Properties

Label 693.4.a.n.1.2
Level $693$
Weight $4$
Character 693.1
Self dual yes
Analytic conductor $40.888$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [693,4,Mod(1,693)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("693.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 693 = 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 693.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8883236340\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 28x^{3} - 11x^{2} + 108x - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 231)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.85551\) of defining polynomial
Character \(\chi\) \(=\) 693.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.85551 q^{2} +6.86494 q^{4} -18.0422 q^{5} -7.00000 q^{7} +4.37623 q^{8} +69.5618 q^{10} -11.0000 q^{11} +16.8358 q^{13} +26.9886 q^{14} -71.7921 q^{16} -76.0041 q^{17} +11.8937 q^{19} -123.858 q^{20} +42.4106 q^{22} +175.501 q^{23} +200.520 q^{25} -64.9104 q^{26} -48.0546 q^{28} +219.409 q^{29} -214.355 q^{31} +241.785 q^{32} +293.035 q^{34} +126.295 q^{35} +272.754 q^{37} -45.8562 q^{38} -78.9567 q^{40} -204.925 q^{41} +406.384 q^{43} -75.5144 q^{44} -676.647 q^{46} -178.653 q^{47} +49.0000 q^{49} -773.107 q^{50} +115.577 q^{52} +238.316 q^{53} +198.464 q^{55} -30.6336 q^{56} -845.931 q^{58} +584.798 q^{59} -910.607 q^{61} +826.449 q^{62} -357.868 q^{64} -303.754 q^{65} -387.749 q^{67} -521.764 q^{68} -486.932 q^{70} +668.091 q^{71} +390.298 q^{73} -1051.60 q^{74} +81.6495 q^{76} +77.0000 q^{77} -250.647 q^{79} +1295.29 q^{80} +790.090 q^{82} +54.2027 q^{83} +1371.28 q^{85} -1566.82 q^{86} -48.1385 q^{88} +906.680 q^{89} -117.850 q^{91} +1204.81 q^{92} +688.796 q^{94} -214.588 q^{95} +618.333 q^{97} -188.920 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} + 21 q^{4} - 7 q^{5} - 35 q^{7} - 60 q^{8} + 55 q^{10} - 55 q^{11} + 111 q^{13} + 35 q^{14} + 201 q^{16} - 136 q^{17} + 111 q^{19} - 219 q^{20} + 55 q^{22} + 28 q^{23} + 190 q^{25} + q^{26}+ \cdots - 245 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.85551 −1.36313 −0.681564 0.731759i \(-0.738700\pi\)
−0.681564 + 0.731759i \(0.738700\pi\)
\(3\) 0 0
\(4\) 6.86494 0.858118
\(5\) −18.0422 −1.61374 −0.806871 0.590728i \(-0.798841\pi\)
−0.806871 + 0.590728i \(0.798841\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 4.37623 0.193404
\(9\) 0 0
\(10\) 69.5618 2.19974
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 16.8358 0.359185 0.179592 0.983741i \(-0.442522\pi\)
0.179592 + 0.983741i \(0.442522\pi\)
\(14\) 26.9886 0.515214
\(15\) 0 0
\(16\) −71.7921 −1.12175
\(17\) −76.0041 −1.08434 −0.542168 0.840270i \(-0.682396\pi\)
−0.542168 + 0.840270i \(0.682396\pi\)
\(18\) 0 0
\(19\) 11.8937 0.143611 0.0718053 0.997419i \(-0.477124\pi\)
0.0718053 + 0.997419i \(0.477124\pi\)
\(20\) −123.858 −1.38478
\(21\) 0 0
\(22\) 42.4106 0.410999
\(23\) 175.501 1.59107 0.795534 0.605909i \(-0.207190\pi\)
0.795534 + 0.605909i \(0.207190\pi\)
\(24\) 0 0
\(25\) 200.520 1.60416
\(26\) −64.9104 −0.489615
\(27\) 0 0
\(28\) −48.0546 −0.324338
\(29\) 219.409 1.40494 0.702468 0.711715i \(-0.252081\pi\)
0.702468 + 0.711715i \(0.252081\pi\)
\(30\) 0 0
\(31\) −214.355 −1.24192 −0.620958 0.783844i \(-0.713256\pi\)
−0.620958 + 0.783844i \(0.713256\pi\)
\(32\) 241.785 1.33569
\(33\) 0 0
\(34\) 293.035 1.47809
\(35\) 126.295 0.609937
\(36\) 0 0
\(37\) 272.754 1.21190 0.605952 0.795501i \(-0.292792\pi\)
0.605952 + 0.795501i \(0.292792\pi\)
\(38\) −45.8562 −0.195760
\(39\) 0 0
\(40\) −78.9567 −0.312104
\(41\) −204.925 −0.780583 −0.390292 0.920691i \(-0.627626\pi\)
−0.390292 + 0.920691i \(0.627626\pi\)
\(42\) 0 0
\(43\) 406.384 1.44123 0.720616 0.693334i \(-0.243859\pi\)
0.720616 + 0.693334i \(0.243859\pi\)
\(44\) −75.5144 −0.258732
\(45\) 0 0
\(46\) −676.647 −2.16883
\(47\) −178.653 −0.554450 −0.277225 0.960805i \(-0.589415\pi\)
−0.277225 + 0.960805i \(0.589415\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) −773.107 −2.18668
\(51\) 0 0
\(52\) 115.577 0.308223
\(53\) 238.316 0.617646 0.308823 0.951120i \(-0.400065\pi\)
0.308823 + 0.951120i \(0.400065\pi\)
\(54\) 0 0
\(55\) 198.464 0.486561
\(56\) −30.6336 −0.0730998
\(57\) 0 0
\(58\) −845.931 −1.91511
\(59\) 584.798 1.29041 0.645205 0.764009i \(-0.276772\pi\)
0.645205 + 0.764009i \(0.276772\pi\)
\(60\) 0 0
\(61\) −910.607 −1.91133 −0.955666 0.294452i \(-0.904863\pi\)
−0.955666 + 0.294452i \(0.904863\pi\)
\(62\) 826.449 1.69289
\(63\) 0 0
\(64\) −357.868 −0.698961
