 0
\(388\) −3.83884 11.8147i −0.194888 0.599802i
\(389\) 8.97223 27.6137i 0.454910 1.40007i −0.416331 0.909213i \(-0.636684\pi\)
0.871241 0.490856i \(-0.163316\pi\)
\(390\) 0 0
\(391\) −7.62972 5.54331i −0.385851 0.280337i
\(392\) 0.552692 1.70101i 0.0279152 0.0859140i
\(393\) 0 0
\(394\) −4.80876 + 3.49377i −0.242262 + 0.176013i
\(395\) 26.5139 1.33406
\(396\) 0 0
\(397\) −8.27461 −0.415291 −0.207645 0.978204i \(-0.566580\pi\)
−0.207645 + 0.978204i \(0.566580\pi\)
\(398\) 0.319784 0.232337i 0.0160293 0.0116460i
\(399\) 0 0
\(400\) 7.62757 23.4752i 0.381378 1.17376i
\(401\) −21.6323 15.7168i −1.08027 0.784860i −0.102538 0.994729i \(-0.532696\pi\)
−0.977729 + 0.209869i \(0.932696\pi\)
\(402\) 0 0
\(403\) 1.88068 5.78814i 0.0936833 0.288328i
\(404\) 1.49070 + 4.58789i 0.0741649 + 0.228256i
\(405\) 0 0
\(406\) 2.74782 0.136372
\(407\) 10.2676 + 23.2131i 0.508947 + 1.15063i
\(408\) 0 0
\(409\) −28.0590 + 20.3861i −1.38743 + 1.00803i −0.391288 + 0.920268i \(0.627970\pi\)
−0.996142 + 0.0877586i \(0.972030\pi\)
\(410\) 2.30273 + 7.08708i 0.113724 + 0.350006i
\(411\) 0 0
\(412\) −0.367437 0.266958i −0.0181023 0.0131521i
\(413\) −3.67428 2.66952i −0.180800 0.131359i
\(414\) 0 0
\(415\) 13.8228 + 42.5422i 0.678535 + 2.08832i
\(416\) 10.6419 7.73183i 0.521764 0.379084i
\(417\) 0 0
\(418\) −2.72676 + 0.279897i −0.133370 + 0.0136902i
\(419\) 4.34546 0.212290 0.106145 0.994351i \(-0.466149\pi\)
0.106145 + 0.994351i \(0.466149\pi\)
\(420\) 0 0
\(421\) −1.46425 4.50649i −0.0713631 0.219633i 0.909014 0.416767i \(-0.136837\pi\)
−0.980377 + 0.197133i \(0.936837\pi\)
\(422\) 3.93342 12.1058i 0.191476 0.589302i
\(423\) 0 0
\(424\) 12.7905 + 9.29287i 0.621164 + 0.451302i
\(425\) −7.00384 + 21.5556i −0.339736 + 1.04560i
\(426\) 0 0
\(427\) −9.28955 + 6.74925i −0.449553 + 0.326619i
\(428\) 21.0599 1.01797
\(429\) 0 0
\(430\) 13.8025 0.665617
\(431\) −24.1590 + 17.5526i −1.16370 + 0.845478i −0.990241 0.139363i \(-0.955494\pi\)
−0.173459 + 0.984841i \(0.555494\pi\)
\(432\) 0 0
\(433\) −6.71306 + 20.6607i −0.322609 + 0.992889i 0.649899 + 0.760020i \(0.274811\pi\)
−0.972508 + 0.232868i \(0.925189\pi\)
\(434\) −0.861386 0.625834i −0.0413479 0.0300410i
\(435\) 0 0
\(436\) 8.70878 26.8029i 0.417075 1.28362i
\(437\) 2.04785 + 6.30263i 0.0979620 + 0.301496i
\(438\) 0 0
\(439\) −40.3447 −1.92555 −0.962773 0.270313i \(-0.912873\pi\)
−0.962773 + 0.270313i \(0.912873\pi\)
\(440\) 9.01952 + 20.3914i 0.429989 + 0.972120i
\(441\) 0 0
\(442\) −2.57648 + 1.87192i −0.122551 + 0.0890382i
\(443\) 4.28883 + 13.1996i 0.203768 + 0.627134i 0.999762 + 0.0218290i \(0.00694893\pi\)
−0.795993 + 0.605305i \(0.793051\pi\)
\(444\) 0 0
\(445\) 5.14464 + 3.73780i 0.243879 + 0.177189i
\(446\) 1.54032 + 1.11911i 0.0729361 + 0.0529912i
\(447\) 0 0
\(448\) 0.959985 + 2.95453i 0.0453550 + 0.139588i
\(449\) −11.5708 + 8.40666i −0.546059 + 0.396735i −0.826330 0.563186i \(-0.809575\pi\)
0.280272 + 0.959921i \(0.409575\pi\)
\(450\) 0 0
\(451\) 12.0036 + 6.96922i 0.565227 + 0.328168i
\(452\) −9.08484 −0.427315
\(453\) 0 0
\(454\) −1.71300 5.27208i −0.0803953 0.247431i
\(455\) 3.14514 9.67975i 0.147447 0.453794i
\(456\) 0 0
\(457\) 11.4296 + 8.30410i 0.534655 + 0.388449i 0.822096 0.569349i \(-0.192805\pi\)
−0.287441 + 0.957798i \(0.592805\pi\)
\(458\) 0.958097 2.94872i 0.0447690 0.137785i
\(459\) 0 0
\(460\) 20.5096 14.9011i 0.956265 0.694767i
\(461\) 0.966736 0.0450254 0.0225127 0.999747i \(-0.492833\pi\)
0.0225127 + 0.999747i \(0.492833\pi\)
\(462\) 0 0
