Properties

Label 70.2.g.a.13.2
Level $70$
Weight $2$
Character 70.13
Analytic conductor $0.559$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [70,2,Mod(13,70)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(70, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("70.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 70.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.558952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.2
Root \(0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 70.13
Dual form 70.2.g.a.27.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.30656 - 1.30656i) q^{3} -1.00000i q^{4} +(0.158513 - 2.23044i) q^{5} +1.84776i q^{6} +(-0.941740 + 2.47247i) q^{7} +(0.707107 + 0.707107i) q^{8} -0.414214i q^{9} +(1.46508 + 1.68925i) q^{10} +2.82843 q^{11} +(-1.30656 - 1.30656i) q^{12} +(-4.23671 + 4.23671i) q^{13} +(-1.08239 - 2.41421i) q^{14} +(-2.70711 - 3.12132i) q^{15} -1.00000 q^{16} +(-3.69552 - 3.69552i) q^{17} +(0.292893 + 0.292893i) q^{18} +1.39942 q^{19} +(-2.23044 - 0.158513i) q^{20} +(2.00000 + 4.46088i) q^{21} +(-2.00000 + 2.00000i) q^{22} +(0.414214 + 0.414214i) q^{23} +1.84776 q^{24} +(-4.94975 - 0.707107i) q^{25} -5.99162i q^{26} +(3.37849 + 3.37849i) q^{27} +(2.47247 + 0.941740i) q^{28} +0.828427i q^{29} +(4.12132 + 0.292893i) q^{30} -1.53073i q^{31} +(0.707107 - 0.707107i) q^{32} +(3.69552 - 3.69552i) q^{33} +5.22625 q^{34} +(5.36543 + 2.49242i) q^{35} -0.414214 q^{36} +(2.58579 - 2.58579i) q^{37} +(-0.989538 + 0.989538i) q^{38} +11.0711i q^{39} +(1.68925 - 1.46508i) q^{40} -3.69552i q^{41} +(-4.56854 - 1.74011i) q^{42} +(4.00000 + 4.00000i) q^{43} -2.82843i q^{44} +(-0.923880 - 0.0656581i) q^{45} -0.585786 q^{46} +(1.08239 + 1.08239i) q^{47} +(-1.30656 + 1.30656i) q^{48} +(-5.22625 - 4.65685i) q^{49} +(4.00000 - 3.00000i) q^{50} -9.65685 q^{51} +(4.23671 + 4.23671i) q^{52} +(-8.24264 - 8.24264i) q^{53} -4.77791 q^{54} +(0.448342 - 6.30864i) q^{55} +(-2.41421 + 1.08239i) q^{56} +(1.82843 - 1.82843i) q^{57} +(-0.585786 - 0.585786i) q^{58} -9.23880 q^{59} +(-3.12132 + 2.70711i) q^{60} +6.43996i q^{61} +(1.08239 + 1.08239i) q^{62} +(1.02413 + 0.390081i) q^{63} +1.00000i q^{64} +(8.77817 + 10.1213i) q^{65} +5.22625i q^{66} +(10.4853 - 10.4853i) q^{67} +(-3.69552 + 3.69552i) q^{68} +1.08239 q^{69} +(-5.55634 + 2.03153i) q^{70} -0.585786 q^{71} +(0.292893 - 0.292893i) q^{72} +(4.14386 - 4.14386i) q^{73} +3.65685i q^{74} +(-7.39104 + 5.54328i) q^{75} -1.39942i q^{76} +(-2.66364 + 6.99321i) q^{77} +(-7.82843 - 7.82843i) q^{78} -5.07107i q^{79} +(-0.158513 + 2.23044i) q^{80} +10.0711 q^{81} +(2.61313 + 2.61313i) q^{82} +(5.31911 - 5.31911i) q^{83} +(4.46088 - 2.00000i) q^{84} +(-8.82843 + 7.65685i) q^{85} -5.65685 q^{86} +(1.08239 + 1.08239i) q^{87} +(2.00000 + 2.00000i) q^{88} +11.3492 q^{89} +(0.699709 - 0.606854i) q^{90} +(-6.48528 - 14.4650i) q^{91} +(0.414214 - 0.414214i) q^{92} +(-2.00000 - 2.00000i) q^{93} -1.53073 q^{94} +(0.221825 - 3.12132i) q^{95} -1.84776i q^{96} +(-4.59220 - 4.59220i) q^{97} +(6.98841 - 0.402625i) q^{98} -1.17157i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 16 q^{15} - 8 q^{16} + 8 q^{18} + 16 q^{21} - 16 q^{22} - 8 q^{23} + 8 q^{28} + 16 q^{30} - 8 q^{35} + 8 q^{36} + 32 q^{37} + 32 q^{43} - 16 q^{46} + 32 q^{50} - 32 q^{51} - 32 q^{53} - 8 q^{56}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.30656 1.30656i 0.754344 0.754344i −0.220942 0.975287i \(-0.570913\pi\)
0.975287 + 0.220942i \(0.0709133\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0.158513 2.23044i 0.0708890 0.997484i
\(6\) 1.84776i 0.754344i
\(7\) −0.941740 + 2.47247i −0.355944 + 0.934507i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0.414214i 0.138071i
\(10\) 1.46508 + 1.68925i 0.463298 + 0.534187i
\(11\) 2.82843 0.852803 0.426401 0.904534i \(-0.359781\pi\)
0.426401 + 0.904534i \(0.359781\pi\)
\(12\) −1.30656 1.30656i −0.377172 0.377172i
\(13\) −4.23671 + 4.23671i −1.17505 + 1.17505i −0.194064 + 0.980989i \(0.562167\pi\)
−0.980989 + 0.194064i \(0.937833\pi\)
\(14\) −1.08239 2.41421i −0.289281 0.645226i
\(15\) −2.70711 3.12132i −0.698972 0.805921i
\(16\) −1.00000 −0.250000
\(17\) −3.69552 3.69552i −0.896295 0.896295i 0.0988114 0.995106i \(-0.468496\pi\)
−0.995106 + 0.0988114i \(0.968496\pi\)
\(18\) 0.292893 + 0.292893i 0.0690356 + 0.0690356i
\(19\) 1.39942 0.321048 0.160524 0.987032i \(-0.448682\pi\)
0.160524 + 0.987032i \(0.448682\pi\)
\(20\) −2.23044 0.158513i −0.498742 0.0354445i
\(21\) 2.00000 + 4.46088i 0.436436 + 0.973445i
\(22\) −2.00000 + 2.00000i −0.426401 + 0.426401i
\(23\) 0.414214 + 0.414214i 0.0863695 + 0.0863695i 0.748972 0.662602i \(-0.230548\pi\)
−0.662602 + 0.748972i \(0.730548\pi\)
\(24\) 1.84776 0.377172
\(25\) −4.94975 0.707107i −0.989949 0.141421i
\(26\) 5.99162i 1.17505i
\(27\) 3.37849 + 3.37849i 0.650191 + 0.650191i
\(28\) 2.47247 + 0.941740i 0.467254 + 0.177972i
\(29\) 0.828427i 0.153835i 0.997037 + 0.0769175i \(0.0245078\pi\)
−0.997037 + 0.0769175i \(0.975492\pi\)
\(30\) 4.12132 + 0.292893i 0.752447 + 0.0534747i
\(31\) 1.53073i 0.274928i −0.990507 0.137464i \(-0.956105\pi\)
0.990507 0.137464i \(-0.0438951\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 3.69552 3.69552i 0.643307 0.643307i
\(34\) 5.22625 0.896295
\(35\) 5.36543 + 2.49242i 0.906924 + 0.421295i
\(36\) −0.414214 −0.0690356
\(37\) 2.58579 2.58579i 0.425101 0.425101i −0.461855 0.886956i \(-0.652816\pi\)
0.886956 + 0.461855i \(0.152816\pi\)
\(38\) −0.989538 + 0.989538i −0.160524 + 0.160524i
\(39\) 11.0711i 1.77279i
\(40\) 1.68925 1.46508i 0.267093 0.231649i
\(41\) 3.69552i 0.577143i −0.957458 0.288571i \(-0.906820\pi\)
0.957458 0.288571i \(-0.0931803\pi\)
\(42\) −4.56854 1.74011i −0.704940 0.268505i
\(43\) 4.00000 + 4.00000i 0.609994 + 0.609994i 0.942944 0.332950i \(-0.108044\pi\)
−0.332950 + 0.942944i \(0.608044\pi\)
\(44\) 2.82843i 0.426401i
\(45\) −0.923880 0.0656581i −0.137724 0.00978773i
\(46\) −0.585786 −0.0863695
\(47\) 1.08239 + 1.08239i 0.157883 + 0.157883i 0.781628 0.623745i \(-0.214390\pi\)
−0.623745 + 0.781628i \(0.714390\pi\)
\(48\) −1.30656 + 1.30656i −0.188586 + 0.188586i
\(49\) −5.22625 4.65685i −0.746607 0.665265i
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) −9.65685 −1.35223
\(52\) 4.23671 + 4.23671i 0.587527 + 0.587527i
\(53\) −8.24264 8.24264i −1.13221 1.13221i −0.989808 0.142405i \(-0.954516\pi\)
−0.142405 0.989808i \(-0.545484\pi\)
\(54\) −4.77791 −0.650191
\(55\) 0.448342 6.30864i 0.0604544 0.850657i
\(56\) −2.41421 + 1.08239i −0.322613 + 0.144641i
\(57\) 1.82843 1.82843i 0.242181 0.242181i
\(58\) −0.585786 0.585786i −0.0769175 0.0769175i
\(59\) −9.23880 −1.20279 −0.601394 0.798952i \(-0.705388\pi\)
−0.601394 + 0.798952i \(0.705388\pi\)
\(60\) −3.12132 + 2.70711i −0.402961 + 0.349486i
\(61\) 6.43996i 0.824552i 0.911059 + 0.412276i \(0.135266\pi\)
−0.911059 + 0.412276i \(0.864734\pi\)
\(62\) 1.08239 + 1.08239i 0.137464 + 0.137464i
\(63\) 1.02413 + 0.390081i 0.129029 + 0.0491456i
\(64\) 1.00000i 0.125000i
\(65\) 8.77817 + 10.1213i 1.08880 + 1.25540i
\(66\) 5.22625i 0.643307i
\(67\) 10.4853 10.4853i 1.28098 1.28098i 0.340871 0.940110i \(-0.389278\pi\)
0.940110 0.340871i \(-0.110722\pi\)
\(68\) −3.69552 + 3.69552i −0.448147 + 0.448147i
\(69\) 1.08239 0.130305
