Properties

Label 72.4.l.b.11.13
Level $72$
Weight $4$
Character 72.11
Analytic conductor $4.248$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(11,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.13
Character \(\chi\) \(=\) 72.11
Dual form 72.4.l.b.59.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.867121 + 2.69223i) q^{2} +(0.0478653 + 5.19593i) q^{3} +(-6.49620 - 4.66898i) q^{4} +(-8.51655 - 14.7511i) q^{5} +(-14.0301 - 4.37664i) q^{6} +(-9.57807 - 5.52990i) q^{7} +(18.2030 - 13.4407i) q^{8} +(-26.9954 + 0.497410i) q^{9} +O(q^{10})\) \(q+(-0.867121 + 2.69223i) q^{2} +(0.0478653 + 5.19593i) q^{3} +(-6.49620 - 4.66898i) q^{4} +(-8.51655 - 14.7511i) q^{5} +(-14.0301 - 4.37664i) q^{6} +(-9.57807 - 5.52990i) q^{7} +(18.2030 - 13.4407i) q^{8} +(-26.9954 + 0.497410i) q^{9} +(47.0983 - 10.1375i) q^{10} +(25.7667 + 14.8764i) q^{11} +(23.9488 - 33.9773i) q^{12} +(-52.0658 + 30.0602i) q^{13} +(23.1931 - 20.9913i) q^{14} +(76.2381 - 44.9575i) q^{15} +(20.4013 + 60.6613i) q^{16} -91.7888i q^{17} +(22.0692 - 73.1092i) q^{18} -136.507 q^{19} +(-13.5474 + 135.590i) q^{20} +(28.2745 - 50.0317i) q^{21} +(-62.3936 + 56.4703i) q^{22} +(-30.0089 - 51.9770i) q^{23} +(70.7082 + 93.9380i) q^{24} +(-82.5634 + 143.004i) q^{25} +(-35.7816 - 166.239i) q^{26} +(-3.87665 - 140.243i) q^{27} +(36.4021 + 80.6432i) q^{28} +(-65.0911 + 112.741i) q^{29} +(54.9282 + 244.234i) q^{30} +(148.423 - 85.6920i) q^{31} +(-181.004 + 2.32417i) q^{32} +(-76.0635 + 134.594i) q^{33} +(247.117 + 79.5920i) q^{34} +188.383i q^{35} +(177.690 + 122.810i) q^{36} +259.167i q^{37} +(118.368 - 367.509i) q^{38} +(-158.683 - 269.092i) q^{39} +(-353.292 - 154.045i) q^{40} +(14.3285 - 8.27259i) q^{41} +(110.179 + 119.505i) q^{42} +(-85.3289 + 147.794i) q^{43} +(-97.9281 - 216.945i) q^{44} +(237.245 + 393.976i) q^{45} +(165.955 - 35.7206i) q^{46} +(-89.8841 + 155.684i) q^{47} +(-314.215 + 108.907i) q^{48} +(-110.340 - 191.115i) q^{49} +(-313.407 - 346.282i) q^{50} +(476.928 - 4.39350i) q^{51} +(478.581 + 47.8171i) q^{52} -205.014 q^{53} +(380.927 + 111.170i) q^{54} -506.783i q^{55} +(-248.675 + 28.0753i) q^{56} +(-6.53396 - 709.282i) q^{57} +(-247.083 - 273.001i) q^{58} +(624.620 - 360.624i) q^{59} +(-705.164 - 63.9012i) q^{60} +(-163.824 - 94.5836i) q^{61} +(102.002 + 473.894i) q^{62} +(261.315 + 144.518i) q^{63} +(150.696 - 489.321i) q^{64} +(886.843 + 512.019i) q^{65} +(-296.402 - 321.490i) q^{66} +(197.490 + 342.063i) q^{67} +(-428.560 + 596.278i) q^{68} +(268.632 - 