\(463\) 31.8119 1.47842 0.739212 0.673473i \(-0.235198\pi\)
0.739212 + 0.673473i \(0.235198\pi\)
\(464\) −12.6890 + 9.21907i −0.589070 + 0.427985i
\(465\) 0 0
\(466\) 0.0252613 0.0777463i 0.00117021 0.00360153i
\(467\) −23.9576 17.4062i −1.10863 0.805465i −0.126180 0.992007i \(-0.540272\pi\)
−0.982447 + 0.186543i \(0.940272\pi\)
\(468\) 0 0
\(469\) 3.77126 11.6067i 0.174141 0.535950i
\(470\) −6.82681 21.0107i −0.314897 0.969153i
\(471\) 0 0
\(472\) −8.12298 −0.373891
\(473\) 19.1474 17.1564i 0.880399 0.788850i
\(474\) 0 0
\(475\) 12.8848 9.36133i 0.591194 0.429527i
\(476\) −1.36230 4.19273i −0.0624409 0.192173i
\(477\) 0 0
\(478\) 4.00504 + 2.90983i 0.183186 + 0.133093i
\(479\) −21.5079 15.6264i −0.982723 0.713990i −0.0244075 0.999702i \(-0.507770\pi\)
−0.958316 + 0.285712i \(0.907770\pi\)
\(480\) 0 0
\(481\) −6.40365 19.7084i −0.291981 0.898626i
\(482\) −1.31000 + 0.951771i −0.0596689 + 0.0433520i
\(483\) 0 0
\(484\) 17.8042 + 8.03081i 0.809280 + 0.365037i
\(485\) −26.2981 −1.19414
\(486\) 0 0
\(487\) 4.36774 + 13.4425i 0.197921 + 0.609138i 0.999930 + 0.0118263i \(0.00376451\pi\)
−0.802009 + 0.597312i \(0.796235\pi\)
\(488\) −6.34629 + 19.5319i −0.287283 + 0.884167i
\(489\) 0 0
\(490\) −1.44053 1.04661i −0.0650767 0.0472810i
\(491\) −4.76461 + 14.6639i −0.215024 + 0.661775i 0.784128 + 0.620599i \(0.213110\pi\)
−0.999152 + 0.0411759i \(0.986890\pi\)
\(492\) 0 0
\(493\) 11.6514 8.46520i 0.524751 0.381254i
\(494\) 2.23786 0.100686
\(495\) 0 0
\(496\) 6.07744 0.272885
\(497\) −6.27787 + 4.56114i −0.281601 + 0.204595i
\(498\) 0 0
\(499\) 9.48757 29.1997i 0.424722 1.30716i −0.478538 0.878067i \(-0.658833\pi\)
0.903260 0.429093i \(-0.141167\pi\)
\(500\) −22.2927 16.1966i −0.996961 0.724335i
\(501\) 0 0
\(502\) 1.85545 5.71050i 0.0828130 0.254872i
\(503\) 5.62070 + 17.2987i 0.250614 + 0.771312i 0.994662 + 0.103185i \(0.0329035\pi\)
−0.744048 + 0.668127i \(0.767096\pi\)
\(504\) 0 0
\(505\) 10.2121 0.454431
\(506\) −1.25496 + 5.83438i −0.0557898 + 0.259370i
\(507\) 0 0
\(508\) 0.292092 0.212217i 0.0129595 0.00941563i
\(509\) 9.94245 + 30.5997i 0.440691 + 1.35631i 0.887140 + 0.461499i \(0.152688\pi\)
−0.446449 + 0.894809i \(0.647312\pi\)
\(510\) 0 0
\(511\) 12.6851 + 9.21624i 0.561154 + 0.407702i
\(512\) 18.4520 + 13.4061i 0.815470 + 0.592474i
\(513\) 0 0
\(514\) −2.66205 8.19295i −0.117418 0.361376i
\(515\) −0.777838 + 0.565132i −0.0342756 + 0.0249027i
\(516\) 0 0
\(517\) −35.5865 20.6613i −1.56509 0.908684i
\(518\) −3.62538 −0.159290
\(519\) 0 0
\(520\) −5.62524 17.3127i −0.246683 0.759213i
\(521\) 8.59801 26.4620i 0.376686 1.15932i −0.565648 0.824646i \(-0.691374\pi\)
0.942334 0.334673i \(-0.108626\pi\)
\(522\) 0 0
\(523\) 15.4751 + 11.2433i 0.676677 + 0.491635i 0.872254 0.489054i \(-0.162658\pi\)
−0.195577 + 0.980688i \(0.562658\pi\)
\(524\) −5.63990 + 17.3578i −0.246380 + 0.758280i
\(525\) 0 0
\(526\) −6.04897 + 4.39483i −0.263748 + 0.191624i
\(527\) −5.58048 −0.243089
\(528\) 0 0
\(529\) −8.57190 −0.372691
\(530\) 12.7337 9.25156i 0.553116 0.401862i
\(531\) 0 0
\(532\) −0.957277 + 2.94620i −0.0415032 + 0.127734i
\(533\) −9.16769 6.66072i −0.397097 0.288508i
\(534\) 0 0
\(535\) 13.7767 42.4003i 0.595619 1.83313i
\(536\) −6.74508 20.7592i −0.291343 0.896662i
\(537\) 0 0
\(538\) 10.8905 0.469522
\(539\) −3.29929 + 0.338667i −0.142110 + 0.0145874i
\(540\) 0 0
\(541\) −34.5304 + 25.0878i −1.48458 + 1.07861i −0.508534 + 0.861042i \(0.669813\pi\)
−0.976045 + 0.217569i \(0.930187\pi\)
\(542\) −1.36727 4.20802i −0.0587293 0.180750i