\(70\) −5.55634 + 2.03153i −0.664109 + 0.242814i
\(71\) −0.585786 −0.0695201 −0.0347600 0.999396i \(-0.511067\pi\)
−0.0347600 + 0.999396i \(0.511067\pi\)
\(72\) 0.292893 0.292893i 0.0345178 0.0345178i
\(73\) 4.14386 4.14386i 0.485002 0.485002i −0.421723 0.906725i \(-0.638574\pi\)
0.906725 + 0.421723i \(0.138574\pi\)
\(74\) 3.65685i 0.425101i
\(75\) −7.39104 + 5.54328i −0.853443 + 0.640083i
\(76\) 1.39942i 0.160524i
\(77\) −2.66364 + 6.99321i −0.303550 + 0.796950i
\(78\) −7.82843 7.82843i −0.886395 0.886395i
\(79\) 5.07107i 0.570540i −0.958447 0.285270i \(-0.907917\pi\)
0.958447 0.285270i \(-0.0920832\pi\)
\(80\) −0.158513 + 2.23044i −0.0177223 + 0.249371i
\(81\) 10.0711 1.11901
\(82\) 2.61313 + 2.61313i 0.288571 + 0.288571i
\(83\) 5.31911 5.31911i 0.583848 0.583848i −0.352111 0.935958i \(-0.614536\pi\)
0.935958 + 0.352111i \(0.114536\pi\)
\(84\) 4.46088 2.00000i 0.486722 0.218218i
\(85\) −8.82843 + 7.65685i −0.957577 + 0.830502i
\(86\) −5.65685 −0.609994
\(87\) 1.08239 + 1.08239i 0.116045 + 0.116045i
\(88\) 2.00000 + 2.00000i 0.213201 + 0.213201i
\(89\) 11.3492 1.20301 0.601506 0.798869i \(-0.294568\pi\)
0.601506 + 0.798869i \(0.294568\pi\)
\(90\) 0.699709 0.606854i 0.0737558 0.0639680i
\(91\) −6.48528 14.4650i −0.679842 1.51635i
\(92\) 0.414214 0.414214i 0.0431847 0.0431847i
\(93\) −2.00000 2.00000i −0.207390 0.207390i
\(94\) −1.53073 −0.157883
\(95\) 0.221825 3.12132i 0.0227588 0.320241i
\(96\) 1.84776i 0.188586i
\(97\) −4.59220 4.59220i −0.466267 0.466267i 0.434436 0.900703i \(-0.356948\pi\)
−0.900703 + 0.434436i \(0.856948\pi\)
\(98\) 6.98841 0.402625i 0.705936 0.0406713i
\(99\) 1.17157i 0.117748i
\(100\) −0.707107 + 4.94975i −0.0707107 + 0.494975i
\(101\) 2.74444i 0.273082i 0.990634 + 0.136541i \(0.0435986\pi\)
−0.990634 + 0.136541i \(0.956401\pi\)
\(102\) 6.82843 6.82843i 0.676115 0.676115i
\(103\) −10.0042 + 10.0042i −0.985739 + 0.985739i −0.999900 0.0141603i \(-0.995492\pi\)
0.0141603 + 0.999900i \(0.495492\pi\)
\(104\) −5.99162 −0.587527
\(105\) 10.2668 3.75378i 1.00193 0.366331i
\(106\) 11.6569 1.13221
\(107\) −3.65685 + 3.65685i −0.353521 + 0.353521i −0.861418 0.507897i \(-0.830423\pi\)
0.507897 + 0.861418i \(0.330423\pi\)
\(108\) 3.37849 3.37849i 0.325096 0.325096i
\(109\) 12.1421i 1.16301i 0.813544 + 0.581503i \(0.197535\pi\)
−0.813544 + 0.581503i \(0.802465\pi\)
\(110\) 4.14386 + 4.77791i 0.395102 + 0.455556i
\(111\) 6.75699i 0.641345i
\(112\) 0.941740 2.47247i 0.0889861 0.233627i
\(113\) 1.17157 + 1.17157i 0.110212 + 0.110212i 0.760062 0.649850i \(-0.225168\pi\)
−0.649850 + 0.760062i \(0.725168\pi\)
\(114\) 2.58579i 0.242181i
\(115\) 0.989538 0.858221i 0.0922749 0.0800296i
\(116\) 0.828427 0.0769175
\(117\) 1.75490 + 1.75490i 0.162241 + 0.162241i
\(118\) 6.53281 6.53281i 0.601394 0.601394i
\(119\) 12.6173 5.65685i 1.15662 0.518563i
\(120\) 0.292893 4.12132i 0.0267374 0.376223i
\(121\) −3.00000 −0.272727
\(122\) −4.55374 4.55374i −0.412276 0.412276i
\(123\) −4.82843 4.82843i −0.435365 0.435365i
\(124\) −1.53073 −0.137464
\(125\) −2.36176 + 10.9280i −0.211242 + 0.977434i
\(126\) −1.00000 + 0.448342i −0.0890871 + 0.0399414i
\(127\) 3.58579 3.58579i 0.318187 0.318187i −0.529883 0.848071i \(-0.677764\pi\)
0.848071 + 0.529883i \(0.177764\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 10.4525 0.920292
\(130\) −13.3640 0.949747i −1.17210 0.0832984i
\(131\) 14.6508i 1.28004i 0.768357 + 0.640021i \(0.221074\pi\)
−0.768357 + 0.640021i \(0.778926\pi\)
\(132\) −3.69552 3.69552i −0.321654 0.321654i
\(133\) −1.31789 + 3.46002i −0.114275 + 0.300022i
\(134\) 14.8284i 1.28098i
\(135\) 8.07107 7.00000i 0.694647 0.602464i
\(136\) 5.22625i 0.448147i
\(137\) −8.17157 + 8.17157i −0.698145 + 0.698145i −0.964010 0.265866i \(-0.914342\pi\)
0.265866 + 0.964010i \(0.414342\pi\)
\(138\) −0.765367 + 0.765367i −0.0651524 + 0.0651524i
\(139\) −8.60474 −0.729845 −0.364922 0.931038i \(-0.618905\pi\)
−0.364922 + 0.931038i \(0.618905\pi\)
\(140\) 2.49242 5.36543i 0.210648 0.453462i
\(141\) 2.82843 0.238197
\(142\) 0.414214 0.414214i 0.0347600 0.0347600i
\(143\) −11.9832 + 11.9832i −1.00209 + 1.00209i
\(144\) 0.414214i 0.0345178i
\(145\) 1.84776 + 0.131316i 0.153448 + 0.0109052i
\(146\) 5.86030i 0.485002i
\(147\) −12.9129 + 0.743954i −1.06504 + 0.0613603i
\(148\) −2.58579 2.58579i −0.212550 0.212550i
\(149\) 17.3137i 1.41839i −0.705010 0.709197i \(-0.749058\pi\)
0.705010 0.709197i \(-0.250942\pi\)
\(150\) 1.30656 9.14594i 0.106680 0.746763i
\(151\) −8.82843 −0.718447 −0.359224 0.933252i \(-0.616958\pi\)
−0.359224 + 0.933252i \(0.616958\pi\)
\(152\) 0.989538 + 0.989538i 0.0802621 + 0.0802621i
\(153\) −1.53073 + 1.53073i −0.123752 + 0.123752i
\(154\) −3.06147 6.82843i −0.246700 0.550250i
\(155\) −3.41421 0.242641i −0.274236 0.0194894i
\(156\) 11.0711 0.886395
\(157\) 10.2283 + 10.2283i 0.816310 + 0.816310i 0.985571 0.169261i \(-0.0541382\pi\)
−0.169261 + 0.985571i \(0.554138\pi\)
\(158\) 3.58579 + 3.58579i 0.285270 + 0.285270i
\(159\) −21.5391 −1.70816
\(160\) −1.46508 1.68925i −0.115824 0.133547i
\(161\) −1.41421 + 0.634051i −0.111456 + 0.0499702i
\(162\) −7.12132 + 7.12132i −0.559504 + 0.559504i
\(163\) 13.6569 + 13.6569i 1.06969 + 1.06969i 0.997383 + 0.0723048i \(0.0230354\pi\)
0.0723048 + 0.997383i \(0.476965\pi\)
\(164\) −3.69552 −0.288571
\(165\) −7.65685 8.82843i −0.596085 0.687292i
\(166\) 7.52235i 0.583848i
\(167\) −1.71644 1.71644i −0.132822 0.132822i 0.637570 0.770392i \(-0.279940\pi\)
−0.770392 + 0.637570i \(0.779940\pi\)
\(168\) −1.74011 + 4.56854i −0.134252 + 0.352470i
\(169\) 22.8995i 1.76150i
\(170\) 0.828427 11.6569i 0.0635375 0.894040i
\(171\) 0.579658i 0.0443275i
\(172\) 4.00000 4.00000i 0.304997 0.304997i
\(173\) 13.2898 13.2898i 1.01040 1.01040i 0.0104595 0.999945i \(-0.496671\pi\)
0.999945 0.0104595i \(-0.00332943\pi\)
\(174\) −1.53073 −0.116045
\(175\) 6.40968 11.5722i 0.484526 0.874777i
\(176\) −2.82843 −0.213201
\(177\) −12.0711 + 12.0711i −0.907317 + 0.907317i
\(178\) −8.02509 + 8.02509i −0.601506 + 0.601506i
\(179\) 13.6569i 1.02076i 0.859949 + 0.510381i \(0.170495\pi\)
−0.859949 + 0.510381i \(0.829505\pi\)
\(180\) −0.0656581 + 0.923880i −0.00489387 + 0.0688619i
\(181\) 8.79045i 0.653389i 0.945130 + 0.326695i \(0.105935\pi\)
−0.945130 + 0.326695i \(0.894065\pi\)
\(182\) 14.8141 + 5.64255i 1.09810 + 0.418253i
\(183\) 8.41421 + 8.41421i 0.621997 + 0.621997i
\(184\) 0.585786i 0.0431847i
\(185\) −5.35757 6.17733i −0.393896 0.454166i
\(186\) 2.82843 0.207390
\(187\) −10.4525 10.4525i −0.764363 0.764363i
\(188\) 1.08239 1.08239i 0.0789416 0.0789416i
\(189\) −11.5349 + 5.17157i −0.839040 + 0.376177i
\(190\) 2.05025 + 2.36396i 0.148741 + 0.171500i
\(191\) 1.75736 0.127158 0.0635790 0.997977i \(-0.479749\pi\)
0.0635790 + 0.997977i \(0.479749\pi\)
\(192\) 1.30656 + 1.30656i 0.0942931 + 0.0942931i
\(193\) 8.24264 + 8.24264i 0.593318 + 0.593318i 0.938526 0.345208i \(-0.112192\pi\)
−0.345208 + 0.938526i \(0.612192\pi\)
\(194\) 6.49435 0.466267
\(195\) 24.6934 + 1.75490i 1.76833 + 0.125671i
\(196\) −4.65685 + 5.22625i −0.332632 + 0.373304i
\(197\) 0.585786 0.585786i 0.0417356 0.0417356i −0.685931 0.727667i \(-0.740605\pi\)
0.727667 + 0.685931i \(0.240605\pi\)
\(198\) 0.828427 + 0.828427i 0.0588738 + 0.0588738i