\(65\) −303.754 −0.579631
\(66\) 0 0
\(67\) −387.749 −0.707030 −0.353515 0.935429i \(-0.615014\pi\)
−0.353515 + 0.935429i \(0.615014\pi\)
\(68\) −521.764 −0.930488
\(69\) 0 0
\(70\) −486.932 −0.831422
\(71\) 668.091 1.11673 0.558365 0.829595i \(-0.311429\pi\)
0.558365 + 0.829595i \(0.311429\pi\)
\(72\) 0 0
\(73\) 390.298 0.625766 0.312883 0.949792i \(-0.398705\pi\)
0.312883 + 0.949792i \(0.398705\pi\)
\(74\) −1051.60 −1.65198
\(75\) 0 0
\(76\) 81.6495 0.123235
\(77\) 77.0000 0.113961
\(78\) 0 0
\(79\) −250.647 −0.356962 −0.178481 0.983943i \(-0.557118\pi\)
−0.178481 + 0.983943i \(0.557118\pi\)
\(80\) 1295.29 1.81022
\(81\) 0 0
\(82\) 790.090 1.06403
\(83\) 54.2027 0.0716809 0.0358404 0.999358i \(-0.488589\pi\)
0.0358404 + 0.999358i \(0.488589\pi\)
\(84\) 0 0
\(85\) 1371.28 1.74984
\(86\) −1566.82 −1.96458
\(87\) 0 0
\(88\) −48.1385 −0.0583134
\(89\) 906.680 1.07986 0.539932 0.841709i \(-0.318450\pi\)
0.539932 + 0.841709i \(0.318450\pi\)
\(90\) 0 0
\(91\) −117.850 −0.135759
\(92\) 1204.81 1.36532
\(93\) 0 0
\(94\) 688.796 0.755786
\(95\) −214.588 −0.231750
\(96\) 0 0
\(97\) 618.333 0.647239 0.323620 0.946187i \(-0.395100\pi\)
0.323620 + 0.946187i \(0.395100\pi\)
\(98\) −188.920 −0.194733
\(99\) 0 0
\(100\) 1376.56 1.37656
\(101\) −443.731 −0.437157 −0.218578 0.975819i \(-0.570142\pi\)
−0.218578 + 0.975819i \(0.570142\pi\)
\(102\) 0 0
\(103\) −1893.39 −1.81128 −0.905638 0.424051i \(-0.860608\pi\)
−0.905638 + 0.424051i \(0.860608\pi\)
\(104\) 73.6771 0.0694677
\(105\) 0 0
\(106\) −918.830 −0.841930
\(107\) −966.336 −0.873077 −0.436538 0.899686i \(-0.643796\pi\)
−0.436538 + 0.899686i \(0.643796\pi\)
\(108\) 0 0
\(109\) 86.9483 0.0764049 0.0382025 0.999270i \(-0.487837\pi\)
0.0382025 + 0.999270i \(0.487837\pi\)
\(110\) −765.179 −0.663245
\(111\) 0 0
\(112\) 502.545 0.423982
\(113\) −1645.50 −1.36987 −0.684937 0.728602i \(-0.740170\pi\)
−0.684937 + 0.728602i \(0.740170\pi\)
\(114\) 0 0
\(115\) −3166.43 −2.56757
\(116\) 1506.23 1.20560
\(117\) 0 0
\(118\) −2254.69 −1.75899
\(119\) 532.029 0.409840
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 3510.85 2.60539
\(123\) 0 0
\(124\) −1471.54 −1.06571
\(125\) −1362.55 −0.974961
\(126\) 0 0
\(127\) −978.550 −0.683719 −0.341859 0.939751i \(-0.611057\pi\)
−0.341859 + 0.939751i \(0.611057\pi\)
\(128\) −554.519 −0.382914
\(129\) 0 0
\(130\) 1171.13 0.790112
\(131\) −1494.86 −0.996993 −0.498497 0.866892i \(-0.666114\pi\)
−0.498497 + 0.866892i \(0.666114\pi\)
\(132\) 0 0
\(133\) −83.2559 −0.0542797
\(134\) 1494.97 0.963773
\(135\) 0 0
\(136\) −332.611 −0.209715
\(137\) −2397.79 −1.49530 −0.747652 0.664091i \(-0.768819\pi\)
−0.747652 + 0.664091i \(0.768819\pi\)
\(138\) 0 0
\(139\) 2672.65 1.63087 0.815436 0.578847i \(-0.196497\pi\)
0.815436 + 0.578847i \(0.196497\pi\)
\(140\) 867.009 0.523398
\(141\) 0 0
\(142\) −2575.83 −1.52225
\(143\) −185.193 −0.108298
\(144\) 0 0
\(145\) −3958.61 −2.26720
\(146\) −1504.80 −0.853000
\(147\) 0 0
\(148\) 1872.44 1.03996
\(149\) −2052.12 −1.12830 −0.564149 0.825673i \(-0.690796\pi\)
−0.564149 + 0.825673i \(0.690796\pi\)
\(150\) 0 0
\(151\) 2366.66 1.27547 0.637734 0.770256i \(-0.279872\pi\)
0.637734 + 0.770256i \(0.279872\pi\)
\(152\) 52.0495 0.0277748
\(153\) 0 0
\(154\) −296.874 −0.155343
\(155\) 3867.44 2.00413
\(156\) 0 0
\(157\) −3763.06 −1.91290 −0.956450 0.291897i \(-0.905714\pi\)
−0.956450 + 0.291897i \(0.905714\pi\)
\(158\) 966.371 0.486584
\(159\) 0 0
\(160\) −4362.33 −2.15545
\(161\) −1228.51 −0.601367
\(162\) 0 0
\(163\) 1394.64 0.670166 0.335083 0.942189i \(-0.391236\pi\)
0.335083 + 0.942189i \(0.391236\pi\)
\(164\) −1406.80 −0.669832
\(165\) 0 0
\(166\) −208.979 −0.0977102
\(167\) 384.184 0.178018 0.0890091 0.996031i \(-0.471630\pi\)
0.0890091 + 0.996031i \(0.471630\pi\)
\(168\) 0 0
\(169\) −1913.56 −0.870986
\(170\) −5286.98 −2.38525
\(171\) 0 0
\(172\) 2789.80 1.23675
\(173\) −1156.21 −0.508121 −0.254061 0.967188i \(-0.581766\pi\)
−0.254061 + 0.967188i \(0.581766\pi\)
\(174\) 0 0
\(175\) −1403.64 −0.606316
\(176\) 789.713 0.338221
\(177\) 0 0
\(178\) −3495.71 −1.47199
\(179\) −141.765 −0.0591956 −0.0295978 0.999562i \(-0.509423\pi\)
−0.0295978 + 0.999562i \(0.509423\pi\)
\(180\) 0 0
\(181\) 1359.83 0.558428 0.279214 0.960229i \(-0.409926\pi\)
0.279214 + 0.960229i \(0.409926\pi\)
\(182\) 454.373 0.185057
\(183\) 0 0
\(184\) 768.034 0.307719
\(185\) −4921.07 −1.95570
\(186\) 0 0
\(187\) 836.045 0.326940
\(188\) −1226.44 −0.475783
\(189\) 0 0
\(190\) 827.347 0.315905