\(543\) 0 0
\(544\) −9.75798 7.08959i −0.418370 0.303964i
\(545\) −48.2657 35.0671i −2.06748 1.50211i
\(546\) 0 0
\(547\) −7.76134 23.8869i −0.331851 1.02133i −0.968253 0.249974i \(-0.919578\pi\)
0.636402 0.771358i \(-0.280422\pi\)
\(548\) 24.5778 17.8568i 1.04991 0.762804i
\(549\) 0 0
\(550\) 14.2674 1.46452i 0.608362 0.0624474i
\(551\) −10.1201 −0.431130
\(552\) 0 0
\(553\) 2.17974 + 6.70856i 0.0926922 + 0.285277i
\(554\) −2.84524 + 8.75676i −0.120883 + 0.372039i
\(555\) 0 0
\(556\) 28.0128 + 20.3525i 1.18801 + 0.863139i
\(557\) 1.31555 4.04884i 0.0557415 0.171555i −0.919310 0.393535i \(-0.871252\pi\)
0.975051 + 0.221980i \(0.0712520\pi\)
\(558\) 0 0
\(559\) −16.9808 + 12.3373i −0.718210 + 0.521810i
\(560\) 10.1636 0.429490
\(561\) 0 0
\(562\) −2.10498 −0.0887933
\(563\) −6.01677 + 4.37144i −0.253577 + 0.184234i −0.707310 0.706903i \(-0.750092\pi\)
0.453734 + 0.891137i \(0.350092\pi\)
\(564\) 0 0
\(565\) −5.94301 + 18.2907i −0.250024 + 0.769496i
\(566\) 5.30738 + 3.85604i 0.223086 + 0.162081i
\(567\) 0 0
\(568\) −4.28882 + 13.1996i −0.179955 + 0.553845i
\(569\) −13.4822 41.4939i −0.565203 1.73952i −0.667348 0.744746i \(-0.732570\pi\)
0.102145 0.994770i \(-0.467430\pi\)
\(570\) 0 0
\(571\) −34.1074 −1.42735 −0.713676 0.700476i \(-0.752971\pi\)
−0.713676 + 0.700476i \(0.752971\pi\)
\(572\) −13.7901 8.00646i −0.576593 0.334767i
\(573\) 0 0
\(574\) −1.60387 + 1.16528i −0.0669441 + 0.0486377i
\(575\) −10.7151 32.9776i −0.446849 1.37526i
\(576\) 0 0
\(577\) −22.7175 16.5052i −0.945743 0.687122i 0.00405352 0.999992i \(-0.498710\pi\)
−0.949796 + 0.312870i \(0.898710\pi\)
\(578\) −4.15265 3.01707i −0.172727 0.125494i
\(579\) 0 0
\(580\) 11.9633 + 36.8192i 0.496748 + 1.52883i
\(581\) −9.62766 + 6.99490i −0.399423 + 0.290198i
\(582\) 0 0
\(583\) 6.16511 28.6619i 0.255333 1.18706i
\(584\) 28.0437 1.16046
\(585\) 0 0
\(586\) −2.81585 8.66631i −0.116322 0.358002i
\(587\) 2.07887 6.39809i 0.0858040 0.264078i −0.898944 0.438063i \(-0.855665\pi\)
0.984748 + 0.173986i \(0.0556646\pi\)
\(588\) 0 0
\(589\) 3.17244 + 2.30491i 0.130718 + 0.0949724i
\(590\) −2.49898 + 7.69107i −0.102881 + 0.316636i
\(591\) 0 0
\(592\) 16.7414 12.1633i 0.688067 0.499910i
\(593\) −20.8442 −0.855969 −0.427984 0.903786i \(-0.640776\pi\)
−0.427984 + 0.903786i \(0.640776\pi\)
\(594\) 0 0
\(595\) −9.33248 −0.382594
\(596\) 14.2074 10.3223i 0.581958 0.422817i
\(597\) 0 0
\(598\) 1.50560 4.63376i 0.0615686 0.189489i
\(599\) 0.146169 + 0.106198i 0.00597231 + 0.00433913i 0.590767 0.806842i \(-0.298825\pi\)
−0.584795 + 0.811181i \(0.698825\pi\)
\(600\) 0 0
\(601\) 8.53019 26.2532i 0.347954 1.07089i −0.612030 0.790835i \(-0.709647\pi\)
0.959984 0.280056i \(-0.0903532\pi\)
\(602\) 1.13472 + 3.49232i 0.0462479 + 0.142336i
\(603\) 0 0
\(604\) 27.5241 1.11994
\(605\) 27.8155 30.5920i 1.13086 1.24374i
\(606\) 0 0
\(607\) −18.8727 + 13.7118i −0.766021 + 0.556547i −0.900751 0.434336i \(-0.856983\pi\)
0.134730 + 0.990882i \(0.456983\pi\)
\(608\) 2.61909 + 8.06072i 0.106218 + 0.326905i
\(609\) 0 0
\(610\) 16.5410 + 12.0177i 0.669724 + 0.486583i
\(611\) 27.1790 + 19.7467i 1.09955 + 0.798867i
\(612\) 0 0
\(613\) −6.02591 18.5459i −0.243384 0.749060i −0.995898 0.0904833i \(-0.971159\pi\)
0.752514 0.658577i \(-0.228841\pi\)
\(614\) 0.860279 0.625029i 0.0347180 0.0252241i
\(615\) 0 0
\(616\) −4.41793 + 3.95852i −0.178003 + 0.159493i
\(617\) 23.2566 0.936276 0.468138 0.883655i \(-0.344925\pi\)
0.468138 + 0.883655i \(0.344925\pi\)
\(618\) 0 0