\(199\) 28.0334 1.98724 0.993618 0.112798i \(-0.0359814\pi\)
0.993618 + 0.112798i \(0.0359814\pi\)
\(200\) −3.00000 4.00000i −0.212132 0.282843i
\(201\) 27.3994i 1.93260i
\(202\) −1.94061 1.94061i −0.136541 0.136541i
\(203\) −2.04826 0.780163i −0.143760 0.0547567i
\(204\) 9.65685i 0.676115i
\(205\) −8.24264 0.585786i −0.575691 0.0409131i
\(206\) 14.1480i 0.985739i
\(207\) 0.171573 0.171573i 0.0119251 0.0119251i
\(208\) 4.23671 4.23671i 0.293763 0.293763i
\(209\) 3.95815 0.273791
\(210\) −4.60538 + 9.91403i −0.317802 + 0.684133i
\(211\) −10.3431 −0.712052 −0.356026 0.934476i \(-0.615868\pi\)
−0.356026 + 0.934476i \(0.615868\pi\)
\(212\) −8.24264 + 8.24264i −0.566107 + 0.566107i
\(213\) −0.765367 + 0.765367i −0.0524421 + 0.0524421i
\(214\) 5.17157i 0.353521i
\(215\) 9.55582 8.28772i 0.651702 0.565218i
\(216\) 4.77791i 0.325096i
\(217\) 3.78470 + 1.44155i 0.256922 + 0.0978590i
\(218\) −8.58579 8.58579i −0.581503 0.581503i
\(219\) 10.8284i 0.731717i
\(220\) −6.30864 0.448342i −0.425329 0.0302272i
\(221\) 31.3137 2.10639
\(222\) 4.77791 + 4.77791i 0.320672 + 0.320672i
\(223\) 6.75699 6.75699i 0.452481 0.452481i −0.443696 0.896177i \(-0.646333\pi\)
0.896177 + 0.443696i \(0.146333\pi\)
\(224\) 1.08239 + 2.41421i 0.0723204 + 0.161306i
\(225\) −0.292893 + 2.05025i −0.0195262 + 0.136684i
\(226\) −1.65685 −0.110212
\(227\) −8.38057 8.38057i −0.556238 0.556238i 0.371996 0.928234i \(-0.378673\pi\)
−0.928234 + 0.371996i \(0.878673\pi\)
\(228\) −1.82843 1.82843i −0.121091 0.121091i
\(229\) 7.70806 0.509363 0.254682 0.967025i \(-0.418029\pi\)
0.254682 + 0.967025i \(0.418029\pi\)
\(230\) −0.0928546 + 1.30656i −0.00612265 + 0.0861522i
\(231\) 5.65685 + 12.6173i 0.372194 + 0.830157i
\(232\) −0.585786 + 0.585786i −0.0384588 + 0.0384588i
\(233\) 3.00000 + 3.00000i 0.196537 + 0.196537i 0.798513 0.601977i \(-0.205620\pi\)
−0.601977 + 0.798513i \(0.705620\pi\)
\(234\) −2.48181 −0.162241
\(235\) 2.58579 2.24264i 0.168678 0.146294i
\(236\) 9.23880i 0.601394i
\(237\) −6.62567 6.62567i −0.430383 0.430383i
\(238\) −4.92177 + 12.9218i −0.319031 + 0.837594i
\(239\) 6.48528i 0.419498i 0.977755 + 0.209749i \(0.0672647\pi\)
−0.977755 + 0.209749i \(0.932735\pi\)
\(240\) 2.70711 + 3.12132i 0.174743 + 0.201480i
\(241\) 6.75699i 0.435256i 0.976032 + 0.217628i \(0.0698319\pi\)
−0.976032 + 0.217628i \(0.930168\pi\)
\(242\) 2.12132 2.12132i 0.136364 0.136364i
\(243\) 3.02301 3.02301i 0.193926 0.193926i
\(244\) 6.43996 0.412276
\(245\) −11.2153 + 10.9187i −0.716517 + 0.697569i
\(246\) 6.82843 0.435365
\(247\) −5.92893 + 5.92893i −0.377249 + 0.377249i
\(248\) 1.08239 1.08239i 0.0687320 0.0687320i
\(249\) 13.8995i 0.880845i
\(250\) −6.05728 9.39731i −0.383096 0.594338i
\(251\) 14.0936i 0.889582i 0.895634 + 0.444791i \(0.146722\pi\)
−0.895634 + 0.444791i \(0.853278\pi\)
\(252\) 0.390081 1.02413i 0.0245728 0.0645143i
\(253\) 1.17157 + 1.17157i 0.0736562 + 0.0736562i
\(254\) 5.07107i 0.318187i
\(255\) −1.53073 + 21.5391i −0.0958583 + 1.34883i
\(256\) 1.00000 0.0625000
\(257\) −7.83938 7.83938i −0.489007 0.489007i 0.418986 0.907993i \(-0.362386\pi\)
−0.907993 + 0.418986i \(0.862386\pi\)
\(258\) −7.39104 + 7.39104i −0.460146 + 0.460146i
\(259\) 3.95815 + 8.82843i 0.245948 + 0.548572i
\(260\) 10.1213 8.77817i 0.627698 0.544399i
\(261\) 0.343146 0.0212402
\(262\) −10.3596 10.3596i −0.640021 0.640021i
\(263\) −19.4142 19.4142i −1.19713 1.19713i −0.975022 0.222110i \(-0.928706\pi\)
−0.222110 0.975022i \(-0.571294\pi\)
\(264\) 5.22625 0.321654
\(265\) −19.6913 + 17.0782i −1.20963 + 1.04910i
\(266\) −1.51472 3.37849i −0.0928734 0.207149i
\(267\) 14.8284 14.8284i 0.907485 0.907485i
\(268\) −10.4853 10.4853i −0.640490 0.640490i
\(269\) −26.8966 −1.63992 −0.819958 0.572424i \(-0.806003\pi\)
−0.819958 + 0.572424i \(0.806003\pi\)
\(270\) −0.757359 + 10.6569i −0.0460914 + 0.648555i
\(271\) 18.7402i 1.13839i −0.822203 0.569194i \(-0.807255\pi\)
0.822203 0.569194i \(-0.192745\pi\)
\(272\) 3.69552 + 3.69552i 0.224074 + 0.224074i
\(273\) −27.3729 10.4261i −1.65668 0.631014i
\(274\) 11.5563i 0.698145i
\(275\) −14.0000 2.00000i −0.844232 0.120605i
\(276\) 1.08239i 0.0651524i
\(277\) −1.75736 + 1.75736i −0.105589 + 0.105589i −0.757928 0.652338i \(-0.773788\pi\)
0.652338 + 0.757928i \(0.273788\pi\)
\(278\) 6.08447 6.08447i 0.364922 0.364922i
\(279\) −0.634051 −0.0379596
\(280\) 2.03153 + 5.55634i 0.121407 + 0.332055i
\(281\) −5.65685 −0.337460 −0.168730 0.985662i \(-0.553967\pi\)
−0.168730 + 0.985662i \(0.553967\pi\)
\(282\) −2.00000 + 2.00000i −0.119098 + 0.119098i
\(283\) 3.15432 3.15432i 0.187505 0.187505i −0.607112 0.794617i \(-0.707672\pi\)
0.794617 + 0.607112i \(0.207672\pi\)
\(284\) 0.585786i 0.0347600i
\(285\) −3.78837 4.36803i −0.224404 0.258740i
\(286\) 16.9469i 1.00209i
\(287\) 9.13707 + 3.48022i 0.539344 + 0.205431i
\(288\) −0.292893 0.292893i −0.0172589 0.0172589i
\(289\) 10.3137i 0.606689i
\(290\) −1.39942 + 1.21371i −0.0821766 + 0.0712714i
\(291\) −12.0000 −0.703452
\(292\) −4.14386 4.14386i −0.242501 0.242501i
\(293\) −2.38896 + 2.38896i −0.139564 + 0.139564i −0.773437 0.633873i \(-0.781464\pi\)
0.633873 + 0.773437i \(0.281464\pi\)
\(294\) 8.60474 9.65685i 0.501839 0.563199i
\(295\) −1.46447 + 20.6066i −0.0852645 + 1.19976i
\(296\) 3.65685 0.212550
\(297\) 9.55582 + 9.55582i 0.554485 + 0.554485i
\(298\) 12.2426 + 12.2426i 0.709197 + 0.709197i
\(299\) −3.50981 −0.202977
\(300\) 5.54328 + 7.39104i 0.320041 + 0.426722i
\(301\) −13.6569 + 6.12293i −0.787168 + 0.352920i
\(302\) 6.24264 6.24264i 0.359224 0.359224i
\(303\) 3.58579 + 3.58579i 0.205998 + 0.205998i
\(304\) −1.39942 −0.0802621
\(305\) 14.3640 + 1.02082i 0.822478 + 0.0584517i
\(306\) 2.16478i 0.123752i
\(307\) 23.1626 + 23.1626i 1.32196 + 1.32196i 0.912186 + 0.409776i \(0.134393\pi\)
0.409776 + 0.912186i \(0.365607\pi\)
\(308\) 6.99321 + 2.66364i 0.398475 + 0.151775i
\(309\) 26.1421i 1.48717i
\(310\) 2.58579 2.24264i 0.146863 0.127373i
\(311\) 3.43289i 0.194661i −0.995252 0.0973305i \(-0.968970\pi\)
0.995252 0.0973305i \(-0.0310304\pi\)
\(312\) −7.82843 + 7.82843i −0.443197 + 0.443197i
\(313\) −6.75699 + 6.75699i −0.381927 + 0.381927i −0.871796 0.489869i \(-0.837045\pi\)
0.489869 + 0.871796i \(0.337045\pi\)
\(314\) −14.4650 −0.816310
\(315\) 1.03239 2.22243i 0.0581687 0.125220i
\(316\) −5.07107 −0.285270
\(317\) 21.8995 21.8995i 1.23000 1.23000i 0.266035 0.963963i \(-0.414286\pi\)
0.963963 0.266035i \(-0.0857136\pi\)
\(318\) 15.2304 15.2304i 0.854079 0.854079i
\(319\) 2.34315i 0.131191i
\(320\) 2.23044 + 0.158513i 0.124686 + 0.00886113i
\(321\) 9.55582i 0.533354i
\(322\) 0.551658 1.44834i 0.0307427 0.0807129i
\(323\) −5.17157 5.17157i −0.287754 0.287754i
\(324\) 10.0711i 0.559504i
\(325\) 23.9665 17.9749i 1.32942 0.997066i
\(326\) −19.3137 −1.06969
\(327\) 15.8645 + 15.8645i 0.877307 + 0.877307i
\(328\) 2.61313 2.61313i 0.144286 0.144286i
\(329\) −3.69552 + 1.65685i −0.203741 + 0.0913453i
\(330\) 11.6569 + 0.828427i 0.641689 + 0.0456034i
\(331\) 23.3137 1.28144 0.640719 0.767776i \(-0.278637\pi\)
0.640719 + 0.767776i \(0.278637\pi\)
\(332\) −5.31911 5.31911i −0.291924 0.291924i
\(333\) −1.07107 1.07107i −0.0586942 0.0586942i
\(334\) 2.42742 0.132822
\(335\) −21.7248 25.0489i −1.18695 1.36857i
\(336\) −2.00000 4.46088i −0.109109 0.243361i