158.412i) q^{69} +(-507.170 - 163.351i) q^{70} +131.203 q^{71} +(-484.711 + 371.891i) q^{72} -410.081 q^{73} +(-697.737 - 224.729i) q^{74} +(-746.991 - 422.149i) q^{75} +(886.778 + 637.350i) q^{76} +(-164.530 - 284.975i) q^{77} +(862.054 - 193.876i) q^{78} +(144.247 + 83.2809i) q^{79} +(721.072 - 817.566i) q^{80} +(728.505 - 26.8556i) q^{81} +(9.84712 + 45.7491i) q^{82} +(-430.457 - 248.524i) q^{83} +(-417.274 + 193.003i) q^{84} +(-1353.99 + 781.724i) q^{85} +(-323.905 - 357.880i) q^{86} +(-588.911 - 332.813i) q^{87} +(668.980 - 75.5276i) q^{88} +313.674i q^{89} +(-1266.39 + 297.094i) q^{90} +664.920 q^{91} +(-47.7355 + 477.764i) q^{92} +(452.354 + 767.094i) q^{93} +(-341.196 - 376.985i) q^{94} +(1162.57 + 2013.63i) q^{95} +(-20.7401 - 940.375i) q^{96} +(-319.471 + 553.340i) q^{97} +(610.204 - 131.342i) q^{98} +(-702.983 - 388.779i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9} + 12 q^{10} + 48 q^{11} + 318 q^{12} + 72 q^{14} + 127 q^{16} + 330 q^{18} - 220 q^{19} - 234 q^{20} - 217 q^{22} + 189 q^{24} - 902 q^{25} - 252 q^{27} - 132 q^{28} + 420 q^{30} - 693 q^{32} - 660 q^{33} + 509 q^{34} - 537 q^{36} - 1977 q^{38} - 36 q^{40} + 1620 q^{41} + 72 q^{42} - 292 q^{43} + 48 q^{46} + 765 q^{48} + 1762 q^{49} - 1227 q^{50} - 1794 q^{51} + 330 q^{52} - 645 q^{54} + 942 q^{56} - 294 q^{57} - 282 q^{58} + 5592 q^{59} + 1236 q^{60} + 1090 q^{64} - 6 q^{65} + 3522 q^{66} + 68 q^{67} - 2025 q^{68} + 600 q^{70} + 1875 q^{72} - 868 q^{73} - 420 q^{74} - 4254 q^{75} - 1471 q^{76} + 3228 q^{78} + 498 q^{81} + 362 q^{82} + 3654 q^{83} - 2028 q^{84} - 4119 q^{86} + 3155 q^{88} + 2958 q^{90} - 1380 q^{91} - 744 q^{92} - 138 q^{94} - 4782 q^{96} - 1912 q^{97} - 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.867121 + 2.69223i −0.306574 + 0.951847i
\(3\) 0.0478653 + 5.19593i 0.00921169 + 0.999958i
\(4\) −6.49620 4.66898i −0.812025 0.583623i
\(5\) −8.51655 14.7511i −0.761744 1.31938i −0.941951 0.335750i \(-0.891010\pi\)
0.180207 0.983629i \(-0.442323\pi\)
\(6\) −14.0301 4.37664i −0.954631 0.297793i
\(7\) −9.57807 5.52990i −0.517167 0.298587i 0.218608 0.975813i \(-0.429849\pi\)
−0.735775 + 0.677226i \(0.763182\pi\)
\(8\) 18.2030 13.4407i 0.804465 0.594000i
\(9\) −26.9954 + 0.497410i −0.999830 + 0.0184226i
\(10\) 47.0983 10.1375i 1.48938 0.320577i
\(11\) 25.7667 + 14.8764i 0.706269 + 0.407765i 0.809678 0.586874i \(-0.199642\pi\)
−0.103409 + 0.994639i \(0.532975\pi\)
\(12\) 23.9488 33.9773i 0.576118 0.817367i