\(191\) −3678.06 −1.39338 −0.696689 0.717373i \(-0.745344\pi\)
−0.696689 + 0.717373i \(0.745344\pi\)
\(192\) 0 0
\(193\) 1107.52 0.413064 0.206532 0.978440i \(-0.433782\pi\)
0.206532 + 0.978440i \(0.433782\pi\)
\(194\) −2383.99 −0.882270
\(195\) 0 0
\(196\) 336.382 0.122588
\(197\) 693.069 0.250655 0.125328 0.992115i \(-0.460002\pi\)
0.125328 + 0.992115i \(0.460002\pi\)
\(198\) 0 0
\(199\) 145.818 0.0519437 0.0259718 0.999663i \(-0.491732\pi\)
0.0259718 + 0.999663i \(0.491732\pi\)
\(200\) 877.522 0.310251
\(201\) 0 0
\(202\) 1710.81 0.595901
\(203\) −1535.86 −0.531016
\(204\) 0 0
\(205\) 3697.29 1.25966
\(206\) 7299.99 2.46900
\(207\) 0 0
\(208\) −1208.68 −0.402916
\(209\) −130.831 −0.0433002
\(210\) 0 0
\(211\) −3518.11 −1.14785 −0.573927 0.818907i \(-0.694580\pi\)
−0.573927 + 0.818907i \(0.694580\pi\)
\(212\) 1636.03 0.530013
\(213\) 0 0
\(214\) 3725.72 1.19012
\(215\) −7332.05 −2.32578
\(216\) 0 0
\(217\) 1500.49 0.469400
\(218\) −335.230 −0.104150
\(219\) 0 0
\(220\) 1362.44 0.417527
\(221\) −1279.59 −0.389477
\(222\) 0 0
\(223\) 1630.18 0.489530 0.244765 0.969582i \(-0.421289\pi\)
0.244765 + 0.969582i \(0.421289\pi\)
\(224\) −1692.50 −0.504842
\(225\) 0 0
\(226\) 6344.24 1.86731
\(227\) −1841.48 −0.538428 −0.269214 0.963080i \(-0.586764\pi\)
−0.269214 + 0.963080i \(0.586764\pi\)
\(228\) 0 0
\(229\) 4468.48 1.28945 0.644727 0.764413i \(-0.276971\pi\)
0.644727 + 0.764413i \(0.276971\pi\)
\(230\) 12208.2 3.49993
\(231\) 0 0
\(232\) 960.182 0.271720
\(233\) 1914.60 0.538323 0.269162 0.963095i \(-0.413253\pi\)
0.269162 + 0.963095i \(0.413253\pi\)
\(234\) 0 0
\(235\) 3223.28 0.894739
\(236\) 4014.60 1.10732
\(237\) 0 0
\(238\) −2051.24 −0.558665
\(239\) −6454.45 −1.74688 −0.873438 0.486935i \(-0.838115\pi\)
−0.873438 + 0.486935i \(0.838115\pi\)
\(240\) 0 0
\(241\) −3461.21 −0.925129 −0.462564 0.886586i \(-0.653071\pi\)
−0.462564 + 0.886586i \(0.653071\pi\)
\(242\) −466.516 −0.123921
\(243\) 0 0
\(244\) −6251.26 −1.64015
\(245\) −884.067 −0.230535
\(246\) 0 0
\(247\) 200.240 0.0515827
\(248\) −938.068 −0.240191
\(249\) 0 0
\(250\) 5253.32 1.32900
\(251\) 3579.75 0.900207 0.450104 0.892976i \(-0.351387\pi\)
0.450104 + 0.892976i \(0.351387\pi\)
\(252\) 0 0
\(253\) −1930.51 −0.479725
\(254\) 3772.81 0.931996
\(255\) 0 0
\(256\) 5000.90 1.22092
\(257\) −3780.31 −0.917545 −0.458773 0.888554i \(-0.651711\pi\)
−0.458773 + 0.888554i \(0.651711\pi\)
\(258\) 0 0
\(259\) −1909.28 −0.458057
\(260\) −2085.25 −0.497392
\(261\) 0 0
\(262\) 5763.43 1.35903
\(263\) 5063.37 1.18715 0.593575 0.804778i \(-0.297716\pi\)
0.593575 + 0.804778i \(0.297716\pi\)
\(264\) 0 0
\(265\) −4299.74 −0.996721
\(266\) 320.994 0.0739902
\(267\) 0 0
\(268\) −2661.87 −0.606715
\(269\) −2910.06 −0.659589 −0.329795 0.944053i \(-0.606979\pi\)
−0.329795 + 0.944053i \(0.606979\pi\)
\(270\) 0 0
\(271\) 5442.93 1.22005 0.610027 0.792381i \(-0.291159\pi\)
0.610027 + 0.792381i \(0.291159\pi\)
\(272\) 5456.50 1.21636
\(273\) 0 0
\(274\) 9244.68 2.03829
\(275\) −2205.72 −0.483673
\(276\) 0 0
\(277\) 4044.19 0.877226 0.438613 0.898676i \(-0.355470\pi\)
0.438613 + 0.898676i \(0.355470\pi\)
\(278\) −10304.4 −2.22309
\(279\) 0 0
\(280\) 552.697 0.117964
\(281\) 8172.77 1.73504 0.867520 0.497402i \(-0.165713\pi\)
0.867520 + 0.497402i \(0.165713\pi\)
\(282\) 0 0
\(283\) 2182.31 0.458391 0.229196 0.973380i \(-0.426390\pi\)
0.229196 + 0.973380i \(0.426390\pi\)
\(284\) 4586.41 0.958286
\(285\) 0 0
\(286\) 714.015 0.147624
\(287\) 1434.48 0.295033
\(288\) 0 0
\(289\) 863.627 0.175784
\(290\) 15262.4 3.09049
\(291\) 0 0
\(292\) 2679.37 0.536981
\(293\) −1709.43 −0.340839 −0.170420 0.985372i \(-0.554512\pi\)
−0.170420 + 0.985372i \(0.554512\pi\)
\(294\) 0 0
\(295\) −10551.0 −2.08239
\(296\) 1193.63 0.234387
\(297\) 0 0
\(298\) 7911.98 1.53801
\(299\) 2954.70 0.571487
\(300\) 0 0
\(301\) −2844.69 −0.544735
\(302\) −9124.66 −1.73863
\(303\) 0 0
\(304\) −853.874 −0.161095
\(305\) 16429.3 3.08440
\(306\) 0 0
\(307\) 5485.85 1.01985 0.509925 0.860219i \(-0.329673\pi\)
0.509925 + 0.860219i \(0.329673\pi\)
\(308\) 528.600 0.0977916
\(309\) 0 0
\(310\) −14910.9 −2.73189
\(311\) −476.818 −0.0869385 −0.0434693 0.999055i \(-0.513841\pi\)
−0.0434693 + 0.999055i \(0.513841\pi\)
\(312\) 0 0
\(313\) 779.948 0.140848 0.0704238 0.997517i \(-0.477565\pi\)
0.0704238 + 0.997517i \(0.477565\pi\)
\(314\) 14508.5 2.60753
\(315\) 0 0
\(316\) −1720.68 −0.306315
\(317\) −6398.10 −1.13361 −0.566803 0.823853i \(-0.691820\pi\)
−0.566803 + 0.823853i \(0.691820\pi\)
\(318\) 0 0
\(319\) −2413.49 −0.423604