\(337\) 3.75736 3.75736i 0.204676 0.204676i −0.597324 0.802000i \(-0.703769\pi\)
0.802000 + 0.597324i \(0.203769\pi\)
\(338\) 16.1924 + 16.1924i 0.880750 + 0.880750i
\(339\) 3.06147 0.166276
\(340\) 7.65685 + 8.82843i 0.415251 + 0.478789i
\(341\) 4.32957i 0.234459i
\(342\) 0.409880 + 0.409880i 0.0221638 + 0.0221638i
\(343\) 16.4357 8.53622i 0.887445 0.460913i
\(344\) 5.65685i 0.304997i
\(345\) 0.171573 2.41421i 0.00923717 0.129977i
\(346\) 18.7946i 1.01040i
\(347\) −5.31371 + 5.31371i −0.285255 + 0.285255i −0.835200 0.549946i \(-0.814648\pi\)
0.549946 + 0.835200i \(0.314648\pi\)
\(348\) 1.08239 1.08239i 0.0580223 0.0580223i
\(349\) 2.66752 0.142789 0.0713945 0.997448i \(-0.477255\pi\)
0.0713945 + 0.997448i \(0.477255\pi\)
\(350\) 3.65046 + 12.7151i 0.195125 + 0.679651i
\(351\) −28.6274 −1.52802
\(352\) 2.00000 2.00000i 0.106600 0.106600i
\(353\) 8.47343 8.47343i 0.450995 0.450995i −0.444690 0.895685i \(-0.646686\pi\)
0.895685 + 0.444690i \(0.146686\pi\)
\(354\) 17.0711i 0.907317i
\(355\) −0.0928546 + 1.30656i −0.00492821 + 0.0693452i
\(356\) 11.3492i 0.601506i
\(357\) 9.09425 23.8763i 0.481318 1.26367i
\(358\) −9.65685 9.65685i −0.510381 0.510381i
\(359\) 16.9706i 0.895672i 0.894116 + 0.447836i \(0.147805\pi\)
−0.894116 + 0.447836i \(0.852195\pi\)
\(360\) −0.606854 0.699709i −0.0319840 0.0368779i
\(361\) −17.0416 −0.896928
\(362\) −6.21579 6.21579i −0.326695 0.326695i
\(363\) −3.91969 + 3.91969i −0.205730 + 0.205730i
\(364\) −14.4650 + 6.48528i −0.758174 + 0.339921i
\(365\) −8.58579 9.89949i −0.449401 0.518163i
\(366\) −11.8995 −0.621997
\(367\) 3.06147 + 3.06147i 0.159807 + 0.159807i 0.782481 0.622674i \(-0.213954\pi\)
−0.622674 + 0.782481i \(0.713954\pi\)
\(368\) −0.414214 0.414214i −0.0215924 0.0215924i
\(369\) −1.53073 −0.0796868
\(370\) 8.15640 + 0.579658i 0.424031 + 0.0301350i
\(371\) 28.1421 12.6173i 1.46107 0.655057i
\(372\) −2.00000 + 2.00000i −0.103695 + 0.103695i
\(373\) −15.0711 15.0711i −0.780350 0.780350i 0.199539 0.979890i \(-0.436055\pi\)
−0.979890 + 0.199539i \(0.936055\pi\)
\(374\) 14.7821 0.764363
\(375\) 11.1924 + 17.3640i 0.577972 + 0.896671i
\(376\) 1.53073i 0.0789416i
\(377\) −3.50981 3.50981i −0.180764 0.180764i
\(378\) 4.49955 11.8133i 0.231432 0.607608i
\(379\) 6.14214i 0.315500i −0.987479 0.157750i \(-0.949576\pi\)
0.987479 0.157750i \(-0.0504241\pi\)
\(380\) −3.12132 0.221825i −0.160120 0.0113794i
\(381\) 9.37011i 0.480045i
\(382\) −1.24264 + 1.24264i −0.0635790 + 0.0635790i
\(383\) −10.6382 + 10.6382i −0.543587 + 0.543587i −0.924579 0.380991i \(-0.875583\pi\)
0.380991 + 0.924579i \(0.375583\pi\)
\(384\) −1.84776 −0.0942931
\(385\) 15.1757 + 7.04961i 0.773427 + 0.359282i
\(386\) −11.6569 −0.593318
\(387\) 1.65685 1.65685i 0.0842226 0.0842226i
\(388\) −4.59220 + 4.59220i −0.233134 + 0.233134i
\(389\) 0.142136i 0.00720656i −0.999994 0.00360328i \(-0.998853\pi\)
0.999994 0.00360328i \(-0.00114696\pi\)
\(390\) −18.7018 + 16.2200i −0.947001 + 0.821329i
\(391\) 3.06147i 0.154825i
\(392\) −0.402625 6.98841i −0.0203356 0.352968i
\(393\) 19.1421 + 19.1421i 0.965593 + 0.965593i
\(394\) 0.828427i 0.0417356i
\(395\) −11.3107 0.803828i −0.569104 0.0404450i
\(396\) −1.17157 −0.0588738
\(397\) 1.12085 + 1.12085i 0.0562540 + 0.0562540i 0.734674 0.678420i \(-0.237335\pi\)
−0.678420 + 0.734674i \(0.737335\pi\)
\(398\) −19.8226 + 19.8226i −0.993618 + 0.993618i
\(399\) 2.79884 + 6.24264i 0.140117 + 0.312523i
\(400\) 4.94975 + 0.707107i 0.247487 + 0.0353553i
\(401\) −19.7574 −0.986635 −0.493318 0.869849i \(-0.664216\pi\)
−0.493318 + 0.869849i \(0.664216\pi\)
\(402\) 19.3743 + 19.3743i 0.966301 + 0.966301i
\(403\) 6.48528 + 6.48528i 0.323055 + 0.323055i
\(404\) 2.74444 0.136541
\(405\) 1.59639 22.4629i 0.0793253 1.11619i
\(406\) 2.00000 0.896683i 0.0992583 0.0445016i
\(407\) 7.31371 7.31371i 0.362527 0.362527i
\(408\) −6.82843 6.82843i −0.338058 0.338058i
\(409\) −24.9719 −1.23478 −0.617392 0.786656i \(-0.711811\pi\)
−0.617392 + 0.786656i \(0.711811\pi\)
\(410\) 6.24264 5.41421i 0.308302 0.267389i
\(411\) 21.3533i 1.05328i
\(412\) 10.0042 + 10.0042i 0.492870 + 0.492870i
\(413\) 8.70054 22.8427i 0.428126 1.12401i
\(414\) 0.242641i 0.0119251i
\(415\) −11.0208 12.7071i −0.540991 0.623767i
\(416\) 5.99162i 0.293763i
\(417\) −11.2426 + 11.2426i −0.550554 + 0.550554i
\(418\) −2.79884 + 2.79884i −0.136895 + 0.136895i
\(419\) 11.5893 0.566174 0.283087 0.959094i \(-0.408642\pi\)
0.283087 + 0.959094i \(0.408642\pi\)
\(420\) −3.75378 10.2668i −0.183166 0.500967i
\(421\) 17.7990 0.867470 0.433735 0.901041i \(-0.357195\pi\)
0.433735 + 0.901041i \(0.357195\pi\)
\(422\) 7.31371 7.31371i 0.356026 0.356026i
\(423\) 0.448342 0.448342i 0.0217991 0.0217991i
\(424\) 11.6569i 0.566107i
\(425\) 15.6788 + 20.9050i 0.760531 + 1.01404i
\(426\) 1.08239i 0.0524421i
\(427\) −15.9226 6.06477i −0.770550 0.293495i
\(428\) 3.65685 + 3.65685i 0.176761 + 0.176761i
\(429\) 31.3137i 1.51184i
\(430\) −0.896683 + 12.6173i −0.0432419 + 0.608460i
\(431\) 5.65685 0.272481 0.136241 0.990676i \(-0.456498\pi\)
0.136241 + 0.990676i \(0.456498\pi\)
\(432\) −3.37849 3.37849i −0.162548 0.162548i
\(433\) −10.4525 + 10.4525i −0.502315 + 0.502315i −0.912157 0.409841i \(-0.865584\pi\)
0.409841 + 0.912157i \(0.365584\pi\)
\(434\) −3.69552 + 1.65685i −0.177391 + 0.0795315i
\(435\) 2.58579 2.24264i 0.123979 0.107526i
\(436\) 12.1421 0.581503
\(437\) 0.579658 + 0.579658i 0.0277288 + 0.0277288i
\(438\) 7.65685 + 7.65685i 0.365859 + 0.365859i
\(439\) −13.8854 −0.662713 −0.331357 0.943506i \(-0.607506\pi\)
−0.331357 + 0.943506i \(0.607506\pi\)
\(440\) 4.77791 4.14386i 0.227778 0.197551i
\(441\) −1.92893 + 2.16478i −0.0918539 + 0.103085i
\(442\) −22.1421 + 22.1421i −1.05319 + 1.05319i
\(443\) −4.14214 4.14214i −0.196799 0.196799i 0.601827 0.798626i \(-0.294440\pi\)
−0.798626 + 0.601827i \(0.794440\pi\)
\(444\) −6.75699 −0.320672
\(445\) 1.79899 25.3137i 0.0852803 1.19998i
\(446\) 9.55582i 0.452481i
\(447\) −22.6215 22.6215i −1.06996 1.06996i
\(448\) −2.47247 0.941740i −0.116813 0.0444930i
\(449\) 25.6569i 1.21082i −0.795913 0.605411i \(-0.793009\pi\)
0.795913 0.605411i \(-0.206991\pi\)
\(450\) −1.24264 1.65685i −0.0585786 0.0781049i
\(451\) 10.4525i 0.492189i
\(452\) 1.17157 1.17157i 0.0551062 0.0551062i
\(453\) −11.5349 + 11.5349i −0.541957 + 0.541957i
\(454\) 11.8519 0.556238
\(455\) −33.2915 + 12.1722i −1.56073 + 0.570639i
\(456\) 2.58579 0.121091
\(457\) −1.65685 + 1.65685i −0.0775044 + 0.0775044i −0.744796 0.667292i \(-0.767453\pi\)
0.667292 + 0.744796i \(0.267453\pi\)
\(458\) −5.45042 + 5.45042i −0.254682 + 0.254682i
\(459\) 24.9706i 1.16553i
\(460\) −0.858221 0.989538i −0.0400148 0.0461374i
\(461\) 34.0250i 1.58470i −0.610064 0.792352i \(-0.708856\pi\)
0.610064 0.792352i \(-0.291144\pi\)
\(462\) −12.9218 4.92177i −0.601175 0.228981i
\(463\) −12.9706 12.9706i −0.602793 0.602793i 0.338260 0.941053i \(-0.390162\pi\)
−0.941053 + 0.338260i \(0.890162\pi\)
\(464\) 0.828427i 0.0384588i
\(465\) −4.77791 + 4.14386i −0.221570 + 0.192167i
\(466\) −4.24264 −0.196537
\(467\) 17.4337 + 17.4337i 0.806734 + 0.806734i 0.984138 0.177404i \(-0.0567701\pi\)
−0.177404 + 0.984138i \(0.556770\pi\)
\(468\) 1.75490 1.75490i 0.0811205 0.0811205i
\(469\) 16.0502 + 35.7990i 0.741128 + 1.65304i
\(470\) −0.242641 + 3.41421i −0.0111922 + 0.157486i