\(13\) −52.0658 + 30.0602i −1.11081 + 0.641324i −0.939038 0.343814i \(-0.888281\pi\)
−0.171767 + 0.985138i \(0.554948\pi\)
\(14\) 23.1931 20.9913i 0.442759 0.400725i
\(15\) 76.2381 44.9575i 1.31231 0.773865i
\(16\) 20.4013 + 60.6613i 0.318770 + 0.947832i
\(17\) 91.7888i 1.30953i −0.755831 0.654766i \(-0.772767\pi\)
0.755831 0.654766i \(-0.227233\pi\)
\(18\) 22.0692 73.1092i 0.288986 0.957333i
\(19\) −136.507 −1.64826 −0.824129 0.566402i \(-0.808335\pi\)
−0.824129 + 0.566402i \(0.808335\pi\)
\(20\) −13.5474 + 135.590i −0.151464 + 1.51594i
\(21\) 28.2745 50.0317i 0.293810 0.519896i
\(22\) −62.3936 + 56.4703i −0.604653 + 0.547250i
\(23\) −30.0089 51.9770i −0.272056 0.471215i 0.697332 0.716748i \(-0.254370\pi\)
−0.969388 + 0.245533i \(0.921037\pi\)
\(24\) 70.7082 + 93.9380i 0.601386 + 0.798959i
\(25\) −82.5634 + 143.004i −0.660507 + 1.14403i
\(26\) −35.7816 166.239i −0.269898 1.25393i
\(27\) −3.87665 140.243i −0.0276319 0.999618i
\(28\) 36.4021 + 80.6432i 0.245691 + 0.544290i
\(29\) −65.0911 + 112.741i −0.416797 + 0.721914i −0.995615 0.0935428i \(-0.970181\pi\)
0.578818 + 0.815457i \(0.303514\pi\)
\(30\) 54.9282 + 244.234i 0.334283 + 1.48636i
\(31\) 148.423 85.6920i 0.859921 0.496475i −0.00406514 0.999992i \(-0.501294\pi\)
0.863986 + 0.503516i \(0.167961\pi\)
\(32\) −181.004 + 2.32417i −0.999918 + 0.0128393i
\(33\) −76.0635 + 134.594i −0.401241 + 0.709995i
\(34\) 247.117 + 79.5920i 1.24647 + 0.401468i
\(35\) 188.383i 0.909786i
\(36\) 177.690 + 122.810i 0.822639 + 0.568564i
\(37\) 259.167i 1.15154i 0.817613 + 0.575768i \(0.195297\pi\)
−0.817613 + 0.575768i \(0.804703\pi\)
\(38\) 118.368 367.509i 0.505313 1.56889i
\(39\) −158.683 269.092i −0.651529 1.10485i
\(40\) −353.292 154.045i −1.39651 0.608918i
\(41\) 14.3285 8.27259i 0.0545791 0.0315113i −0.472462 0.881351i \(-0.656635\pi\)
0.527041 + 0.849840i \(0.323301\pi\)
\(42\) 110.179 + 119.505i 0.404787 + 0.439048i
\(43\) −85.3289 + 147.794i −0.302617 + 0.524148i −0.976728 0.214482i \(-0.931194\pi\)
0.674111 + 0.738630i \(0.264527\pi\)
\(44\) −97.9281 216.945i −0.335528 0.743309i
\(45\) 237.245 + 393.976i 0.785921 + 1.30512i
\(46\) 165.955 35.7206i 0.531930 0.114494i
\(47\) −89.8841 + 155.684i −0.278956 + 0.483166i −0.971126 0.238569i \(-0.923322\pi\)
0.692169 + 0.721735i \(0.256655\pi\)
\(48\) −314.215 + 108.907i −0.944856 + 0.327487i
\(49\) −110.340 191.115i −0.321692 0.557187i
\(50\) −313.407 346.282i −0.886449 0.979432i
\(51\) 476.928 4.39350i 1.30948 0.0120630i
\(52\) 478.581 + 47.8171i 1.27629 + 0.127520i