\(619\) −8.82217 27.1518i −0.354593 1.09132i −0.956245 0.292566i \(-0.905491\pi\)
0.601652 0.798758i \(-0.294509\pi\)
\(620\) 4.63556 14.2668i 0.186169 0.572968i
\(621\) 0 0
\(622\) −4.83999 3.51646i −0.194066 0.140997i
\(623\) −0.522792 + 1.60899i −0.0209452 + 0.0644627i
\(624\) 0 0
\(625\) −10.2659 + 7.45861i −0.410636 + 0.298344i
\(626\) −0.505194 −0.0201916
\(627\) 0 0
\(628\) −30.1028 −1.20123
\(629\) −15.3724 + 11.1687i −0.612938 + 0.445325i
\(630\) 0 0
\(631\) 1.63814 5.04166i 0.0652131 0.200705i −0.913141 0.407645i \(-0.866350\pi\)
0.978354 + 0.206939i \(0.0663502\pi\)
\(632\) 10.2066 + 7.41554i 0.405997 + 0.294974i
\(633\) 0 0
\(634\) −3.68466 + 11.3402i −0.146337 + 0.450378i
\(635\) −0.236185 0.726901i −0.00937270 0.0288462i
\(636\) 0 0
\(637\) 2.70774 0.107285
\(638\) −7.88141 4.57590i −0.312028 0.181162i
\(639\) 0 0
\(640\) 34.0209 24.7176i 1.34479 0.977049i
\(641\) 9.23593 + 28.4253i 0.364797 + 1.12273i 0.950108 + 0.311922i \(0.100973\pi\)
−0.585310 + 0.810809i \(0.699027\pi\)
\(642\) 0 0
\(643\) −31.0989 22.5946i −1.22642 0.891046i −0.229803 0.973237i \(-0.573808\pi\)
−0.996617 + 0.0821916i \(0.973808\pi\)
\(644\) 5.45640 + 3.96431i 0.215012 + 0.156216i
\(645\) 0 0
\(646\) −0.634096 1.95155i −0.0249482 0.0767826i
\(647\) −26.1799 + 19.0208i −1.02924 + 0.747786i −0.968156 0.250347i \(-0.919455\pi\)
−0.0610828 + 0.998133i \(0.519455\pi\)
\(648\) 0 0
\(649\) 6.09322 + 13.7756i 0.239180 + 0.540738i
\(650\) −11.7093 −0.459276
\(651\) 0 0
\(652\) −10.9594 33.7297i −0.429205 1.32096i
\(653\) −7.38692 + 22.7346i −0.289073 + 0.889674i 0.696076 + 0.717969i \(0.254928\pi\)
−0.985148 + 0.171706i \(0.945072\pi\)
\(654\) 0 0
\(655\) 31.2574 + 22.7098i 1.22133 + 0.887347i
\(656\) 3.49682 10.7621i 0.136528 0.420190i
\(657\) 0 0
\(658\) 4.75491 3.45464i 0.185366 0.134676i
\(659\) −34.5124 −1.34441 −0.672205 0.740365i \(-0.734653\pi\)
−0.672205 + 0.740365i \(0.734653\pi\)
\(660\) 0 0
\(661\) −2.56237 −0.0996647 −0.0498324 0.998758i \(-0.515869\pi\)
−0.0498324 + 0.998758i \(0.515869\pi\)
\(662\) −3.27150 + 2.37689i −0.127151 + 0.0923803i
\(663\) 0 0
\(664\) −6.57728 + 20.2428i −0.255248 + 0.785572i
\(665\) 5.30542 + 3.85461i 0.205735 + 0.149475i
\(666\) 0 0
\(667\) −6.80863 + 20.9548i −0.263631 + 0.811373i
\(668\) 9.57549 + 29.4703i 0.370487 + 1.14024i
\(669\) 0 0
\(670\) −21.7305 −0.839523
\(671\) 37.8841 3.88875i 1.46250 0.150123i
\(672\) 0 0
\(673\) −29.6642 + 21.5523i −1.14347 + 0.830781i −0.987599 0.156996i \(-0.949819\pi\)
−0.155872 + 0.987777i \(0.549819\pi\)
\(674\) 2.52610 + 7.77452i 0.0973016 + 0.299463i
\(675\) 0 0
\(676\) −8.14220 5.91566i −0.313162 0.227525i
\(677\) 25.8733 + 18.7981i 0.994392 + 0.722468i 0.960879 0.276970i \(-0.0893302\pi\)
0.0335138 + 0.999438i \(0.489330\pi\)
\(678\) 0 0
\(679\) −2.16200 6.65396i −0.0829700 0.255355i
\(680\) −13.5038 + 9.81107i −0.517846 + 0.376237i
\(681\) 0 0
\(682\) 1.42847 + 3.22950i 0.0546991 + 0.123664i
\(683\) −6.96871 −0.266650 −0.133325 0.991072i \(-0.542565\pi\)
−0.133325 + 0.991072i \(0.542565\pi\)
\(684\) 0 0
\(685\) −19.8735 61.1642i −0.759326 2.33696i
\(686\) 0.146385 0.450528i 0.00558902 0.0172012i
\(687\) 0 0
\(688\) −16.9569 12.3199i −0.646475 0.469692i
\(689\) −7.39640 + 22.7638i −0.281780 + 0.867230i
\(690\) 0 0
\(691\) 4.10336 2.98127i 0.156099 0.113413i −0.506994 0.861950i \(-0.669243\pi\)
0.663093 + 0.748537i \(0.269243\pi\)
\(692\) −16.6186 −0.631744
\(693\) 0 0
\(694\) 1.96922 0.0747505
\(695\) 59.3012 43.0848i 2.24942 1.63430i