\(471\) 26.7279 1.23156
\(472\) −6.53281 6.53281i −0.300697 0.300697i
\(473\) 11.3137 + 11.3137i 0.520205 + 0.520205i
\(474\) 9.37011 0.430383
\(475\) −6.92676 0.989538i −0.317822 0.0454031i
\(476\) −5.65685 12.6173i −0.259281 0.578312i
\(477\) −3.41421 + 3.41421i −0.156326 + 0.156326i
\(478\) −4.58579 4.58579i −0.209749 0.209749i
\(479\) −11.0866 −0.506558 −0.253279 0.967393i \(-0.581509\pi\)
−0.253279 + 0.967393i \(0.581509\pi\)
\(480\) −4.12132 0.292893i −0.188112 0.0133687i
\(481\) 21.9105i 0.999032i
\(482\) −4.77791 4.77791i −0.217628 0.217628i
\(483\) −1.01933 + 2.67619i −0.0463812 + 0.121771i
\(484\) 3.00000i 0.136364i
\(485\) −10.9706 + 9.51472i −0.498148 + 0.432041i
\(486\) 4.27518i 0.193926i
\(487\) 1.10051 1.10051i 0.0498686 0.0498686i −0.681733 0.731601i \(-0.738773\pi\)
0.731601 + 0.681733i \(0.238773\pi\)
\(488\) −4.55374 + 4.55374i −0.206138 + 0.206138i
\(489\) 35.6871 1.61383
\(490\) 0.209720 15.6511i 0.00947418 0.707043i
\(491\) 25.1716 1.13598 0.567989 0.823036i \(-0.307722\pi\)
0.567989 + 0.823036i \(0.307722\pi\)
\(492\) −4.82843 + 4.82843i −0.217682 + 0.217682i
\(493\) 3.06147 3.06147i 0.137882 0.137882i
\(494\) 8.38478i 0.377249i
\(495\) −2.61313 0.185709i −0.117451 0.00834701i
\(496\) 1.53073i 0.0687320i
\(497\) 0.551658 1.44834i 0.0247453 0.0649670i
\(498\) 9.82843 + 9.82843i 0.440422 + 0.440422i
\(499\) 7.51472i 0.336405i −0.985752 0.168203i \(-0.946204\pi\)
0.985752 0.168203i \(-0.0537963\pi\)
\(500\) 10.9280 + 2.36176i 0.488717 + 0.105621i
\(501\) −4.48528 −0.200388
\(502\) −9.96570 9.96570i −0.444791 0.444791i
\(503\) 18.1062 18.1062i 0.807314 0.807314i −0.176912 0.984227i \(-0.556611\pi\)
0.984227 + 0.176912i \(0.0566109\pi\)
\(504\) 0.448342 + 1.00000i 0.0199707 + 0.0445435i
\(505\) 6.12132 + 0.435029i 0.272395 + 0.0193585i
\(506\) −1.65685 −0.0736562
\(507\) −29.9196 29.9196i −1.32878 1.32878i
\(508\) −3.58579 3.58579i −0.159094 0.159094i
\(509\) 14.4650 0.641152 0.320576 0.947223i \(-0.396124\pi\)
0.320576 + 0.947223i \(0.396124\pi\)
\(510\) −14.1480 16.3128i −0.626485 0.722343i
\(511\) 6.34315 + 14.1480i 0.280604 + 0.625872i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 4.72792 + 4.72792i 0.208743 + 0.208743i
\(514\) 11.0866 0.489007
\(515\) 20.7279 + 23.8995i 0.913381 + 1.05314i
\(516\) 10.4525i 0.460146i
\(517\) 3.06147 + 3.06147i 0.134643 + 0.134643i
\(518\) −9.04148 3.44381i −0.397260 0.151312i
\(519\) 34.7279i 1.52439i
\(520\) −0.949747 + 13.3640i −0.0416492 + 0.586048i
\(521\) 36.6925i 1.60753i 0.594947 + 0.803765i \(0.297173\pi\)
−0.594947 + 0.803765i \(0.702827\pi\)
\(522\) −0.242641 + 0.242641i −0.0106201 + 0.0106201i
\(523\) 1.75490 1.75490i 0.0767366 0.0767366i −0.667697 0.744433i \(-0.732720\pi\)
0.744433 + 0.667697i \(0.232720\pi\)
\(524\) 14.6508 0.640021
\(525\) −6.74517 23.4945i −0.294383 1.02538i
\(526\) 27.4558 1.19713
\(527\) −5.65685 + 5.65685i −0.246416 + 0.246416i
\(528\) −3.69552 + 3.69552i −0.160827 + 0.160827i
\(529\) 22.6569i 0.985081i
\(530\) 1.84776 25.9999i 0.0802615 1.12937i
\(531\) 3.82683i 0.166070i
\(532\) 3.46002 + 1.31789i 0.150011 + 0.0571377i
\(533\) 15.6569 + 15.6569i 0.678174 + 0.678174i
\(534\) 20.9706i 0.907485i
\(535\) 7.57675 + 8.73606i 0.327571 + 0.377693i
\(536\) 14.8284 0.640490
\(537\) 17.8435 + 17.8435i 0.770006 + 0.770006i
\(538\) 19.0188 19.0188i 0.819958 0.819958i
\(539\) −14.7821 13.1716i −0.636709 0.567340i
\(540\) −7.00000 8.07107i −0.301232 0.347323i
\(541\) 10.9706 0.471661 0.235831 0.971794i \(-0.424219\pi\)
0.235831 + 0.971794i \(0.424219\pi\)
\(542\) 13.2513 + 13.2513i 0.569194 + 0.569194i
\(543\) 11.4853 + 11.4853i 0.492881 + 0.492881i
\(544\) −5.22625 −0.224074
\(545\) 27.0823 + 1.92468i 1.16008 + 0.0824443i
\(546\) 26.7279 11.9832i 1.14385 0.512835i
\(547\) −30.6274 + 30.6274i −1.30953 + 1.30953i −0.387783 + 0.921751i \(0.626759\pi\)
−0.921751 + 0.387783i \(0.873241\pi\)
\(548\) 8.17157 + 8.17157i 0.349072 + 0.349072i
\(549\) 2.66752 0.113847
\(550\) 11.3137 8.48528i 0.482418 0.361814i
\(551\) 1.15932i 0.0493885i
\(552\) 0.765367 + 0.765367i 0.0325762 + 0.0325762i
\(553\) 12.5381 + 4.77563i 0.533173 + 0.203080i
\(554\) 2.48528i 0.105589i
\(555\) −15.0711 1.07107i −0.639731 0.0454643i
\(556\) 8.60474i 0.364922i
\(557\) −26.7279 + 26.7279i −1.13250 + 1.13250i −0.142738 + 0.989761i \(0.545591\pi\)
−0.989761 + 0.142738i \(0.954409\pi\)
\(558\) 0.448342 0.448342i 0.0189798 0.0189798i
\(559\) −33.8937 −1.43355
\(560\) −5.36543 2.49242i −0.226731 0.105324i
\(561\) −27.3137 −1.15319
\(562\) 4.00000 4.00000i 0.168730 0.168730i
\(563\) 3.54827 3.54827i 0.149542 0.149542i −0.628372 0.777913i \(-0.716278\pi\)
0.777913 + 0.628372i \(0.216278\pi\)
\(564\) 2.82843i 0.119098i
\(565\) 2.79884 2.42742i 0.117748 0.102122i
\(566\) 4.46088i 0.187505i
\(567\) −9.48433 + 24.9004i −0.398304 + 1.04572i
\(568\) −0.414214 0.414214i −0.0173800 0.0173800i
\(569\) 1.41421i 0.0592869i −0.999561 0.0296435i \(-0.990563\pi\)
0.999561 0.0296435i \(-0.00943719\pi\)
\(570\) 5.76745 + 0.409880i 0.241572 + 0.0171680i
\(571\) −25.4558 −1.06529 −0.532647 0.846338i \(-0.678803\pi\)
−0.532647 + 0.846338i \(0.678803\pi\)
\(572\) 11.9832 + 11.9832i 0.501044 + 0.501044i
\(573\) 2.29610 2.29610i 0.0959210 0.0959210i
\(574\) −8.92177 + 4.00000i −0.372387 + 0.166957i
\(575\) −1.75736 2.34315i −0.0732869 0.0977159i
\(576\) 0.414214 0.0172589
\(577\) −26.3170 26.3170i −1.09559 1.09559i −0.994920 0.100670i \(-0.967901\pi\)
−0.100670 0.994920i \(-0.532099\pi\)
\(578\) −7.29289 7.29289i −0.303344 0.303344i
\(579\) 21.5391 0.895133
\(580\) 0.131316 1.84776i 0.00545261 0.0767240i
\(581\) 8.14214 + 18.1606i 0.337793 + 0.753427i
\(582\) 8.48528 8.48528i 0.351726 0.351726i
\(583\) −23.3137 23.3137i −0.965555 0.965555i
\(584\) 5.86030 0.242501
\(585\) 4.19239 3.63604i 0.173334 0.150332i
\(586\) 3.37849i 0.139564i
\(587\) 16.0886 + 16.0886i 0.664049 + 0.664049i 0.956332 0.292283i \(-0.0944149\pi\)
−0.292283 + 0.956332i \(0.594415\pi\)
\(588\) 0.743954 + 12.9129i 0.0306801 + 0.532519i
\(589\) 2.14214i 0.0882652i
\(590\) −13.5355 15.6066i −0.557249 0.642514i
\(591\) 1.53073i 0.0629660i
\(592\) −2.58579 + 2.58579i −0.106275 + 0.106275i
\(593\) −22.8841 + 22.8841i −0.939737 + 0.939737i −0.998285 0.0585480i \(-0.981353\pi\)
0.0585480 + 0.998285i \(0.481353\pi\)
\(594\) −13.5140 −0.554485
\(595\) −10.6173 29.0388i −0.435266 1.19048i
\(596\) −17.3137 −0.709197
\(597\) 36.6274 36.6274i 1.49906 1.49906i
\(598\) 2.48181 2.48181i 0.101489 0.101489i
\(599\) 18.5269i 0.756989i −0.925604 0.378495i \(-0.876442\pi\)
0.925604 0.378495i \(-0.123558\pi\)
\(600\) −9.14594 1.30656i −0.373381 0.0533402i
\(601\) 16.5754i 0.676126i −0.941123 0.338063i \(-0.890228\pi\)
0.941123 0.338063i \(-0.109772\pi\)
\(602\) 5.32729 13.9864i 0.217124 0.570044i
\(603\) −4.34315 4.34315i −0.176867 0.176867i
\(604\) 8.82843i 0.359224i
\(605\) −0.475538 + 6.69133i −0.0193334 + 0.272041i
\(606\) −5.07107 −0.205998
\(607\) −21.5391 21.5391i −0.874243 0.874243i 0.118688 0.992932i \(-0.462131\pi\)
−0.992932 + 0.118688i \(0.962131\pi\)
\(608\) 0.989538 0.989538i 0.0401311 0.0401311i
\(609\) −3.69552 + 1.65685i −0.149750 + 0.0671391i
\(610\) −10.8787 + 9.43503i −0.440465 + 0.382013i
\(611\) −9.17157 −0.371042