\(53\) −205.014 −0.531336 −0.265668 0.964065i \(-0.585593\pi\)
−0.265668 + 0.964065i \(0.585593\pi\)
\(54\) 380.927 + 111.170i 0.959955 + 0.280155i
\(55\) 506.783i 1.24245i
\(56\) −248.675 + 28.0753i −0.593403 + 0.0669950i
\(57\) −6.53396 709.282i −0.0151832 1.64819i
\(58\) −247.083 273.001i −0.559372 0.618047i
\(59\) 624.620 360.624i 1.37828 0.795751i 0.386328 0.922362i \(-0.373743\pi\)
0.991952 + 0.126611i \(0.0404100\pi\)
\(60\) −705.164 63.9012i −1.51727 0.137493i
\(61\) −163.824 94.5836i −0.343860 0.198528i 0.318118 0.948051i \(-0.396949\pi\)
−0.661978 + 0.749524i \(0.730283\pi\)
\(62\) 102.002 + 473.894i 0.208939 + 0.970719i
\(63\) 261.315 + 144.518i 0.522580 + 0.289008i
\(64\) 150.696 489.321i 0.294327 0.955705i
\(65\) 886.843 + 512.019i 1.69230 + 0.977049i
\(66\) −296.402 321.490i −0.552797 0.599586i
\(67\) 197.490 + 342.063i 0.360108 + 0.623726i 0.987978 0.154592i \(-0.0494064\pi\)
−0.627870 + 0.778318i \(0.716073\pi\)
\(68\) −428.560 + 596.278i −0.764273 + 1.06337i
\(69\) 268.632 158.412i 0.468689 0.276385i
\(70\) −507.170 163.351i −0.865977 0.278917i
\(71\) 131.203 0.219310 0.109655 0.993970i \(-0.465025\pi\)
0.109655 + 0.993970i \(0.465025\pi\)
\(72\) −484.711 + 371.891i −0.793385 + 0.608720i
\(73\) −410.081 −0.657485 −0.328743 0.944420i \(-0.606625\pi\)
−0.328743 + 0.944420i \(0.606625\pi\)
\(74\) −697.737 224.729i −1.09609 0.353030i
\(75\) −746.991 422.149i −1.15007 0.649941i
\(76\) 886.778 + 637.350i 1.33843 + 0.961961i
\(77\) −164.530 284.975i −0.243506 0.421765i
\(78\) 862.054 193.876i 1.25139 0.281438i
\(79\) 144.247 + 83.2809i 0.205431 + 0.118605i 0.599186 0.800610i \(-0.295491\pi\)
−0.393755 + 0.919215i \(0.628824\pi\)
\(80\) 721.072 817.566i 1.00773 1.14258i
\(81\) 728.505 26.8556i 0.999321 0.0368389i
\(82\) 9.84712 + 45.7491i 0.0132614 + 0.0616115i
\(83\) −430.457 248.524i −0.569262 0.328664i 0.187592 0.982247i \(-0.439932\pi\)
−0.756855 + 0.653583i \(0.773265\pi\)
\(84\) −417.274 + 193.003i −0.542004 + 0.250694i
\(85\) −1353.99 + 781.724i −1.72777 + 0.997528i
\(86\) −323.905 357.880i −0.406134 0.448735i
\(87\) −588.911 332.813i −0.725723 0.410129i
\(88\) 668.980 75.5276i 0.810381 0.0914917i
\(89\) 313.674i 0.373588i 0.982399 + 0.186794i \(0.0598097\pi\)
−0.982399 + 0.186794i \(0.940190\pi\)
\(90\) −1266.39 + 297.094i −1.48322 + 0.347960i
\(91\) 664.920 0.765963
\(92\) −47.7355 + 477.764i −0.0540953 + 0.541417i
\(93\) 452.354 + 767.094i 0.504376 + 0.855311i
\(94\) −341.196 376.985i −0.374380 0.413650i
\(95\) 1162.57 + 2013.63i 1.25555 + 2.17468i