\(320\) 6456.72 1.12794
\(321\) 0 0
\(322\) 4736.53 0.819740
\(323\) −903.970 −0.155722
\(324\) 0 0
\(325\) 3375.91 0.576190
\(326\) −5377.06 −0.913522
\(327\) 0 0
\(328\) −896.799 −0.150968
\(329\) 1250.57 0.209562
\(330\) 0 0
\(331\) −7792.92 −1.29407 −0.647036 0.762460i \(-0.723991\pi\)
−0.647036 + 0.762460i \(0.723991\pi\)
\(332\) 372.098 0.0615106
\(333\) 0 0
\(334\) −1481.22 −0.242662
\(335\) 6995.83 1.14096
\(336\) 0 0
\(337\) −4106.13 −0.663724 −0.331862 0.943328i \(-0.607677\pi\)
−0.331862 + 0.943328i \(0.607677\pi\)
\(338\) 7377.73 1.18727
\(339\) 0 0
\(340\) 9413.76 1.50157
\(341\) 2357.91 0.374452
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 1778.43 0.278740
\(345\) 0 0
\(346\) 4457.77 0.692634
\(347\) 3014.89 0.466421 0.233210 0.972426i \(-0.425077\pi\)
0.233210 + 0.972426i \(0.425077\pi\)
\(348\) 0 0
\(349\) 8717.58 1.33708 0.668541 0.743675i \(-0.266919\pi\)
0.668541 + 0.743675i \(0.266919\pi\)
\(350\) 5411.75 0.826486
\(351\) 0 0
\(352\) −2659.64 −0.402725
\(353\) 248.227 0.0374272 0.0187136 0.999825i \(-0.494043\pi\)
0.0187136 + 0.999825i \(0.494043\pi\)
\(354\) 0 0
\(355\) −12053.8 −1.80211
\(356\) 6224.31 0.926650
\(357\) 0 0
\(358\) 546.576 0.0806912
\(359\) 9850.33 1.44814 0.724068 0.689729i \(-0.242270\pi\)
0.724068 + 0.689729i \(0.242270\pi\)
\(360\) 0 0
\(361\) −6717.54 −0.979376
\(362\) −5242.84 −0.761209
\(363\) 0 0
\(364\) −809.036 −0.116497
\(365\) −7041.83 −1.00983
\(366\) 0 0
\(367\) −3597.52 −0.511686 −0.255843 0.966718i \(-0.582353\pi\)
−0.255843 + 0.966718i \(0.582353\pi\)
\(368\) −12599.6 −1.78478
\(369\) 0 0
\(370\) 18973.2 2.66587
\(371\) −1668.21 −0.233448
\(372\) 0 0
\(373\) 2275.67 0.315897 0.157949 0.987447i \(-0.449512\pi\)
0.157949 + 0.987447i \(0.449512\pi\)
\(374\) −3223.38 −0.445660
\(375\) 0 0
\(376\) −781.824 −0.107233
\(377\) 3693.91 0.504632
\(378\) 0 0
\(379\) 3964.58 0.537326 0.268663 0.963234i \(-0.413418\pi\)
0.268663 + 0.963234i \(0.413418\pi\)
\(380\) −1473.14 −0.198869
\(381\) 0 0
\(382\) 14180.8 1.89935
\(383\) 9289.55 1.23936 0.619679 0.784855i \(-0.287263\pi\)
0.619679 + 0.784855i \(0.287263\pi\)
\(384\) 0 0
\(385\) −1389.25 −0.183903
\(386\) −4270.07 −0.563059
\(387\) 0 0
\(388\) 4244.82 0.555407
\(389\) −15086.8 −1.96640 −0.983201 0.182528i \(-0.941572\pi\)
−0.983201 + 0.182528i \(0.941572\pi\)
\(390\) 0 0
\(391\) −13338.8 −1.72525
\(392\) 214.435 0.0276291
\(393\) 0 0
\(394\) −2672.13 −0.341675
\(395\) 4522.21 0.576044
\(396\) 0 0
\(397\) −10215.5 −1.29144 −0.645722 0.763572i \(-0.723444\pi\)
−0.645722 + 0.763572i \(0.723444\pi\)
\(398\) −562.204 −0.0708059
\(399\) 0 0
\(400\) −14395.8 −1.79947
\(401\) 4143.18 0.515962 0.257981 0.966150i \(-0.416943\pi\)
0.257981 + 0.966150i \(0.416943\pi\)
\(402\) 0 0
\(403\) −3608.84 −0.446077
\(404\) −3046.18 −0.375132
\(405\) 0 0
\(406\) 5921.52 0.723843
\(407\) −3000.29 −0.365403
\(408\) 0 0
\(409\) −1958.71 −0.236801 −0.118401 0.992966i \(-0.537777\pi\)
−0.118401 + 0.992966i \(0.537777\pi\)
\(410\) −14254.9 −1.71708
\(411\) 0 0
\(412\) −12998.0 −1.55429
\(413\) −4093.59 −0.487729
\(414\) 0 0
\(415\) −977.934 −0.115674
\(416\) 4070.64 0.479758
\(417\) 0 0
\(418\) 504.419 0.0590237
\(419\) −616.552 −0.0718868 −0.0359434 0.999354i \(-0.511444\pi\)
−0.0359434 + 0.999354i \(0.511444\pi\)
\(420\) 0 0
\(421\) −612.327 −0.0708859 −0.0354430 0.999372i \(-0.511284\pi\)
−0.0354430 + 0.999372i \(0.511284\pi\)
\(422\) 13564.1 1.56467
\(423\) 0 0
\(424\) 1042.93 0.119455
\(425\) −15240.4 −1.73945
\(426\) 0 0
\(427\) 6374.25 0.722416
\(428\) −6633.84 −0.749203
\(429\) 0 0
\(430\) 28268.8 3.17033
\(431\) 2316.95 0.258941 0.129470 0.991583i \(-0.458672\pi\)
0.129470 + 0.991583i \(0.458672\pi\)
\(432\) 0 0
\(433\) −9187.01 −1.01963 −0.509815 0.860284i \(-0.670286\pi\)
−0.509815 + 0.860284i \(0.670286\pi\)
\(434\) −5785.14 −0.639852
\(435\) 0 0
\(436\) 596.895 0.0655644
\(437\) 2087.36 0.228494
\(438\) 0 0
\(439\) 1907.40 0.207369 0.103685 0.994610i \(-0.466937\pi\)
0.103685 + 0.994610i \(0.466937\pi\)
\(440\) 868.524 0.0941028
\(441\) 0 0
\(442\) 4933.46 0.530907
\(443\) −7657.14 −0.821223 −0.410611 0.911810i \(-0.634685\pi\)
−0.410611 + 0.911810i \(0.634685\pi\)
\(444\) 0 0
\(445\) −16358.5 −1.74262
\(446\) −6285.19 −0.667292
\(447\) 0 0
\(448\) 2505.08 0.264182
\(449\) −2156.86 −0.226701 −0.113350 0.993555i \(-0.536158\pi\)
−0.113350 + 0.993555i \(0.536158\pi\)
\(450\) 0 0
\(451\) 2254.18 0.235355
\(452\) −11296.3 −1.17551
\(453\) 0 0
\(454\) 7099.83 0.733946