\(612\) 1.53073 + 1.53073i 0.0618762 + 0.0618762i
\(613\) 19.8995 + 19.8995i 0.803733 + 0.803733i 0.983677 0.179944i \(-0.0575916\pi\)
−0.179944 + 0.983677i \(0.557592\pi\)
\(614\) −32.7569 −1.32196
\(615\) −11.5349 + 10.0042i −0.465132 + 0.403407i
\(616\) −6.82843 + 3.06147i −0.275125 + 0.123350i
\(617\) −28.4853 + 28.4853i −1.14677 + 1.14677i −0.159591 + 0.987183i \(0.551018\pi\)
−0.987183 + 0.159591i \(0.948982\pi\)
\(618\) −18.4853 18.4853i −0.743587 0.743587i
\(619\) −0.688444 −0.0276709 −0.0138354 0.999904i \(-0.504404\pi\)
−0.0138354 + 0.999904i \(0.504404\pi\)
\(620\) −0.242641 + 3.41421i −0.00974468 + 0.137118i
\(621\) 2.79884i 0.112313i
\(622\) 2.42742 + 2.42742i 0.0973305 + 0.0973305i
\(623\) −10.6880 + 28.0606i −0.428205 + 1.12422i
\(624\) 11.0711i 0.443197i
\(625\) 24.0000 + 7.00000i 0.960000 + 0.280000i
\(626\) 9.55582i 0.381927i
\(627\) 5.17157 5.17157i 0.206533 0.206533i
\(628\) 10.2283 10.2283i 0.408155 0.408155i
\(629\) −19.1116 −0.762031
\(630\) 0.841487 + 2.30151i 0.0335257 + 0.0916944i
\(631\) 41.3553 1.64633 0.823165 0.567802i \(-0.192206\pi\)
0.823165 + 0.567802i \(0.192206\pi\)
\(632\) 3.58579 3.58579i 0.142635 0.142635i
\(633\) −13.5140 + 13.5140i −0.537132 + 0.537132i
\(634\) 30.9706i 1.23000i
\(635\) −7.42950 8.56628i −0.294831 0.339943i
\(636\) 21.5391i 0.854079i
\(637\) 41.8719 2.41237i 1.65902 0.0955818i
\(638\) −1.65685 1.65685i −0.0655955 0.0655955i
\(639\) 0.242641i 0.00959872i
\(640\) −1.68925 + 1.46508i −0.0667733 + 0.0579122i
\(641\) −37.2132 −1.46983 −0.734917 0.678158i \(-0.762779\pi\)
−0.734917 + 0.678158i \(0.762779\pi\)
\(642\) −6.75699 6.75699i −0.266677 0.266677i
\(643\) −20.9435 + 20.9435i −0.825930 + 0.825930i −0.986951 0.161021i \(-0.948521\pi\)
0.161021 + 0.986951i \(0.448521\pi\)
\(644\) 0.634051 + 1.41421i 0.0249851 + 0.0557278i
\(645\) 1.65685 23.3137i 0.0652386 0.917976i
\(646\) 7.31371 0.287754
\(647\) 23.8896 + 23.8896i 0.939195 + 0.939195i 0.998254 0.0590593i \(-0.0188101\pi\)
−0.0590593 + 0.998254i \(0.518810\pi\)
\(648\) 7.12132 + 7.12132i 0.279752 + 0.279752i
\(649\) −26.1313 −1.02574
\(650\) −4.23671 + 29.6570i −0.166178 + 1.16324i
\(651\) 6.82843 3.06147i 0.267627 0.119988i
\(652\) 13.6569 13.6569i 0.534844 0.534844i
\(653\) 8.72792 + 8.72792i 0.341550 + 0.341550i 0.856950 0.515400i \(-0.172357\pi\)
−0.515400 + 0.856950i \(0.672357\pi\)
\(654\) −22.4357 −0.877307
\(655\) 32.6777 + 2.32233i 1.27682 + 0.0907410i
\(656\) 3.69552i 0.144286i
\(657\) −1.71644 1.71644i −0.0669648 0.0669648i
\(658\) 1.44155 3.78470i 0.0561976 0.147543i
\(659\) 29.6569i 1.15527i 0.816296 + 0.577634i \(0.196024\pi\)
−0.816296 + 0.577634i \(0.803976\pi\)
\(660\) −8.82843 + 7.65685i −0.343646 + 0.298043i
\(661\) 47.5390i 1.84905i −0.381118 0.924526i \(-0.624461\pi\)
0.381118 0.924526i \(-0.375539\pi\)
\(662\) −16.4853 + 16.4853i −0.640719 + 0.640719i
\(663\) 40.9133 40.9133i 1.58894 1.58894i
\(664\) 7.52235 0.291924
\(665\) 7.50848 + 3.48793i 0.291166 + 0.135256i
\(666\) 1.51472 0.0586942
\(667\) −0.343146 + 0.343146i −0.0132867 + 0.0132867i
\(668\) −1.71644 + 1.71644i −0.0664112 + 0.0664112i
\(669\) 17.6569i 0.682653i
\(670\) 33.0740 + 2.35049i 1.27776 + 0.0908075i
\(671\) 18.2150i 0.703181i
\(672\) 4.56854 + 1.74011i 0.176235 + 0.0671261i
\(673\) −22.7990 22.7990i −0.878836 0.878836i 0.114578 0.993414i \(-0.463448\pi\)
−0.993414 + 0.114578i \(0.963448\pi\)
\(674\) 5.31371i 0.204676i
\(675\) −14.3337 19.1116i −0.551706 0.735607i
\(676\) −22.8995 −0.880750
\(677\) −22.4742 22.4742i −0.863754 0.863754i 0.128018 0.991772i \(-0.459138\pi\)
−0.991772 + 0.128018i \(0.959138\pi\)
\(678\) −2.16478 + 2.16478i −0.0831380 + 0.0831380i
\(679\) 15.6788 7.02944i 0.601695 0.269765i
\(680\) −11.6569 0.828427i −0.447020 0.0317687i
\(681\) −21.8995 −0.839190
\(682\) 3.06147 + 3.06147i 0.117230 + 0.117230i
\(683\) −25.3137 25.3137i −0.968602 0.968602i 0.0309197 0.999522i \(-0.490156\pi\)
−0.999522 + 0.0309197i \(0.990156\pi\)
\(684\) −0.579658 −0.0221638
\(685\) 16.9309 + 19.5215i 0.646897 + 0.745879i
\(686\) −5.58579 + 17.6578i −0.213266 + 0.674179i
\(687\) 10.0711 10.0711i 0.384235 0.384235i
\(688\) −4.00000 4.00000i −0.152499 0.152499i
\(689\) 69.8434 2.66082
\(690\) 1.58579 + 1.82843i 0.0603699 + 0.0696070i
\(691\) 25.1033i 0.954973i −0.878639 0.477487i \(-0.841548\pi\)
0.878639 0.477487i \(-0.158452\pi\)
\(692\) −13.2898 13.2898i −0.505202 0.505202i
\(693\) 2.89668 + 1.10332i 0.110036 + 0.0419115i
\(694\) 7.51472i 0.285255i
\(695\) −1.36396 + 19.1924i −0.0517380 + 0.728009i
\(696\) 1.53073i 0.0580223i
\(697\) −13.6569 + 13.6569i −0.517290 + 0.517290i
\(698\) −1.88622 + 1.88622i −0.0713945 + 0.0713945i
\(699\) 7.83938 0.296512
\(700\) −11.5722 6.40968i −0.437388 0.242263i
\(701\) −13.1127 −0.495260 −0.247630 0.968855i \(-0.579652\pi\)
−0.247630 + 0.968855i \(0.579652\pi\)
\(702\) 20.2426 20.2426i 0.764009 0.764009i
\(703\) 3.61859 3.61859i 0.136478 0.136478i
\(704\) 2.82843i 0.106600i
\(705\) 0.448342 6.30864i 0.0168855 0.237597i
\(706\) 11.9832i 0.450995i
\(707\) −6.78556 2.58455i −0.255197 0.0972020i
\(708\) 12.0711 + 12.0711i 0.453659 + 0.453659i
\(709\) 41.3137i 1.55157i 0.630998 + 0.775784i \(0.282646\pi\)
−0.630998 + 0.775784i \(0.717354\pi\)
\(710\) −0.858221 0.989538i −0.0322085 0.0371367i
\(711\) −2.10051 −0.0787751
\(712\) 8.02509 + 8.02509i 0.300753 + 0.300753i
\(713\) 0.634051 0.634051i 0.0237454 0.0237454i
\(714\) 10.4525 + 23.3137i 0.391175 + 0.872494i
\(715\) 24.8284 + 28.6274i 0.928531 + 1.07060i
\(716\) 13.6569 0.510381
\(717\) 8.47343 + 8.47343i 0.316446 + 0.316446i
\(718\) −12.0000 12.0000i −0.447836 0.447836i
\(719\) 43.7122 1.63019 0.815094 0.579328i \(-0.196685\pi\)
0.815094 + 0.579328i \(0.196685\pi\)
\(720\) 0.923880 + 0.0656581i 0.0344310 + 0.00244693i
\(721\) −15.3137 34.1563i −0.570312 1.27205i
\(722\) 12.0503 12.0503i 0.448464 0.448464i
\(723\) 8.82843 + 8.82843i 0.328333 + 0.328333i
\(724\) 8.79045 0.326695
\(725\) 0.585786 4.10051i 0.0217556 0.152289i
\(726\) 5.54328i 0.205730i
\(727\) −22.8841 22.8841i −0.848724 0.848724i 0.141250 0.989974i \(-0.454888\pi\)
−0.989974 + 0.141250i \(0.954888\pi\)
\(728\) 5.64255 14.8141i 0.209127 0.549048i
\(729\) 22.3137i 0.826434i
\(730\) 13.0711 + 0.928932i 0.483782 + 0.0343813i
\(731\) 29.5641i 1.09347i
\(732\) 8.41421 8.41421i 0.310998 0.310998i
\(733\) 21.9489 21.9489i 0.810703 0.810703i −0.174037 0.984739i \(-0.555681\pi\)
0.984739 + 0.174037i \(0.0556811\pi\)
\(734\) −4.32957 −0.159807
\(735\) −0.387512 + 28.9194i −0.0142936 + 1.06671i
\(736\) 0.585786 0.0215924
\(737\) 29.6569 29.6569i 1.09242 1.09242i
\(738\) 1.08239 1.08239i 0.0398434 0.0398434i
\(739\) 9.65685i 0.355233i 0.984100 + 0.177617i \(0.0568387\pi\)
−0.984100 + 0.177617i \(0.943161\pi\)
\(740\) −6.17733 + 5.35757i −0.227083 + 0.196948i
\(741\) 15.4930i 0.569151i
\(742\) −10.9777 + 28.8213i −0.403005 + 1.05806i
\(743\) 27.0416 + 27.0416i 0.992061 + 0.992061i 0.999969 0.00790753i \(-0.00251707\pi\)
−0.00790753 + 0.999969i \(0.502517\pi\)
\(744\) 2.82843i 0.103695i
\(745\) −38.6172 2.74444i −1.41483 0.100549i
\(746\) 21.3137 0.780350
\(747\) −2.20325 2.20325i −0.0806126 0.0806126i
\(748\) −10.4525 + 10.4525i −0.382181 + 0.382181i
\(749\) −5.59767 12.4853i −0.204534 0.456202i