\(96\) −20.7401 940.375i −0.0220497 0.999757i
\(97\) −319.471 + 553.340i −0.334406 + 0.579208i −0.983371 0.181611i \(-0.941869\pi\)
0.648965 + 0.760819i \(0.275202\pi\)
\(98\) 610.204 131.342i 0.628979 0.135383i
\(99\) −702.983 388.779i −0.713661 0.394684i
\(100\) 1204.03 543.496i 1.20403 0.543496i
\(101\) 592.922 1026.97i 0.584138 1.01176i −0.410844 0.911706i \(-0.634766\pi\)
0.994982 0.100052i \(-0.0319008\pi\)
\(102\) −401.727 + 1287.81i −0.389969 + 1.25012i
\(103\) 633.840 365.947i 0.606350 0.350076i −0.165185 0.986263i \(-0.552822\pi\)
0.771536 + 0.636186i \(0.219489\pi\)
\(104\) −543.722 + 1246.99i −0.512657 + 1.17574i
\(105\) −978.824 + 9.01701i −0.909747 + 0.00838067i
\(106\) 177.772 551.944i 0.162894 0.505751i
\(107\) 1377.39i 1.24446i 0.782833 + 0.622232i \(0.213774\pi\)
−0.782833 + 0.622232i \(0.786226\pi\)
\(108\) −629.606 + 929.144i −0.560962 + 0.827842i
\(109\) 1978.23i 1.73835i −0.494508 0.869173i \(-0.664652\pi\)
0.494508 0.869173i \(-0.335348\pi\)
\(110\) 1364.38 + 439.443i 1.18262 + 0.380902i
\(111\) −1346.61 + 12.4051i −1.15149 + 0.0106076i
\(112\) 140.046 693.835i 0.118153 0.585368i
\(113\) 241.953 139.691i 0.201425 0.116293i −0.395895 0.918296i \(-0.629566\pi\)
0.597320 + 0.802003i \(0.296232\pi\)
\(114\) 1915.22 + 597.443i 1.57348 + 0.490839i
\(115\) −511.145 + 885.330i −0.414474 + 0.717890i
\(116\) 949.231 428.480i 0.759775 0.342960i
\(117\) 1390.59 837.387i 1.09880 0.661679i
\(118\) 429.262 + 1994.32i 0.334888 + 1.55587i
\(119\) −507.583 + 879.160i −0.391009 + 0.677247i
\(120\) 783.499 1843.05i 0.596028 1.40206i
\(121\) −222.884 386.047i −0.167456 0.290043i
\(122\) 396.696 359.035i 0.294387 0.266439i
\(123\) 43.6697 + 74.0542i 0.0320127 + 0.0542865i
\(124\) −1364.28 136.311i −0.988031 0.0987185i
\(125\) 683.484 0.489062
\(126\) −615.667 + 578.205i −0.435301 + 0.408814i
\(127\) 1164.89i 0.813916i −0.913447 0.406958i \(-0.866590\pi\)
0.913447 0.406958i \(-0.133410\pi\)
\(128\) 1186.69 + 830.008i 0.819451 + 0.573149i
\(129\) −772.012 436.289i −0.526914 0.297776i
\(130\) −2147.47 + 1943.60i −1.44881 + 1.31127i
\(131\) −255.579 + 147.558i −0.170458 + 0.0984140i −0.582802 0.812614i \(-0.698044\pi\)
0.412344 + 0.911028i \(0.364710\pi\)
\(132\) 1122.54 519.212i 0.740187 0.342360i
\(133\) 1307.48 + 754.872i 0.852425 + 0.492148i
\(134\) −1092.16 + 235.079i −0.704092 + 0.151550i
\(135\) −2035.72 + 1251.57i −1.29783 + 0.797910i
\(136\) −1233.70 1670.83i −0.777863 1.05347i