\(455\) 2126.28 0.219080
\(456\) 0 0
\(457\) 18073.5 1.84998 0.924990 0.379990i \(-0.124073\pi\)
0.924990 + 0.379990i \(0.124073\pi\)
\(458\) −17228.2 −1.75769
\(459\) 0 0
\(460\) −21737.3 −2.20328
\(461\) −3559.83 −0.359648 −0.179824 0.983699i \(-0.557553\pi\)
−0.179824 + 0.983699i \(0.557553\pi\)
\(462\) 0 0
\(463\) −11741.3 −1.17855 −0.589273 0.807934i \(-0.700586\pi\)
−0.589273 + 0.807934i \(0.700586\pi\)
\(464\) −15751.8 −1.57599
\(465\) 0 0
\(466\) −7381.74 −0.733804
\(467\) −15624.4 −1.54821 −0.774103 0.633060i \(-0.781799\pi\)
−0.774103 + 0.633060i \(0.781799\pi\)
\(468\) 0 0
\(469\) 2714.24 0.267232
\(470\) −12427.4 −1.21964
\(471\) 0 0
\(472\) 2559.21 0.249570
\(473\) −4470.22 −0.434548
\(474\) 0 0
\(475\) 2384.93 0.230375
\(476\) 3652.35 0.351691
\(477\) 0 0
\(478\) 24885.2 2.38122
\(479\) −856.272 −0.0816787 −0.0408393 0.999166i \(-0.513003\pi\)
−0.0408393 + 0.999166i \(0.513003\pi\)
\(480\) 0 0
\(481\) 4592.02 0.435297
\(482\) 13344.7 1.26107
\(483\) 0 0
\(484\) 830.658 0.0780107
\(485\) −11156.1 −1.04448
\(486\) 0 0
\(487\) 1401.75 0.130430 0.0652148 0.997871i \(-0.479227\pi\)
0.0652148 + 0.997871i \(0.479227\pi\)
\(488\) −3985.02 −0.369659
\(489\) 0 0
\(490\) 3408.53 0.314248
\(491\) 4413.29 0.405639 0.202820 0.979216i \(-0.434990\pi\)
0.202820 + 0.979216i \(0.434990\pi\)
\(492\) 0 0
\(493\) −16676.0 −1.52342
\(494\) −772.025 −0.0703139
\(495\) 0 0
\(496\) 15389.0 1.39312
\(497\) −4676.64 −0.422084
\(498\) 0 0
\(499\) 5105.31 0.458006 0.229003 0.973426i \(-0.426453\pi\)
0.229003 + 0.973426i \(0.426453\pi\)
\(500\) −9353.82 −0.836631
\(501\) 0 0
\(502\) −13801.8 −1.22710
\(503\) 18573.1 1.64639 0.823195 0.567759i \(-0.192190\pi\)
0.823195 + 0.567759i \(0.192190\pi\)
\(504\) 0 0
\(505\) 8005.87 0.705458
\(506\) 7443.11 0.653927
\(507\) 0 0
\(508\) −6717.69 −0.586711
\(509\) 20788.8 1.81031 0.905153 0.425086i \(-0.139756\pi\)
0.905153 + 0.425086i \(0.139756\pi\)
\(510\) 0 0
\(511\) −2732.09 −0.236517
\(512\) −14844.8 −1.28136
\(513\) 0 0
\(514\) 14575.0 1.25073
\(515\) 34160.9 2.92293
\(516\) 0 0
\(517\) 1965.18 0.167173
\(518\) 7361.23 0.624390
\(519\) 0 0
\(520\) −1329.30 −0.112103
\(521\) 12175.6 1.02384 0.511921 0.859032i \(-0.328934\pi\)
0.511921 + 0.859032i \(0.328934\pi\)
\(522\) 0 0
\(523\) −104.134 −0.00870642 −0.00435321 0.999991i \(-0.501386\pi\)
−0.00435321 + 0.999991i \(0.501386\pi\)
\(524\) −10262.1 −0.855538
\(525\) 0 0
\(526\) −19521.9 −1.61824
\(527\) 16291.9 1.34665
\(528\) 0 0
\(529\) 18633.7 1.53150
\(530\) 16577.7 1.35866
\(531\) 0 0
\(532\) −571.547 −0.0465784
\(533\) −3450.07 −0.280374
\(534\) 0 0
\(535\) 17434.8 1.40892
\(536\) −1696.88 −0.136742
\(537\) 0 0
\(538\) 11219.8 0.899104
\(539\) −539.000 −0.0430730
\(540\) 0 0
\(541\) −2741.20 −0.217844 −0.108922 0.994050i \(-0.534740\pi\)
−0.108922 + 0.994050i \(0.534740\pi\)
\(542\) −20985.3 −1.66309
\(543\) 0 0
\(544\) −18376.7 −1.44833
\(545\) −1568.74 −0.123298
\(546\) 0 0
\(547\) −17008.0 −1.32945 −0.664725 0.747089i \(-0.731451\pi\)
−0.664725 + 0.747089i \(0.731451\pi\)
\(548\) −16460.7 −1.28315
\(549\) 0 0
\(550\) 8504.18 0.659308
\(551\) 2609.58 0.201764
\(552\) 0 0
\(553\) 1754.53 0.134919
\(554\) −15592.4 −1.19577
\(555\) 0 0
\(556\) 18347.6 1.39948
\(557\) 2055.20 0.156340 0.0781702 0.996940i \(-0.475092\pi\)
0.0781702 + 0.996940i \(0.475092\pi\)
\(558\) 0 0
\(559\) 6841.79 0.517669
\(560\) −9067.00 −0.684198
\(561\) 0 0
\(562\) −31510.2 −2.36508
\(563\) 4425.50 0.331284 0.165642 0.986186i \(-0.447030\pi\)
0.165642 + 0.986186i \(0.447030\pi\)
\(564\) 0 0
\(565\) 29688.4 2.21062
\(566\) −8413.90 −0.624846
\(567\) 0 0
\(568\) 2923.72 0.215980
\(569\) −6590.24 −0.485549 −0.242775 0.970083i \(-0.578058\pi\)
−0.242775 + 0.970083i \(0.578058\pi\)
\(570\) 0 0
\(571\) −24640.9 −1.80594 −0.902968 0.429707i \(-0.858617\pi\)
−0.902968 + 0.429707i \(0.858617\pi\)
\(572\) −1271.34 −0.0929327
\(573\) 0 0
\(574\) −5530.63 −0.402167
\(575\) 35191.6 2.55233
\(576\) 0 0
\(577\) −26063.5 −1.88048 −0.940242 0.340507i \(-0.889401\pi\)
−0.940242 + 0.340507i \(0.889401\pi\)
\(578\) −3329.72 −0.239616
\(579\) 0 0
\(580\) −27175.6 −1.94553
\(581\) −379.419 −0.0270928
\(582\) 0 0
\(583\) −2621.48 −0.186227
\(584\) 1708.03 0.121026
\(585\) 0 0
\(586\) 6590.72 0.464607
\(587\) −18880.3 −1.32756 −0.663778 0.747930i \(-0.731048\pi\)
−0.663778 + 0.747930i \(0.731048\pi\)
\(588\) 0 0
\(589\) −2549.48 −0.178352
\(590\) 40679.6 2.83856
\(591\) 0 0
\(592\) −19581.6 −1.35945
\(593\) −20373.4 −1.41085 −0.705426 0.708783i \(-0.749244\pi\)