\(750\) −20.1924 4.36396i −0.737322 0.159349i
\(751\) −2.48528 −0.0906892 −0.0453446 0.998971i \(-0.514439\pi\)
−0.0453446 + 0.998971i \(0.514439\pi\)
\(752\) −1.08239 1.08239i −0.0394708 0.0394708i
\(753\) 18.4142 + 18.4142i 0.671051 + 0.671051i
\(754\) 4.96362 0.180764
\(755\) −1.39942 + 19.6913i −0.0509300 + 0.716640i
\(756\) 5.17157 + 11.5349i 0.188088 + 0.419520i
\(757\) 7.89949 7.89949i 0.287112 0.287112i −0.548825 0.835937i \(-0.684925\pi\)
0.835937 + 0.548825i \(0.184925\pi\)
\(758\) 4.34315 + 4.34315i 0.157750 + 0.157750i
\(759\) 3.06147 0.111124
\(760\) 2.36396 2.05025i 0.0857499 0.0743705i
\(761\) 26.3939i 0.956778i −0.878148 0.478389i \(-0.841221\pi\)
0.878148 0.478389i \(-0.158779\pi\)
\(762\) 6.62567 + 6.62567i 0.240023 + 0.240023i
\(763\) −30.0211 11.4347i −1.08684 0.413965i
\(764\) 1.75736i 0.0635790i
\(765\) 3.17157 + 3.65685i 0.114668 + 0.132214i
\(766\) 15.0447i 0.543587i
\(767\) 39.1421 39.1421i 1.41334 1.41334i
\(768\) 1.30656 1.30656i 0.0471465 0.0471465i
\(769\) −17.5809 −0.633984 −0.316992 0.948428i \(-0.602673\pi\)
−0.316992 + 0.948428i \(0.602673\pi\)
\(770\) −15.7157 + 5.74603i −0.566354 + 0.207073i
\(771\) −20.4853 −0.737759
\(772\) 8.24264 8.24264i 0.296659 0.296659i
\(773\) −14.6892 + 14.6892i −0.528334 + 0.528334i −0.920076 0.391741i \(-0.871873\pi\)
0.391741 + 0.920076i \(0.371873\pi\)
\(774\) 2.34315i 0.0842226i
\(775\) −1.08239 + 7.57675i −0.0388807 + 0.272165i
\(776\) 6.49435i 0.233134i
\(777\) 16.7065 + 6.36332i 0.599341 + 0.228283i
\(778\) 0.100505 + 0.100505i 0.00360328 + 0.00360328i
\(779\) 5.17157i 0.185291i
\(780\) 1.75490 24.6934i 0.0628357 0.884165i
\(781\) −1.65685 −0.0592869
\(782\) 2.16478 + 2.16478i 0.0774125 + 0.0774125i
\(783\) −2.79884 + 2.79884i −0.100022 + 0.100022i
\(784\) 5.22625 + 4.65685i 0.186652 + 0.166316i
\(785\) 24.4350 21.1924i 0.872124 0.756389i
\(786\) −27.0711 −0.965593
\(787\) 24.3764 + 24.3764i 0.868923 + 0.868923i 0.992353 0.123430i \(-0.0393895\pi\)
−0.123430 + 0.992353i \(0.539389\pi\)
\(788\) −0.585786 0.585786i −0.0208678 0.0208678i
\(789\) −50.7318 −1.80610
\(790\) 8.56628 7.42950i 0.304775 0.264330i
\(791\) −4.00000 + 1.79337i −0.142224 + 0.0637648i
\(792\) 0.828427 0.828427i 0.0294369 0.0294369i
\(793\) −27.2843 27.2843i −0.968893 0.968893i
\(794\) −1.58513 −0.0562540
\(795\) −3.41421 + 48.0416i −0.121090 + 1.70386i
\(796\) 28.0334i 0.993618i
\(797\) 16.6683 + 16.6683i 0.590421 + 0.590421i 0.937745 0.347324i \(-0.112910\pi\)
−0.347324 + 0.937745i \(0.612910\pi\)
\(798\) −6.39329 2.43514i −0.226320 0.0862030i
\(799\) 8.00000i 0.283020i
\(800\) −4.00000 + 3.00000i −0.141421 + 0.106066i
\(801\) 4.70099i 0.166101i
\(802\) 13.9706 13.9706i 0.493318 0.493318i
\(803\) 11.7206 11.7206i 0.413611 0.413611i
\(804\) −27.3994 −0.966301
\(805\) 1.19004 + 3.25483i 0.0419435 + 0.114718i
\(806\) −9.17157 −0.323055
\(807\) −35.1421 + 35.1421i −1.23706 + 1.23706i
\(808\) −1.94061 + 1.94061i −0.0682705 + 0.0682705i
\(809\) 33.8995i 1.19184i −0.803043 0.595921i \(-0.796787\pi\)
0.803043 0.595921i \(-0.203213\pi\)
\(810\) 14.7549 + 17.0125i 0.518433 + 0.597759i
\(811\) 50.6005i 1.77682i 0.459048 + 0.888411i \(0.348191\pi\)
−0.459048 + 0.888411i \(0.651809\pi\)
\(812\) −0.780163 + 2.04826i −0.0273784 + 0.0718800i
\(813\) −24.4853 24.4853i −0.858736 0.858736i
\(814\) 10.3431i 0.362527i
\(815\) 32.6256 28.2960i 1.14283 0.991167i
\(816\) 9.65685 0.338058
\(817\) 5.59767 + 5.59767i 0.195838 + 0.195838i
\(818\) 17.6578 17.6578i 0.617392 0.617392i
\(819\) −5.99162 + 2.68629i −0.209364 + 0.0938666i
\(820\) −0.585786 + 8.24264i −0.0204565 + 0.287845i
\(821\) −34.4853 −1.20354 −0.601772 0.798668i \(-0.705539\pi\)
−0.601772 + 0.798668i \(0.705539\pi\)
\(822\) −15.0991 15.0991i −0.526642 0.526642i
\(823\) −2.34315 2.34315i −0.0816769 0.0816769i 0.665088 0.746765i \(-0.268394\pi\)
−0.746765 + 0.665088i \(0.768394\pi\)
\(824\) −14.1480 −0.492870
\(825\) −20.9050 + 15.6788i −0.727819 + 0.545864i
\(826\) 10.0000 + 22.3044i 0.347945 + 0.776070i
\(827\) −7.51472 + 7.51472i −0.261312 + 0.261312i −0.825587 0.564275i \(-0.809156\pi\)
0.564275 + 0.825587i \(0.309156\pi\)
\(828\) −0.171573 0.171573i −0.00596257 0.00596257i
\(829\) −40.8589 −1.41909 −0.709545 0.704660i \(-0.751099\pi\)
−0.709545 + 0.704660i \(0.751099\pi\)
\(830\) 16.7782 + 1.19239i 0.582379 + 0.0413884i
\(831\) 4.59220i 0.159302i
\(832\) −4.23671 4.23671i −0.146882 0.146882i
\(833\) 2.10422 + 36.5232i 0.0729069 + 1.26545i
\(834\) 15.8995i 0.550554i
\(835\) −4.10051 + 3.55635i −0.141904 + 0.123073i
\(836\) 3.95815i 0.136895i
\(837\) 5.17157 5.17157i 0.178756 0.178756i
\(838\) −8.19486 + 8.19486i −0.283087 + 0.283087i
\(839\) −20.6424 −0.712654 −0.356327 0.934361i \(-0.615971\pi\)
−0.356327 + 0.934361i \(0.615971\pi\)
\(840\) 9.91403 + 4.60538i 0.342066 + 0.158901i
\(841\) 28.3137 0.976335
\(842\) −12.5858 + 12.5858i −0.433735 + 0.433735i
\(843\) −7.39104 + 7.39104i −0.254561 + 0.254561i
\(844\) 10.3431i 0.356026i
\(845\) −51.0760 3.62986i −1.75707 0.124871i
\(846\) 0.634051i 0.0217991i
\(847\) 2.82522 7.41742i 0.0970757 0.254866i
\(848\) 8.24264 + 8.24264i 0.283053 + 0.283053i
\(849\) 8.24264i 0.282887i
\(850\) −25.8686 3.69552i −0.887287 0.126755i
\(851\) 2.14214 0.0734315
\(852\) 0.765367 + 0.765367i 0.0262210 + 0.0262210i
\(853\) 26.7268 26.7268i 0.915110 0.915110i −0.0815587 0.996669i \(-0.525990\pi\)
0.996669 + 0.0815587i \(0.0259898\pi\)
\(854\) 15.5474 6.97056i 0.532022 0.238528i
\(855\) −1.29289 0.0918831i −0.0442160 0.00314234i
\(856\) −5.17157 −0.176761
\(857\) 11.4580 + 11.4580i 0.391397 + 0.391397i 0.875185 0.483788i \(-0.160739\pi\)
−0.483788 + 0.875185i \(0.660739\pi\)
\(858\) −22.1421 22.1421i −0.755920 0.755920i
\(859\) 40.6732 1.38775 0.693876 0.720094i \(-0.255901\pi\)
0.693876 + 0.720094i \(0.255901\pi\)
\(860\) −8.28772 9.55582i −0.282609 0.325851i
\(861\) 16.4853 7.39104i 0.561817 0.251886i
\(862\) −4.00000 + 4.00000i −0.136241 + 0.136241i
\(863\) −2.44365 2.44365i −0.0831828 0.0831828i 0.664291 0.747474i \(-0.268734\pi\)
−0.747474 + 0.664291i \(0.768734\pi\)
\(864\) 4.77791 0.162548
\(865\) −27.5355 31.7487i −0.936236 1.07949i
\(866\) 14.7821i 0.502315i
\(867\) 13.4755 + 13.4755i 0.457652 + 0.457652i
\(868\) 1.44155 3.78470i 0.0489295 0.128461i
\(869\) 14.3431i 0.486558i
\(870\) −0.242641 + 3.41421i −0.00822629 + 0.115753i
\(871\) 88.8463i 3.01044i
\(872\) −8.58579 + 8.58579i −0.290751 + 0.290751i
\(873\) −1.90215 + 1.90215i −0.0643781 + 0.0643781i
\(874\) −0.819760 −0.0277288
\(875\) −24.7951 16.1308i −0.838228 0.545319i
\(876\) −10.8284 −0.365859
\(877\) −21.5563 + 21.5563i −0.727906 + 0.727906i −0.970202 0.242296i \(-0.922099\pi\)
0.242296 + 0.970202i \(0.422099\pi\)
\(878\) 9.81845 9.81845i 0.331357 0.331357i
\(879\) 6.24264i 0.210559i
\(880\) −0.448342 + 6.30864i −0.0151136 + 0.212664i
\(881\) 13.5140i 0.455297i −0.973743 0.227649i \(-0.926896\pi\)
0.973743 0.227649i \(-0.0731038\pi\)
\(882\) −0.166773 2.89469i −0.00561553 0.0974694i
\(883\) −28.8284 28.8284i −0.970154 0.970154i 0.0294135 0.999567i \(-0.490636\pi\)
−0.999567 + 0.0294135i \(0.990636\pi\)
\(884\) 31.3137i 1.05319i
\(885\) 25.0104 + 28.8372i 0.840716 + 0.969353i
\(886\) 5.85786 0.196799
\(887\) −32.5487 32.5487i −1.09288 1.09288i −0.995220 0.0976580i \(-0.968865\pi\)