\(137\) −2059.29 1188.93i −1.28421 0.741439i −0.306595 0.951840i \(-0.599190\pi\)
−0.977615 + 0.210401i \(0.932523\pi\)
\(138\) 193.545 + 860.583i 0.119389 + 0.530853i
\(139\) −948.118 1642.19i −0.578549 1.00208i −0.995646 0.0932144i \(-0.970286\pi\)
0.417097 0.908862i \(-0.363048\pi\)
\(140\) 879.556 1223.77i 0.530972 0.738769i
\(141\) −813.225 459.580i −0.485715 0.274494i
\(142\) −113.769 + 353.230i −0.0672345 + 0.208749i
\(143\) −1788.75 −1.04604
\(144\) −580.914 1627.43i −0.336177 0.941799i
\(145\) 2217.41 1.26997
\(146\) 355.590 1104.03i 0.201568 0.625825i
\(147\) 987.740 582.469i 0.554200 0.326811i
\(148\) 1210.05 1683.60i 0.672062 0.935075i
\(149\) −1512.62 2619.94i −0.831669 1.44049i −0.896714 0.442611i \(-0.854052\pi\)
0.0650446 0.997882i \(-0.479281\pi\)
\(150\) 1784.25 1645.02i 0.971225 0.895434i
\(151\) 1082.68 + 625.086i 0.583492 + 0.336880i 0.762520 0.646965i \(-0.223962\pi\)
−0.179028 + 0.983844i \(0.557295\pi\)
\(152\) −2484.84 + 1834.75i −1.32597 + 0.979066i
\(153\) 45.6567 + 2477.88i 0.0241250 + 1.30931i
\(154\) 909.885 195.846i 0.476108 0.102478i
\(155\) −2528.10 1459.60i −1.31008 0.756374i
\(156\) −225.547 + 2488.96i −0.115758 + 1.27741i
\(157\) −2000.27 + 1154.86i −1.01681 + 0.587055i −0.913178 0.407561i \(-0.866379\pi\)
−0.103631 + 0.994616i \(0.533046\pi\)
\(158\) −349.291 + 316.131i −0.175874 + 0.159177i
\(159\) −9.81305 1065.24i −0.00489450 0.531314i
\(160\) 1575.82 + 2650.22i 0.778621 + 1.30949i
\(161\) 663.786i 0.324929i
\(162\) −559.401 + 1984.59i −0.271301 + 0.962495i
\(163\) −688.368 −0.330780 −0.165390 0.986228i \(-0.552888\pi\)
−0.165390 + 0.986228i \(0.552888\pi\)
\(164\) −131.706 13.1593i −0.0627103 0.00626566i
\(165\) 2633.21 24.2574i 1.24240 0.0114450i
\(166\) 1042.34 943.388i 0.487358 0.441091i
\(167\) 427.655 + 740.720i 0.198161 + 0.343225i 0.947932 0.318472i \(-0.103170\pi\)
−0.749771 + 0.661697i \(0.769836\pi\)
\(168\) −157.780 1290.75i −0.0724584 0.592761i
\(169\) 708.735 1227.56i 0.322592 0.558746i
\(170\) −930.511 4323.09i −0.419805 1.95039i
\(171\) 3685.07 67.9001i 1.64798 0.0303652i
\(172\) 1244.36 561.700i 0.551637 0.249007i
\(173\) 2177.53 3771.59i 0.956962 1.65751i 0.227147 0.973860i \(-0.427060\pi\)
0.729814 0.683646i \(-0.239607\pi\)
\(174\) 1406.67 1296.89i 0.612868 0.565042i
\(175\) 1581.60 913.135i 0.683185 0.394437i
\(176\) −376.749 + 1866.54i −0.161355 + 0.799407i
\(177\) 1903.68 + 3228.22i 0.808413 + 1.37089i
\(178\) −844.482 271.993i −0.355599 0.114532i
\(179\) 943.783i 0.394087i 0.980395 + 0.197044i \(0.0631341\pi\)