−0.705426 + 0.708783i \(0.749244\pi\)
\(594\) 0 0
\(595\) −9598.96 −0.661376
\(596\) −14087.7 −0.968213
\(597\) 0 0
\(598\) −11391.9 −0.779010
\(599\) 3953.48 0.269674 0.134837 0.990868i \(-0.456949\pi\)
0.134837 + 0.990868i \(0.456949\pi\)
\(600\) 0 0
\(601\) 6736.90 0.457244 0.228622 0.973515i \(-0.426578\pi\)
0.228622 + 0.973515i \(0.426578\pi\)
\(602\) 10967.7 0.742543
\(603\) 0 0
\(604\) 16247.0 1.09450
\(605\) −2183.10 −0.146704
\(606\) 0 0
\(607\) −28336.7 −1.89481 −0.947406 0.320035i \(-0.896305\pi\)
−0.947406 + 0.320035i \(0.896305\pi\)
\(608\) 2875.72 0.191819
\(609\) 0 0
\(610\) −63343.4 −4.20443
\(611\) −3007.75 −0.199150
\(612\) 0 0
\(613\) 2767.63 0.182355 0.0911774 0.995835i \(-0.470937\pi\)
0.0911774 + 0.995835i \(0.470937\pi\)
\(614\) −21150.7 −1.39019
\(615\) 0 0
\(616\) 336.970 0.0220404
\(617\) −25880.0 −1.68864 −0.844318 0.535842i \(-0.819994\pi\)
−0.844318 + 0.535842i \(0.819994\pi\)
\(618\) 0 0
\(619\) 42.9744 0.00279045 0.00139522 0.999999i \(-0.499556\pi\)
0.00139522 + 0.999999i \(0.499556\pi\)
\(620\) 26549.7 1.71978
\(621\) 0 0
\(622\) 1838.38 0.118508
\(623\) −6346.76 −0.408150
\(624\) 0 0
\(625\) −481.672 −0.0308270
\(626\) −3007.10 −0.191993
\(627\) 0 0
\(628\) −25833.2 −1.64149
\(629\) −20730.4 −1.31411
\(630\) 0 0
\(631\) −18766.2 −1.18395 −0.591974 0.805957i \(-0.701651\pi\)
−0.591974 + 0.805957i \(0.701651\pi\)
\(632\) −1096.89 −0.0690377
\(633\) 0 0
\(634\) 24667.9 1.54525
\(635\) 17655.2 1.10335
\(636\) 0 0
\(637\) 824.953 0.0513121
\(638\) 9305.25 0.577427
\(639\) 0 0
\(640\) 10004.7 0.617925
\(641\) 29882.6 1.84133 0.920663 0.390358i \(-0.127649\pi\)
0.920663 + 0.390358i \(0.127649\pi\)
\(642\) 0 0
\(643\) −18805.2 −1.15335 −0.576677 0.816973i \(-0.695651\pi\)
−0.576677 + 0.816973i \(0.695651\pi\)
\(644\) −8433.64 −0.516044
\(645\) 0 0
\(646\) 3485.26 0.212269
\(647\) 28514.1 1.73262 0.866309 0.499508i \(-0.166486\pi\)
0.866309 + 0.499508i \(0.166486\pi\)
\(648\) 0 0
\(649\) −6432.78 −0.389073
\(650\) −13015.9 −0.785421
\(651\) 0 0
\(652\) 9574.15 0.575081
\(653\) −28136.5 −1.68616 −0.843082 0.537785i \(-0.819261\pi\)
−0.843082 + 0.537785i \(0.819261\pi\)
\(654\) 0 0
\(655\) 26970.4 1.60889
\(656\) 14712.0 0.875621
\(657\) 0 0
\(658\) −4821.57 −0.285660
\(659\) −25412.3 −1.50216 −0.751080 0.660211i \(-0.770467\pi\)
−0.751080 + 0.660211i \(0.770467\pi\)
\(660\) 0 0
\(661\) −15015.6 −0.883569 −0.441784 0.897121i \(-0.645654\pi\)
−0.441784 + 0.897121i \(0.645654\pi\)
\(662\) 30045.7 1.76398
\(663\) 0 0
\(664\) 237.203 0.0138634
\(665\) 1502.12 0.0875934
\(666\) 0 0
\(667\) 38506.5 2.23535
\(668\) 2637.40 0.152761
\(669\) 0 0
\(670\) −26972.5 −1.55528
\(671\) 10016.7 0.576289
\(672\) 0 0
\(673\) 21748.2 1.24566 0.622831 0.782357i \(-0.285983\pi\)
0.622831 + 0.782357i \(0.285983\pi\)
\(674\) 15831.2 0.904741
\(675\) 0 0
\(676\) −13136.5 −0.747409
\(677\) −18842.5 −1.06969 −0.534843 0.844952i \(-0.679629\pi\)
−0.534843 + 0.844952i \(0.679629\pi\)
\(678\) 0 0
\(679\) −4328.33 −0.244633
\(680\) 6001.03 0.338425
\(681\) 0 0
\(682\) −9090.94 −0.510425
\(683\) 11932.7 0.668510 0.334255 0.942483i \(-0.391515\pi\)
0.334255 + 0.942483i \(0.391515\pi\)
\(684\) 0 0
\(685\) 43261.3 2.41303
\(686\) 1322.44 0.0736020
\(687\) 0 0
\(688\) −29175.2 −1.61670
\(689\) 4012.23 0.221849
\(690\) 0 0
\(691\) 11305.0 0.622376 0.311188 0.950348i \(-0.399273\pi\)
0.311188 + 0.950348i \(0.399273\pi\)
\(692\) −7937.31 −0.436028
\(693\) 0 0
\(694\) −11623.9 −0.635791
\(695\) −48220.4 −2.63181
\(696\) 0 0
\(697\) 15575.1 0.846414
\(698\) −33610.7 −1.82261
\(699\) 0 0
\(700\) −9635.92 −0.520291
\(701\) −9963.42 −0.536823 −0.268412 0.963304i \(-0.586499\pi\)
−0.268412 + 0.963304i \(0.586499\pi\)
\(702\) 0 0
\(703\) 3244.05 0.174042
\(704\) 3936.55 0.210745
\(705\) 0 0
\(706\) −957.043 −0.0510181
\(707\) 3106.11 0.165230
\(708\) 0 0
\(709\) 11000.9 0.582718 0.291359 0.956614i \(-0.405893\pi\)
0.291359 + 0.956614i \(0.405893\pi\)
\(710\) 46473.6 2.45651
\(711\) 0 0
\(712\) 3967.84 0.208850
\(713\) −37619.7 −1.97597
\(714\) 0 0
\(715\) 3341.29 0.174765
\(716\) −973.209 −0.0507968
\(717\) 0 0
\(718\) −37978.0 −1.97399
\(719\) 16311.5 0.846059 0.423030 0.906116i \(-0.360967\pi\)
0.423030 + 0.906116i \(0.360967\pi\)
\(720\) 0 0
\(721\) 13253.7 0.684598
\(722\) 25899.5 1.33501
\(723\) 0 0
\(724\) 9335.17 0.479197
\(725\) 43995.9 2.25374
\(726\) 0 0
\(727\) −17113.7 −0.873056 −0.436528 0.899691i \(-0.643792\pi\)
−0.436528 + 0.899691i \(0.643792\pi\)
\(728\) −515.740 −0.0262563