−0.0976580 0.995220i \(-0.531135\pi\)
\(888\) 4.77791 4.77791i 0.160336 0.160336i
\(889\) 5.48888 + 12.2426i 0.184091 + 0.410605i
\(890\) 16.6274 + 19.1716i 0.557352 + 0.642633i
\(891\) 28.4853 0.954293
\(892\) −6.75699 6.75699i −0.226241 0.226241i
\(893\) 1.51472 + 1.51472i 0.0506881 + 0.0506881i
\(894\) 31.9916 1.06996
\(895\) 30.4608 + 2.16478i 1.01819 + 0.0723608i
\(896\) 2.41421 1.08239i 0.0806532 0.0361602i
\(897\) −4.58579 + 4.58579i −0.153115 + 0.153115i
\(898\) 18.1421 + 18.1421i 0.605411 + 0.605411i
\(899\) 1.26810 0.0422935
\(900\) 2.05025 + 0.292893i 0.0683418 + 0.00976311i
\(901\) 60.9217i 2.02959i
\(902\) 7.39104 + 7.39104i 0.246095 + 0.246095i
\(903\) −9.84354 + 25.8435i −0.327572 + 0.860019i
\(904\) 1.65685i 0.0551062i
\(905\) 19.6066 + 1.39340i 0.651745 + 0.0463181i
\(906\) 16.3128i 0.541957i
\(907\) 11.1716 11.1716i 0.370946 0.370946i −0.496876 0.867822i \(-0.665520\pi\)
0.867822 + 0.496876i \(0.165520\pi\)
\(908\) −8.38057 + 8.38057i −0.278119 + 0.278119i
\(909\) 1.13679 0.0377048
\(910\) 14.9336 32.1476i 0.495044 1.06568i
\(911\) −28.1421 −0.932391 −0.466195 0.884682i \(-0.654376\pi\)
−0.466195 + 0.884682i \(0.654376\pi\)
\(912\) −1.82843 + 1.82843i −0.0605453 + 0.0605453i
\(913\) 15.0447 15.0447i 0.497907 0.497907i
\(914\) 2.34315i 0.0775044i
\(915\) 20.1012 17.4337i 0.664524 0.576339i
\(916\) 7.70806i 0.254682i
\(917\) −36.2236 13.7972i −1.19621 0.455624i
\(918\) 17.6569 + 17.6569i 0.582763 + 0.582763i
\(919\) 8.38478i 0.276588i −0.990391 0.138294i \(-0.955838\pi\)
0.990391 0.138294i \(-0.0441619\pi\)
\(920\) 1.30656 + 0.0928546i 0.0430761 + 0.00306132i
\(921\) 60.5269 1.99443
\(922\) 24.0593 + 24.0593i 0.792352 + 0.792352i
\(923\) 2.48181 2.48181i 0.0816898 0.0816898i
\(924\) 12.6173 5.65685i 0.415078 0.186097i
\(925\) −14.6274 + 10.9706i −0.480947 + 0.360710i
\(926\) 18.3431 0.602793
\(927\) 4.14386 + 4.14386i 0.136102 + 0.136102i
\(928\) 0.585786 + 0.585786i 0.0192294 + 0.0192294i
\(929\) −33.2597 −1.09121 −0.545607 0.838041i \(-0.683701\pi\)
−0.545607 + 0.838041i \(0.683701\pi\)
\(930\) 0.448342 6.30864i 0.0147017 0.206869i
\(931\) −7.31371 6.51688i −0.239697 0.213582i
\(932\) 3.00000 3.00000i 0.0982683 0.0982683i
\(933\) −4.48528 4.48528i −0.146842 0.146842i
\(934\) −24.6549 −0.806734
\(935\) −24.9706 + 21.6569i −0.816625 + 0.708255i
\(936\) 2.48181i 0.0811205i
\(937\) −17.7666 17.7666i −0.580410 0.580410i 0.354606 0.935016i \(-0.384615\pi\)
−0.935016 + 0.354606i \(0.884615\pi\)
\(938\) −36.6629 13.9645i −1.19709 0.455958i
\(939\) 17.6569i 0.576210i
\(940\) −2.24264 2.58579i −0.0731469 0.0843391i
\(941\) 23.3099i 0.759881i 0.925011 + 0.379940i \(0.124056\pi\)
−0.925011 + 0.379940i \(0.875944\pi\)
\(942\) −18.8995 + 18.8995i −0.615779 + 0.615779i
\(943\) 1.53073 1.53073i 0.0498475 0.0498475i
\(944\) 9.23880 0.300697
\(945\) 9.70647 + 26.5477i 0.315751 + 0.863596i
\(946\) −16.0000 −0.520205
\(947\) 22.9706 22.9706i 0.746443 0.746443i −0.227366 0.973809i \(-0.573011\pi\)
0.973809 + 0.227366i \(0.0730115\pi\)
\(948\) −6.62567 + 6.62567i −0.215192 + 0.215192i
\(949\) 35.1127i 1.13981i
\(950\) 5.59767 4.19825i 0.181612 0.136209i
\(951\) 57.2261i 1.85568i
\(952\) 12.9218 + 4.92177i 0.418797 + 0.159515i
\(953\) 23.1421 + 23.1421i 0.749647 + 0.749647i 0.974413 0.224766i \(-0.0721616\pi\)
−0.224766 + 0.974413i \(0.572162\pi\)
\(954\) 4.82843i 0.156326i
\(955\) 0.278564 3.91969i 0.00901411 0.126838i
\(956\) 6.48528 0.209749
\(957\) 3.06147 + 3.06147i 0.0989632 + 0.0989632i
\(958\) 7.83938 7.83938i 0.253279 0.253279i
\(959\) −12.5085 27.8995i −0.403921 0.900922i
\(960\) 3.12132 2.70711i 0.100740 0.0873715i
\(961\) 28.6569 0.924415
\(962\) −15.4930 15.4930i −0.499516 0.499516i
\(963\) 1.51472 + 1.51472i 0.0488111 + 0.0488111i
\(964\) 6.75699 0.217628
\(965\) 19.6913 17.0782i 0.633885 0.549766i
\(966\) −1.17157 2.61313i −0.0376947 0.0840759i
\(967\) −2.21320 + 2.21320i −0.0711718 + 0.0711718i −0.741797 0.670625i \(-0.766026\pi\)
0.670625 + 0.741797i \(0.266026\pi\)
\(968\) −2.12132 2.12132i −0.0681818 0.0681818i
\(969\) −13.5140 −0.434131
\(970\) 1.02944 14.4853i 0.0330532 0.465094i
\(971\) 18.5320i 0.594720i −0.954765 0.297360i \(-0.903894\pi\)
0.954765 0.297360i \(-0.0961061\pi\)
\(972\) −3.02301 3.02301i −0.0969630 0.0969630i
\(973\) 8.10343 21.2750i 0.259784 0.682045i
\(974\) 1.55635i 0.0498686i
\(975\) 7.82843 54.7990i 0.250710 1.75497i
\(976\) 6.43996i 0.206138i
\(977\) −25.8284 + 25.8284i −0.826325 + 0.826325i −0.987006 0.160682i \(-0.948631\pi\)
0.160682 + 0.987006i \(0.448631\pi\)
\(978\) −25.2346 + 25.2346i −0.806913 + 0.806913i
\(979\) 32.1003 1.02593
\(980\) 10.9187 + 11.2153i 0.348785 + 0.358259i
\(981\) 5.02944 0.160578
\(982\) −17.7990 + 17.7990i −0.567989 + 0.567989i
\(983\) 28.7444 28.7444i 0.916804 0.916804i −0.0799920 0.996796i \(-0.525489\pi\)
0.996796 + 0.0799920i \(0.0254895\pi\)
\(984\) 6.82843i 0.217682i
\(985\) −1.21371 1.39942i −0.0386720 0.0445892i
\(986\) 4.32957i 0.137882i
\(987\) −2.66364 + 6.99321i −0.0847847 + 0.222596i
\(988\) 5.92893 + 5.92893i 0.188624 + 0.188624i
\(989\) 3.31371i 0.105370i
\(990\) 1.97908 1.71644i 0.0628991 0.0545521i
\(991\) −32.5858 −1.03512 −0.517561 0.855646i \(-0.673160\pi\)
−0.517561 + 0.855646i \(0.673160\pi\)
\(992\) −1.08239 1.08239i −0.0343660 0.0343660i
\(993\) 30.4608 30.4608i 0.966645 0.966645i
\(994\) 0.634051 + 1.41421i 0.0201109 + 0.0448561i
\(995\) 4.44365 62.5269i 0.140873 1.98224i
\(996\) −13.8995 −0.440422
\(997\) −0.464273 0.464273i −0.0147037 0.0147037i 0.699717 0.714420i \(-0.253310\pi\)
−0.714420 + 0.699717i \(0.753310\pi\)
\(998\) 5.31371 + 5.31371i 0.168203 + 0.168203i
\(999\) 17.4721 0.552793
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.2.g.a.13.2 yes 8
3.2 odd 2 630.2.p.a.433.3 8
4.3 odd 2 560.2.bj.c.433.1 8
5.2 odd 4 inner 70.2.g.a.27.1 yes 8
5.3 odd 4 350.2.g.a.307.4 8
5.4 even 2 350.2.g.a.293.3 8
7.2 even 3 490.2.l.a.423.4 16
7.3 odd 6 490.2.l.a.313.2 16
7.4 even 3 490.2.l.a.313.1 16
7.5 odd 6 490.2.l.a.423.3 16
7.6 odd 2 inner 70.2.g.a.13.1 8
15.2 even 4 630.2.p.a.307.4 8
20.7 even 4 560.2.bj.c.97.4 8
21.20 even 2 630.2.p.a.433.4 8
28.27 even 2 560.2.bj.c.433.4 8
35.2 odd 12 490.2.l.a.227.2 16
35.12 even 12 490.2.l.a.227.1 16
35.13 even 4 350.2.g.a.307.3 8
35.17 even 12 490.2.l.a.117.4 16
35.27 even 4 inner 70.2.g.a.27.2 yes 8
35.32 odd 12 490.2.l.a.117.3 16
35.34 odd 2 350.2.g.a.293.4 8
105.62 odd 4 630.2.p.a.307.3 8
140.27 odd 4 560.2.bj.c.97.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.g.a.13.1 8 7.6 odd 2 inner
70.2.g.a.13.2 yes 8 1.1 even 1 trivial
70.2.g.a.27.1 yes 8 5.2 odd 4 inner
70.2.g.a.27.2 yes 8 35.27 even 4 inner
350.2.g.a.293.3 8 5.4 even 2
350.2.g.a.293.4 8 35.34 odd 2
350.2.g.a.307.3 8 35.13 even 4
350.2.g.a.307.4 8 5.3 odd 4
490.2.l.a.117.3 16 35.32 odd 12
490.2.l.a.117.4 16 35.17 even 12
490.2.l.a.227.1 16 35.12 even 12
490.2.l.a.227.2 16 35.2 odd 12
490.2.l.a.313.1 16 7.4 even 3
490.2.l.a.313.2 16 7.3 odd 6
490.2.l.a.423.3 16 7.5 odd 6
490.2.l.a.423.4 16 7.2 even 3
560.2.bj.c.97.1 8 140.27 odd 4
560.2.bj.c.97.4 8 20.7 even 4
560.2.bj.c.433.1 8 4.3 odd 2
560.2.bj.c.433.4 8 28.27 even 2
630.2.p.a.307.3 8 105.62 odd 4
630.2.p.a.307.4 8 15.2 even 4
630.2.p.a.433.3 8 3.2 odd 2
630.2.p.a.433.4 8 21.20 even 2