−0.980395 + 0.197044i \(0.936866\pi\)
\(180\) 298.273 3667.04i 0.123511 1.51847i
\(181\) 3910.87i 1.60604i 0.595954 + 0.803019i \(0.296774\pi\)
−0.595954 + 0.803019i \(0.703226\pi\)
\(182\) −576.567 + 1790.12i −0.234824 + 0.729079i
\(183\) 483.609 855.744i 0.195352 0.345674i
\(184\) −1244.86 542.794i −0.498762 0.217475i
\(185\) 3823.00 2207.21i 1.51931 0.877175i
\(186\) −2457.44 + 552.678i −0.968753 + 0.217873i
\(187\) 1365.49 2365.10i 0.533981 0.924882i
\(188\) 1310.79 591.686i 0.508506 0.229538i
\(189\) −738.397 + 1364.69i −0.284182 + 0.525220i
\(190\) −6429.25 + 1383.84i −2.45488 + 0.528393i
\(191\) 153.069 265.123i 0.0579878 0.100438i −0.835574 0.549378i \(-0.814865\pi\)
0.893562 + 0.448940i \(0.148198\pi\)
\(192\) 2549.69 + 759.583i 0.958375 + 0.285511i
\(193\) −568.565 984.783i −0.212053 0.367286i 0.740304 0.672272i \(-0.234682\pi\)
−0.952357 + 0.304986i \(0.901348\pi\)
\(194\) −1212.70 1339.90i −0.448797 0.495873i
\(195\) −2617.97 + 4632.49i −0.961418 + 1.70123i
\(196\) −175.520 + 1756.70i −0.0639648 + 0.640197i
\(197\) −5080.25 −1.83732 −0.918661 0.395046i \(-0.870729\pi\)
−0.918661 + 0.395046i \(0.870729\pi\)
\(198\) 1656.25 1555.47i 0.594469 0.558296i
\(199\) 4952.26i 1.76410i 0.471154 + 0.882051i \(0.343838\pi\)
−0.471154 + 0.882051i \(0.656162\pi\)
\(200\) 419.174 + 3712.81i 0.148201 + 1.31268i
\(201\) −1767.88 + 1042.52i −0.620382 + 0.365839i
\(202\) 2250.71 + 2486.79i 0.783957 + 0.866188i
\(203\) 1246.89 719.895i 0.431108 0.248900i
\(204\) −3118.74 2198.23i −1.07037 0.754445i
\(205\) −244.060 140.908i −0.0831506 0.0480070i
\(206\) 435.599 + 2023.76i 0.147328 + 0.684477i
\(207\) 835.957 + 1388.21i 0.280691 + 0.466123i
\(208\) −2885.70 2545.11i −0.961958 0.848423i
\(209\) −3517.34 2030.74i −1.16411 0.672101i
\(210\) 824.484 2643.04i 0.270928 0.868510i
\(211\) 2281.12 + 3951.02i 0.744261 + 1.28910i 0.950539 + 0.310604i \(0.100531\pi\)
−0.206279 + 0.978493i \(0.566135\pi\)
\(212\) 1331.81 + 957.205i 0.431458 + 0.310100i
\(213\) 6.28009 + 681.724i 0.00202021 + 0.219300i
\(214\) −3708.26 1194.37i −1.18454 0.381520i
\(215\) 2906.83 0.922067
\(216\) −1955.52 2500.72i −0.616002 0.787744i
\(217\) −1895.47 −0.592964
\(218\) 5325.84 + 1715.36i 1.65464 + 0.532931i
\(219\) −19.6287 2130.76i −0.00605655 0.657457i
\(220\) −2366.16 + 3292.17i −0.725121 + 1.00890i
\(221\) 2759.19 + 4779.06i 0.839834 + 1.45464i
\(222\) 1134.28 3636.15i 0.342919 1.09929i
\(223\) −2534.14 1463.08i −0.760979 0.439352i 0.0686679 0.997640i \(-0.478125\pi\)