\(729\) 0 0
\(730\) 27149.8 1.37652
\(731\) −30886.9 −1.56278
\(732\) 0 0
\(733\) −908.468 −0.0457777 −0.0228888 0.999738i \(-0.507286\pi\)
−0.0228888 + 0.999738i \(0.507286\pi\)
\(734\) 13870.3 0.697494
\(735\) 0 0
\(736\) 42433.6 2.12517
\(737\) 4265.24 0.213178
\(738\) 0 0
\(739\) 3111.66 0.154891 0.0774453 0.996997i \(-0.475324\pi\)
0.0774453 + 0.996997i \(0.475324\pi\)
\(740\) −33782.9 −1.67822
\(741\) 0 0
\(742\) 6431.81 0.318220
\(743\) −34279.0 −1.69257 −0.846283 0.532734i \(-0.821165\pi\)
−0.846283 + 0.532734i \(0.821165\pi\)
\(744\) 0 0
\(745\) 37024.8 1.82078
\(746\) −8773.86 −0.430608
\(747\) 0 0
\(748\) 5739.40 0.280553
\(749\) 6764.35 0.329992
\(750\) 0 0
\(751\) 18668.4 0.907086 0.453543 0.891234i \(-0.350160\pi\)
0.453543 + 0.891234i \(0.350160\pi\)
\(752\) 12825.8 0.621955
\(753\) 0 0
\(754\) −14241.9 −0.687877
\(755\) −42699.6 −2.05828
\(756\) 0 0
\(757\) 8879.31 0.426320 0.213160 0.977017i \(-0.431624\pi\)
0.213160 + 0.977017i \(0.431624\pi\)
\(758\) −15285.5 −0.732444
\(759\) 0 0
\(760\) −939.087 −0.0448214
\(761\) 20677.5 0.984967 0.492484 0.870322i \(-0.336089\pi\)
0.492484 + 0.870322i \(0.336089\pi\)
\(762\) 0 0
\(763\) −608.638 −0.0288783
\(764\) −25249.7 −1.19568
\(765\) 0 0
\(766\) −35816.0 −1.68940
\(767\) 9845.52 0.463496
\(768\) 0 0
\(769\) −27497.6 −1.28945 −0.644725 0.764414i \(-0.723028\pi\)
−0.644725 + 0.764414i \(0.723028\pi\)
\(770\) 5356.26 0.250683
\(771\) 0 0
\(772\) 7603.08 0.354457
\(773\) −9834.49 −0.457596 −0.228798 0.973474i \(-0.573480\pi\)
−0.228798 + 0.973474i \(0.573480\pi\)
\(774\) 0 0
\(775\) −42982.6 −1.99223
\(776\) 2705.97 0.125179
\(777\) 0 0
\(778\) 58167.2 2.68046
\(779\) −2437.32 −0.112100
\(780\) 0 0
\(781\) −7349.00 −0.336707
\(782\) 51427.9 2.35174
\(783\) 0 0
\(784\) −3517.81 −0.160250
\(785\) 67893.9 3.08693
\(786\) 0 0
\(787\) −39329.2 −1.78136 −0.890682 0.454627i \(-0.849773\pi\)
−0.890682 + 0.454627i \(0.849773\pi\)
\(788\) 4757.88 0.215092
\(789\) 0 0
\(790\) −17435.4 −0.785221
\(791\) 11518.5 0.517764
\(792\) 0 0
\(793\) −15330.8 −0.686522
\(794\) 39386.1 1.76040
\(795\) 0 0
\(796\) 1001.03 0.0445738
\(797\) 22338.1 0.992792 0.496396 0.868096i \(-0.334656\pi\)
0.496396 + 0.868096i \(0.334656\pi\)
\(798\) 0 0
\(799\) 13578.3 0.601210
\(800\) 48482.8 2.14266
\(801\) 0 0
\(802\) −15974.1 −0.703322
\(803\) −4293.28 −0.188676
\(804\) 0 0
\(805\) 22165.0 0.970451
\(806\) 13913.9 0.608060
\(807\) 0 0
\(808\) −1941.87 −0.0845478
\(809\) −37494.8 −1.62948 −0.814739 0.579828i \(-0.803120\pi\)
−0.814739 + 0.579828i \(0.803120\pi\)
\(810\) 0 0
\(811\) −42506.0 −1.84043 −0.920214 0.391417i \(-0.871985\pi\)
−0.920214 + 0.391417i \(0.871985\pi\)
\(812\) −10543.6 −0.455674
\(813\) 0 0
\(814\) 11567.6 0.498091
\(815\) −25162.4 −1.08147
\(816\) 0 0
\(817\) 4833.41 0.206976
\(818\) 7551.81 0.322791
\(819\) 0 0
\(820\) 25381.7 1.08094
\(821\) 42443.9 1.80427 0.902133 0.431458i \(-0.142001\pi\)
0.902133 + 0.431458i \(0.142001\pi\)
\(822\) 0 0
\(823\) 2288.06 0.0969099 0.0484549 0.998825i \(-0.484570\pi\)
0.0484549 + 0.998825i \(0.484570\pi\)
\(824\) −8285.92 −0.350308
\(825\) 0 0
\(826\) 15782.9 0.664837
\(827\) 3182.84 0.133831 0.0669155 0.997759i \(-0.478684\pi\)
0.0669155 + 0.997759i \(0.478684\pi\)
\(828\) 0 0
\(829\) −1264.12 −0.0529609 −0.0264804 0.999649i \(-0.508430\pi\)
−0.0264804 + 0.999649i \(0.508430\pi\)
\(830\) 3770.43 0.157679
\(831\) 0 0
\(832\) −6024.98 −0.251056
\(833\) −3724.20 −0.154905
\(834\) 0 0
\(835\) −6931.52 −0.287275
\(836\) −898.145 −0.0371567
\(837\) 0 0
\(838\) 2377.12 0.0979908
\(839\) 2934.36 0.120745 0.0603726 0.998176i \(-0.480771\pi\)
0.0603726 + 0.998176i \(0.480771\pi\)
\(840\) 0 0
\(841\) 23751.1 0.973845
\(842\) 2360.83 0.0966266
\(843\) 0 0
\(844\) −24151.6 −0.984993
\(845\) 34524.7 1.40555
\(846\) 0 0
\(847\) −847.000 −0.0343604
\(848\) −17109.2 −0.692845
\(849\) 0 0
\(850\) 58759.3 2.37109
\(851\) 47868.6 1.92822
\(852\) 0 0
\(853\) 25305.3 1.01575 0.507877 0.861429i \(-0.330430\pi\)
0.507877 + 0.861429i \(0.330430\pi\)
\(854\) −24576.0 −0.984745
\(855\) 0 0
\(856\) −4228.91 −0.168856
\(857\) 34699.9 1.38311 0.691556 0.722323i \(-0.256926\pi\)
0.691556 + 0.722323i \(0.256926\pi\)
\(858\) 0 0
\(859\) 17543.8 0.696841 0.348421 0.937338i \(-0.386718\pi\)
0.348421 + 0.937338i \(0.386718\pi\)
\(860\) −50334.1 −1.99579
\(861\) 0 0
\(862\) −8933.01 −0.352969
\(863\) −18985.7 −0.748876 −0.374438 0.927252i \(-0.622164\pi\)
−0.374438 + 0.927252i \(0.622164\pi\)
\(864\) 0 0