\(696\) 0 0
\(697\) −3.21088 + 9.88206i −0.121621 + 0.374310i
\(698\) 2.95397 + 2.14619i 0.111809 + 0.0812344i
\(699\) 0 0
\(700\) 5.00881 15.4155i 0.189315 0.582652i
\(701\) −0.129238 0.397753i −0.00488125 0.0150229i 0.948586 0.316519i \(-0.102514\pi\)
−0.953467 + 0.301496i \(0.902514\pi\)
\(702\) 0 0
\(703\) 13.3521 0.503583
\(704\) 2.16667 10.0730i 0.0816593 0.379639i
\(705\) 0 0
\(706\) 1.85582 1.34833i 0.0698447 0.0507451i
\(707\) 0.839547 + 2.58386i 0.0315744 + 0.0971760i
\(708\) 0 0
\(709\) 2.91783 + 2.11993i 0.109582 + 0.0796157i 0.641226 0.767352i \(-0.278426\pi\)
−0.531645 + 0.846967i \(0.678426\pi\)
\(710\) 11.1784 + 8.12156i 0.419517 + 0.304797i
\(711\) 0 0
\(712\) 0.935039 + 2.87775i 0.0350420 + 0.107848i
\(713\) 6.90697 5.01820i 0.258668 0.187933i
\(714\) 0 0
\(715\) −25.1406 + 22.5263i −0.940205 + 0.842437i
\(716\) 9.75419 0.364531
\(717\) 0 0
\(718\) 0.646781 + 1.99059i 0.0241376 + 0.0742880i
\(719\) 5.55293 17.0902i 0.207089 0.637356i −0.792532 0.609831i \(-0.791237\pi\)
0.999621 0.0275250i \(-0.00876258\pi\)
\(720\) 0 0
\(721\) −0.206937 0.150349i −0.00770674 0.00559928i
\(722\) 2.33575 7.18869i 0.0869275 0.267535i
\(723\) 0 0
\(724\) −16.0663 + 11.6728i −0.597099 + 0.433818i
\(725\) 52.9518 1.96658
\(726\) 0 0
\(727\) 10.0774 0.373752 0.186876 0.982384i \(-0.440164\pi\)
0.186876 + 0.982384i \(0.440164\pi\)
\(728\) 3.91801 2.84660i 0.145211 0.105502i
\(729\) 0 0
\(730\) 8.62747 26.5526i 0.319317 0.982757i
\(731\) 15.5703 + 11.3125i 0.575888 + 0.418407i
\(732\) 0 0
\(733\) −3.77849 + 11.6290i −0.139562 + 0.429527i −0.996272 0.0862717i \(-0.972505\pi\)
0.856710 + 0.515799i \(0.172505\pi\)
\(734\) 4.32298 + 13.3048i 0.159564 + 0.491088i
\(735\) 0 0
\(736\) 18.4527 0.680177
\(737\) −30.1454 + 27.0107i −1.11042 + 0.994954i
\(738\) 0 0
\(739\) −2.83011 + 2.05620i −0.104107 + 0.0756385i −0.638621 0.769521i \(-0.720495\pi\)
0.534514 + 0.845160i \(0.320495\pi\)
\(740\) −15.7839 48.5779i −0.580229 1.78576i
\(741\) 0 0
\(742\) 3.38769 + 2.46130i 0.124366 + 0.0903571i
\(743\) 2.21381 + 1.60843i 0.0812167 + 0.0590074i 0.627653 0.778493i \(-0.284016\pi\)
−0.546436 + 0.837501i \(0.684016\pi\)
\(744\) 0 0
\(745\) −11.4880 35.3565i −0.420889 1.29536i
\(746\) 2.93166 2.12998i 0.107336 0.0779841i
\(747\) 0 0
\(748\) −3.07468 + 14.2944i −0.112422 + 0.522654i
\(749\) 11.8608 0.433382
\(750\) 0 0
\(751\) −3.10499 9.55617i −0.113303 0.348710i 0.878287 0.478135i \(-0.158687\pi\)
−0.991589 + 0.129425i \(0.958687\pi\)
\(752\) −10.3669 + 31.9059i −0.378041 + 1.16349i
\(753\) 0 0
\(754\) 6.01940 + 4.37335i 0.219213 + 0.159268i
\(755\) 18.0054 55.4149i 0.655283 2.01676i
\(756\) 0 0
\(757\) −12.2558 + 8.90436i −0.445445 + 0.323634i −0.787795 0.615938i \(-0.788777\pi\)
0.342350 + 0.939573i \(0.388777\pi\)
\(758\) 5.31004 0.192869
\(759\) 0 0
\(760\) 11.7290 0.425457
\(761\) 28.6726 20.8319i 1.03938 0.755154i 0.0692162 0.997602i \(-0.477950\pi\)
0.970165 + 0.242447i \(0.0779502\pi\)
\(762\) 0 0
\(763\) 4.90471 15.0951i 0.177562 0.546481i
\(764\) 8.27161 + 6.00967i 0.299256 + 0.217422i
\(765\) 0 0
\(766\) −3.62227 + 11.1482i −0.130878 + 0.402801i
\(767\) −3.80018 11.6958i −0.137217 0.422309i
\(768\) 0 0
\(769\) 38.7592 1.39769 0.698845 0.715273i \(-0.253698\pi\)
0.698845 + 0.715273i \(0.253698\pi\)
\(770\) 2.38890 + 5.40083i 0.0860900 + 0.194633i
\(771\) 0 0
\(772\) −21.3815 + 15.5346i −0.769537 + 0.559102i
\(773\) −8.20190 25.2428i −0.295002 0.907922i −0.983221 0.182419i \(-0.941607\pi\)
0.688219 0.725503i \(-0.258393\pi\)
\(774\) 0 0
\(775\) −16.5993 12.0601i −0.596265 0.433212i
\(776\) −10.1235 7.35518i −0.363414 0.264035i
\(777\) 0 0
\(778\) −4.25026 13.0810i −0.152379 0.468975i
\(779\) 5.90696 4.29166i 0.211639 0.153765i
\(780\) 0 0
\(781\) 25.6021 2.62801i 0.916114 0.0940377i
\(782\) −4.46752 −0.159758
\(783\) 0 0
\(784\) 0.835561 + 2.57159i 0.0298415 + 0.0918426i
\(785\) −19.6923 + 60.6065i −0.702847 + 2.16314i
\(786\) 0 0
\(787\) −15.9216 11.5677i −0.567545 0.412345i 0.266668 0.963788i \(-0.414077\pi\)
−0.834212 + 0.551443i \(0.814077\pi\)
\(788\) 6.88472 21.1890i 0.245258 0.754827i
\(789\) 0 0
\(790\) 10.1612 7.38258i 0.361521 0.262660i
\(791\) −5.11650 −0.181922
\(792\) 0 0
\(793\) −31.0917 −1.10410
\(794\) −3.17118 + 2.30400i −0.112541 + 0.0817658i
\(795\) 0 0
\(796\) −0.457836 + 1.40907i −0.0162276 + 0.0499433i
\(797\) −20.4517 14.8590i −0.724435 0.526333i 0.163363 0.986566i \(-0.447766\pi\)
−0.887798 + 0.460233i \(0.847766\pi\)
\(798\) 0 0
\(799\) 9.51914 29.2969i 0.336763 1.03645i
\(800\) −13.7040 42.1765i −0.484509 1.49116i
\(801\) 0 0
\(802\) −12.6666 −0.447274
\(803\) −21.0362 47.5587i −0.742351 1.67831i
\(804\) 0 0
\(805\) 11.5508 8.39217i 0.407113 0.295785i
\(806\) −0.890902 2.74191i −0.0313807 0.0965798i
\(807\) 0 0
\(808\) 3.93116 + 2.85616i 0.138298 + 0.100479i
\(809\) −28.9540 21.0363i −1.01797 0.739597i −0.0521021 0.998642i \(-0.516592\pi\)
−0.965865 + 0.259045i \(0.916592\pi\)
\(810\) 0 0
\(811\) 6.47127 + 19.9165i 0.227237 + 0.699364i 0.998057 + 0.0623105i \(0.0198469\pi\)
−0.770820 + 0.637053i \(0.780153\pi\)
\(812\) −8.33248 + 6.05390i −0.292413 + 0.212450i
\(813\) 0 0
\(814\) 10.3985 + 6.03729i 0.364466 + 0.211607i
\(815\) −75.0780 −2.62987
\(816\) 0 0
\(817\) −4.17913 12.8620i −0.146209 0.449986i
\(818\) −5.07706 + 15.6256i −0.177515 + 0.546336i
\(819\) 0 0
\(820\) −22.5968 16.4176i −0.789116 0.573326i
\(821\) 2.49273 7.67182i 0.0869967 0.267748i −0.898089 0.439814i \(-0.855044\pi\)
0.985085 + 0.172066i \(0.0550442\pi\)
\(822\) 0 0
\(823\) 16.2903 11.8356i 0.567845 0.412564i −0.266477 0.963841i \(-0.585860\pi\)
0.834322 + 0.551278i \(0.185860\pi\)
\(824\) −0.457490 −0.0159374
\(825\) 0 0
\(826\) −2.15144 −0.0748583
\(827\) −17.3276 + 12.5892i −0.602540 + 0.437771i −0.846779 0.531944i \(-0.821462\pi\)
0.244240 + 0.969715i \(0.421462\pi\)
\(828\) 0 0
\(829\) −8.46584 + 26.0552i −0.294031 + 0.904934i 0.689514 + 0.724272i \(0.257824\pi\)
−0.983545 + 0.180662i \(0.942176\pi\)
\(830\) 17.1430 + 12.4551i 0.595042 + 0.432323i
\(831\) 0 0
\(832\) −2.59939 + 8.00010i −0.0901177 + 0.277354i
\(833\) −0.767235 2.36131i −0.0265831 0.0818144i
\(834\) 0 0
\(835\) 65.5972 2.27008
\(836\) 7.65196 6.85627i 0.264649 0.237129i
\(837\) 0 0
\(838\) 1.66536 1.20996i 0.0575290 0.0417972i
\(839\) 6.29643 + 19.3784i 0.217377 + 0.669017i 0.998976 + 0.0452363i \(0.0144041\pi\)
−0.781600 + 0.623781i \(0.785596\pi\)
\(840\) 0 0
\(841\) −3.75943 2.73139i −0.129636 0.0941858i
\(842\) −1.81596 1.31937i −0.0625820 0.0454685i
\(843\) 0 0
\(844\) 14.7435 + 45.3757i 0.507490 + 1.56190i
\(845\) −17.2365 + 12.5230i −0.592953 + 0.430805i
\(846\) 0 0
\(847\) 10.0271 + 4.52288i 0.344537 + 0.155408i
\(848\) −23.9016 −0.820783
\(849\) 0 0
\(850\) 3.31781 + 10.2112i 0.113800 + 0.350240i
\(851\) 8.98307 27.6471i 0.307936 0.947729i
\(852\) 0 0
\(853\) 6.70421 + 4.87090i 0.229548 + 0.166776i 0.696614 0.717446i \(-0.254689\pi\)
−0.467066 + 0.884222i \(0.654689\pi\)
\(854\) −1.68087 + 5.17319i −0.0575183 + 0.177023i