\(865\) 20860.5 0.819976
\(866\) 35420.6 1.38989
\(867\) 0 0
\(868\) 10300.8 0.402800
\(869\) 2757.11 0.107628
\(870\) 0 0
\(871\) −6528.05 −0.253955
\(872\) 380.506 0.0147770
\(873\) 0 0
\(874\) −8047.83 −0.311467
\(875\) 9537.84 0.368501
\(876\) 0 0
\(877\) 4203.00 0.161830 0.0809152 0.996721i \(-0.474216\pi\)
0.0809152 + 0.996721i \(0.474216\pi\)
\(878\) −7353.98 −0.282671
\(879\) 0 0
\(880\) −14248.1 −0.545801
\(881\) −25566.7 −0.977713 −0.488856 0.872364i \(-0.662586\pi\)
−0.488856 + 0.872364i \(0.662586\pi\)
\(882\) 0 0
\(883\) −39105.9 −1.49039 −0.745197 0.666845i \(-0.767645\pi\)
−0.745197 + 0.666845i \(0.767645\pi\)
\(884\) −8784.29 −0.334217
\(885\) 0 0
\(886\) 29522.2 1.11943
\(887\) 10841.1 0.410382 0.205191 0.978722i \(-0.434218\pi\)
0.205191 + 0.978722i \(0.434218\pi\)
\(888\) 0 0
\(889\) 6849.85 0.258421
\(890\) 63070.3 2.37542
\(891\) 0 0
\(892\) 11191.1 0.420074
\(893\) −2124.84 −0.0796249
\(894\) 0 0
\(895\) 2557.75 0.0955264
\(896\) 3881.63 0.144728
\(897\) 0 0
\(898\) 8315.79 0.309022
\(899\) −47031.4 −1.74481
\(900\) 0 0
\(901\) −18113.0 −0.669735
\(902\) −8690.99 −0.320819
\(903\) 0 0
\(904\) −7201.09 −0.264939
\(905\) −24534.3 −0.901159
\(906\) 0 0
\(907\) −21542.0 −0.788632 −0.394316 0.918975i \(-0.629018\pi\)
−0.394316 + 0.918975i \(0.629018\pi\)
\(908\) −12641.6 −0.462035
\(909\) 0 0
\(910\) −8197.88 −0.298634
\(911\) −16272.3 −0.591794 −0.295897 0.955220i \(-0.595618\pi\)
−0.295897 + 0.955220i \(0.595618\pi\)
\(912\) 0 0
\(913\) −596.229 −0.0216126
\(914\) −69682.4 −2.52176
\(915\) 0 0
\(916\) 30675.8 1.10650
\(917\) 10464.0 0.376828
\(918\) 0 0
\(919\) 46663.1 1.67494 0.837472 0.546481i \(-0.184033\pi\)
0.837472 + 0.546481i \(0.184033\pi\)
\(920\) −13857.0 −0.496578
\(921\) 0 0
\(922\) 13725.0 0.490247
\(923\) 11247.8 0.401112
\(924\) 0 0
\(925\) 54692.6 1.94409
\(926\) 45268.8 1.60651
\(927\) 0 0
\(928\) 53049.7 1.87656
\(929\) −37396.2 −1.32070 −0.660349 0.750959i \(-0.729592\pi\)
−0.660349 + 0.750959i \(0.729592\pi\)
\(930\) 0 0
\(931\) 582.791 0.0205158
\(932\) 13143.6 0.461945
\(933\) 0 0
\(934\) 60240.1 2.11040
\(935\) −15084.1 −0.527596
\(936\) 0 0
\(937\) −27371.8 −0.954321 −0.477161 0.878816i \(-0.658334\pi\)
−0.477161 + 0.878816i \(0.658334\pi\)
\(938\) −10464.8 −0.364272
\(939\) 0 0
\(940\) 22127.6 0.767791
\(941\) −2345.33 −0.0812491 −0.0406246 0.999174i \(-0.512935\pi\)
−0.0406246 + 0.999174i \(0.512935\pi\)
\(942\) 0 0
\(943\) −35964.6 −1.24196
\(944\) −41983.9 −1.44752
\(945\) 0 0
\(946\) 17235.0 0.592344
\(947\) −39562.8 −1.35757 −0.678784 0.734338i \(-0.737493\pi\)
−0.678784 + 0.734338i \(0.737493\pi\)
\(948\) 0 0
\(949\) 6570.97 0.224766
\(950\) −9195.10 −0.314030
\(951\) 0 0
\(952\) 2328.28 0.0792647
\(953\) 34016.4 1.15624 0.578121 0.815951i \(-0.303786\pi\)
0.578121 + 0.815951i \(0.303786\pi\)
\(954\) 0 0
\(955\) 66360.3 2.24855
\(956\) −44309.4 −1.49903
\(957\) 0 0
\(958\) 3301.36 0.111338
\(959\) 16784.5 0.565172
\(960\) 0 0
\(961\) 16157.2 0.542353
\(962\) −17704.6 −0.593366
\(963\) 0 0
\(964\) −23761.0 −0.793869
\(965\) −19982.1 −0.666578
\(966\) 0 0
\(967\) −37016.4 −1.23099 −0.615495 0.788141i \(-0.711044\pi\)
−0.615495 + 0.788141i \(0.711044\pi\)
\(968\) 529.524 0.0175822
\(969\) 0 0
\(970\) 43012.3 1.42376
\(971\) −43208.1 −1.42803 −0.714013 0.700133i \(-0.753124\pi\)
−0.714013 + 0.700133i \(0.753124\pi\)
\(972\) 0 0
\(973\) −18708.6 −0.616412
\(974\) −5404.44 −0.177792
\(975\) 0 0
\(976\) 65374.4 2.14404
\(977\) −12161.9 −0.398253 −0.199126 0.979974i \(-0.563810\pi\)
−0.199126 + 0.979974i \(0.563810\pi\)
\(978\) 0 0
\(979\) −9973.48 −0.325591
\(980\) −6069.07 −0.197826
\(981\) 0 0
\(982\) −17015.5 −0.552938
\(983\) −16531.0 −0.536377 −0.268188 0.963366i \(-0.586425\pi\)
−0.268188 + 0.963366i \(0.586425\pi\)
\(984\) 0 0
\(985\) −12504.5 −0.404493
\(986\) 64294.3 2.07662
\(987\) 0 0
\(988\) 1374.63 0.0442641
\(989\) 71320.9 2.29310
\(990\) 0 0
\(991\) −16088.6 −0.515712 −0.257856 0.966183i \(-0.583016\pi\)
−0.257856 + 0.966183i \(0.583016\pi\)
\(992\) −51828.0 −1.65881
\(993\) 0 0
\(994\) 18030.8 0.575355
\(995\) −2630.88 −0.0838237
\(996\) 0 0
\(997\) −31807.7 −1.01039 −0.505196 0.863005i \(-0.668580\pi\)
−0.505196 + 0.863005i \(0.668580\pi\)
\(998\) −19683.6 −0.624321
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 693.4.a.n.1.2 5
3.2 odd 2 231.4.a.l.1.4 5
21.20 even 2 1617.4.a.p.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
231.4.a.l.1.4 5 3.2 odd 2
693.4.a.n.1.2 5 1.1 even 1 trivial
1617.4.a.p.1.4 5 21.20 even 2