\(855\) 0 0
\(856\) 17.1621 12.4690i 0.586589 0.426182i
\(857\) 31.0459 1.06051 0.530254 0.847839i \(-0.322097\pi\)
0.530254 + 0.847839i \(0.322097\pi\)
\(858\) 0 0
\(859\) −1.63124 −0.0556573 −0.0278287 0.999613i \(-0.508859\pi\)
−0.0278287 + 0.999613i \(0.508859\pi\)
\(860\) −41.8548 + 30.4093i −1.42724 + 1.03695i
\(861\) 0 0
\(862\) −4.37139 + 13.4538i −0.148890 + 0.458237i
\(863\) 4.31095 + 3.13209i 0.146746 + 0.106617i 0.658736 0.752374i \(-0.271091\pi\)
−0.511990 + 0.858992i \(0.671091\pi\)
\(864\) 0 0
\(865\) −10.8713 + 33.4586i −0.369637 + 1.13762i
\(866\) 3.18006 + 9.78723i 0.108063 + 0.332584i
\(867\) 0 0
\(868\) 3.99088 0.135459
\(869\) 4.91964 22.8717i 0.166887 0.775869i
\(870\) 0 0
\(871\) 26.7343 19.4236i 0.905858 0.658144i
\(872\) −8.77231 26.9984i −0.297068 0.914281i
\(873\) 0 0
\(874\) 2.53974 + 1.84523i 0.0859079 + 0.0624157i
\(875\) −12.5551 9.12179i −0.424439 0.308373i
\(876\) 0 0
\(877\) −4.98344 15.3374i −0.168279 0.517909i 0.830984 0.556296i \(-0.187778\pi\)
−0.999263 + 0.0383874i \(0.987778\pi\)
\(878\) −15.4618 + 11.2336i −0.521809 + 0.379117i
\(879\) 0 0
\(880\) −29.1516 16.9253i −0.982701 0.570551i
\(881\) 35.1173 1.18313 0.591565 0.806257i \(-0.298510\pi\)
0.591565 + 0.806257i \(0.298510\pi\)
\(882\) 0 0
\(883\) 0.148400 + 0.456727i 0.00499405 + 0.0153701i 0.953522 0.301322i \(-0.0974279\pi\)
−0.948528 + 0.316692i \(0.897428\pi\)
\(884\) 3.68876 11.3528i 0.124066 0.381837i
\(885\) 0 0
\(886\) 5.31899 + 3.86447i 0.178695 + 0.129829i
\(887\) −11.3483 + 34.9264i −0.381038 + 1.17271i 0.558276 + 0.829655i \(0.311463\pi\)
−0.939314 + 0.343059i \(0.888537\pi\)
\(888\) 0 0
\(889\) 0.164504 0.119519i 0.00551728 0.00400854i
\(890\) 3.01240 0.100976
\(891\) 0 0
\(892\) −7.13644 −0.238946
\(893\) −17.5121 + 12.7233i −0.586020 + 0.425768i
\(894\) 0 0
\(895\) 6.38087 19.6383i 0.213289 0.656436i
\(896\) 9.05096 + 6.57590i 0.302371 + 0.219686i
\(897\) 0 0
\(898\) −2.09364 + 6.44357i −0.0698657 + 0.215025i
\(899\) 4.02884 + 12.3995i 0.134369 + 0.413546i
\(900\) 0 0
\(901\) 21.9471 0.731163
\(902\) 6.54080 0.671402i 0.217785 0.0223553i
\(903\) 0 0
\(904\) −7.40341 + 5.37889i −0.246234 + 0.178899i
\(905\) 12.9911 + 39.9826i 0.431840 + 1.32907i
\(906\) 0 0
\(907\) −9.86328 7.16609i −0.327505 0.237946i 0.411866 0.911244i \(-0.364877\pi\)
−0.739371 + 0.673298i \(0.764877\pi\)
\(908\) 16.8098 + 12.2130i 0.557853 + 0.405304i
\(909\) 0 0
\(910\) −1.48990 4.58543i −0.0493895 0.152005i
\(911\) −6.56799 + 4.77193i −0.217607 + 0.158101i −0.691249 0.722617i \(-0.742939\pi\)
0.473642 + 0.880718i \(0.342939\pi\)
\(912\) 0 0
\(913\) 39.2630 4.03028i 1.29942 0.133383i
\(914\) 6.69251 0.221369
\(915\) 0 0
\(916\) 3.59119 + 11.0526i 0.118656 + 0.365187i
\(917\) −3.17634 + 9.77577i −0.104892 + 0.322824i
\(918\) 0 0
\(919\) 40.1708 + 29.1858i 1.32511 + 0.962751i 0.999853 + 0.0171266i \(0.00545185\pi\)
0.325260 + 0.945625i \(0.394548\pi\)
\(920\) 7.89112 24.2864i 0.260162 0.800698i
\(921\) 0 0
\(922\) 0.370494 0.269179i 0.0122016 0.00886495i
\(923\) −21.0118 −0.691610
\(924\) 0 0
\(925\) −69.8627 −2.29707
\(926\) 12.1917 8.85775i 0.400643 0.291084i
\(927\) 0 0
\(928\) −8.70786 + 26.8000i −0.285849 + 0.879754i
\(929\) −0.302391 0.219700i −0.00992114 0.00720813i 0.582814 0.812606i \(-0.301952\pi\)
−0.592735 + 0.805398i \(0.701952\pi\)
\(930\) 0 0
\(931\) −0.539130 + 1.65927i −0.0176693 + 0.0543804i
\(932\) 0.0946857 + 0.291413i 0.00310153 + 0.00954554i
\(933\) 0 0
\(934\) −14.0282 −0.459016
\(935\) 26.7678 + 15.5412i 0.875401 + 0.508253i
\(936\) 0 0
\(937\) 37.2687 27.0773i 1.21752 0.884578i 0.221625 0.975132i \(-0.428864\pi\)
0.995892 + 0.0905544i \(0.0288639\pi\)
\(938\) −1.78649 5.49827i −0.0583311 0.179525i
\(939\) 0 0
\(940\) 66.9918 + 48.6724i 2.18503 + 1.58752i
\(941\) −15.6443 11.3662i −0.509988 0.370528i 0.302831 0.953044i \(-0.402068\pi\)
−0.812819 + 0.582516i \(0.802068\pi\)
\(942\) 0 0
\(943\) −4.91227 15.1184i −0.159965 0.492323i
\(944\) 9.93501 7.21821i 0.323357 0.234933i
\(945\) 0 0
\(946\) 2.56105 11.9065i 0.0832669 0.387113i
\(947\) 8.06969 0.262230 0.131115 0.991367i \(-0.458144\pi\)
0.131115 + 0.991367i \(0.458144\pi\)
\(948\) 0 0
\(949\) 13.1197 + 40.3784i 0.425884 + 1.31074i
\(950\) 2.33140 7.17531i 0.0756406 0.232798i
\(951\) 0 0
\(952\) −3.59256 2.61015i −0.116436 0.0845955i
\(953\) −10.7030 + 32.9406i −0.346706 + 1.06705i 0.613959 + 0.789338i \(0.289576\pi\)
−0.960664 + 0.277712i \(0.910424\pi\)
\(954\) 0 0
\(955\) 17.5104 12.7221i 0.566624 0.411676i
\(956\) −18.5557 −0.600136
\(957\) 0 0
\(958\) −12.5938 −0.406887
\(959\) 13.8420 10.0568i 0.446981 0.324750i
\(960\) 0 0
\(961\) −8.01842 + 24.6782i −0.258659 + 0.796070i
\(962\) −7.94178 5.77004i −0.256053 0.186034i
\(963\) 0 0
\(964\) 1.87553 5.77230i 0.0604069 0.185913i
\(965\) 17.2890 + 53.2100i 0.556552 + 1.71289i
\(966\) 0 0
\(967\) 8.15074 0.262110 0.131055 0.991375i \(-0.458164\pi\)
0.131055 + 0.991375i \(0.458164\pi\)
\(968\) 19.2638 3.99690i 0.619161 0.128465i
\(969\) 0 0
\(970\) −10.0785 + 7.32248i −0.323602 + 0.235111i
\(971\) −10.3314 31.7967i −0.331549 1.02040i −0.968397 0.249414i \(-0.919762\pi\)
0.636848 0.770990i \(-0.280238\pi\)
\(972\) 0 0
\(973\) 15.7766 + 11.4624i 0.505774 + 0.367466i
\(974\) 5.41685 + 3.93557i 0.173567 + 0.126104i
\(975\) 0 0
\(976\) −9.59435 29.5284i −0.307108 0.945180i
\(977\) −4.43987 + 3.22575i −0.142044 + 0.103201i −0.656538 0.754293i \(-0.727980\pi\)
0.514494 + 0.857494i \(0.327980\pi\)
\(978\) 0 0
\(979\) 4.17892 3.74437i 0.133559 0.119671i
\(980\) 6.67413 0.213197
\(981\) 0 0
\(982\) 2.25706 + 6.94650i 0.0720255 + 0.221672i
\(983\) −4.49323 + 13.8288i −0.143312 + 0.441069i −0.996790 0.0800600i \(-0.974489\pi\)
0.853478 + 0.521129i \(0.174489\pi\)
\(984\) 0 0
\(985\) −38.1565 27.7223i −1.21577 0.883306i
\(986\) 2.10822 6.48844i 0.0671395 0.206634i
\(987\) 0 0
\(988\) −6.78610 + 4.93039i −0.215895 + 0.156857i
\(989\) −29.4440 −0.936266
\(990\) 0 0
\(991\) −9.68326 −0.307599 −0.153799 0.988102i \(-0.549151\pi\)
−0.153799 + 0.988102i \(0.549151\pi\)
\(992\) 8.83362 6.41800i 0.280468 0.203772i
\(993\) 0 0
\(994\) −1.13593 + 3.49604i −0.0360296 + 0.110888i
\(995\) 2.53742 + 1.84354i 0.0804415 + 0.0584442i
\(996\) 0 0
\(997\) −7.79389 + 23.9871i −0.246835 + 0.759680i 0.748494 + 0.663141i \(0.230777\pi\)
−0.995329 + 0.0965389i \(0.969223\pi\)
\(998\) −4.49438 13.8323i −0.142267 0.437854i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.2.m.j.190.3 20
3.2 odd 2 231.2.j.g.190.3 yes 20
11.2 odd 10 7623.2.a.cy.1.6 10
11.4 even 5 inner 693.2.m.j.631.3 20
11.9 even 5 7623.2.a.cx.1.5 10
33.2 even 10 2541.2.a.br.1.5 10
33.20 odd 10 2541.2.a.bq.1.6 10
33.26 odd 10 231.2.j.g.169.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.2.j.g.169.3 20 33.26 odd 10
231.2.j.g.190.3 yes 20 3.2 odd 2
693.2.m.j.190.3 20 1.1 even 1 trivial
693.2.m.j.631.3 20 11.4 even 5 inner
2541.2.a.bq.1.6 10 33.20 odd 10
2541.2.a.br.1.5 10 33.2 even 10
7623.2.a.cx.1.5 10 11.9 even 5
7623.2.a.cy.1.6 10 11.2 odd 10