−0.829647 + 0.558288i \(0.811458\pi\)
\(224\) 1746.53 + 978.676i 0.520958 + 0.291922i
\(225\) 2157.70 3901.52i 0.639319 1.15601i
\(226\) 166.279 + 772.521i 0.0489412 + 0.227378i
\(227\) 153.706 + 88.7420i 0.0449418 + 0.0259472i 0.522303 0.852760i \(-0.325073\pi\)
−0.477361 + 0.878707i \(0.658406\pi\)
\(228\) −3269.18 + 4638.15i −0.949591 + 1.34723i
\(229\) −964.186 + 556.673i −0.278232 + 0.160638i −0.632623 0.774460i \(-0.718022\pi\)
0.354391 + 0.935098i \(0.384688\pi\)
\(230\) −1940.29 2143.81i −0.556255 0.614602i
\(231\) 1472.83 868.529i 0.419504 0.247381i
\(232\) 330.468 + 2927.09i 0.0935184 + 0.828332i
\(233\) 3511.90i 0.987434i 0.869623 + 0.493717i \(0.164362\pi\)
−0.869623 + 0.493717i \(0.835638\pi\)
\(234\) 1048.63 + 4469.90i 0.292953 + 1.24874i
\(235\) 3062.01 0.849973
\(236\) −5741.40 573.649i −1.58362 0.158226i
\(237\) −425.817 + 753.482i −0.116708 + 0.206514i
\(238\) −1926.76 2128.87i −0.524763 0.579807i
\(239\) −1232.78 2135.23i −0.333647 0.577894i 0.649577 0.760296i \(-0.274946\pi\)
−0.983224 + 0.182402i \(0.941613\pi\)
\(240\) 4282.53 + 3707.51i 1.15182 + 0.997161i
\(241\) 1304.59 2259.62i 0.348698 0.603963i −0.637320 0.770599i \(-0.719957\pi\)
0.986018 + 0.166636i \(0.0532905\pi\)
\(242\) 1232.59 265.306i 0.327414 0.0704732i
\(243\) 174.410 + 3783.98i 0.0460428 + 0.998939i
\(244\) 622.622 + 1379.32i 0.163358 + 0.361894i
\(245\) −1879.44 + 3255.28i −0.490094 + 0.848867i
\(246\) −237.238 + 53.3548i −0.0614867 + 0.0138284i
\(247\) 7107.36 4103.44i 1.83089 1.05707i
\(248\) 1549.98 3554.75i 0.396869 0.910190i
\(249\) 1270.71 2248.52i 0.323406 0.572266i
\(250\) −592.664 + 1840.10i −0.149933 + 0.465512i
\(251\) 7597.18i 1.91048i −0.295835 0.955239i \(-0.595598\pi\)
0.295835 0.955239i \(-0.404402\pi\)
\(252\) −1022.80 2158.89i −0.255676 0.539672i
\(253\) 1785.70i 0.443739i
\(254\) 3136.15 + 1010.10i 0.774723 + 0.249525i
\(255\) −4126.60 6997.80i −1.01340 1.71851i
\(256\) −3263.58 + 2475.13i −0.796772 + 0.604280i
\(257\) −2611.66 + 1507.84i −0.633894 + 0.365979i −0.782259 0.622954i \(-0.785932\pi\)
0.148364 + 0.988933i \(0.452599\pi\)
\(258\) 1844.02 1700.12i 0.444975 0.410251i
\(259\) 1433.17 2482.32i 0.343833 0.595536i
\(260\) −3370.50 7466.83i −0.803961 1.78105i
\(261\) 1701.08 3075.87i 0.403427 0.729470i
\(262\) −175.643 816.028i −0.0414171 0.192421i
\(263\) 1054.16 1825.85i 0.247156 0.428088i −0.715579 0.698532i \(-0.753837\pi\)
0.962736 + 0.270444i \(0.0871705\pi\)
\(264\) 424.457 + 3472.36i 0.0989528 + 0.809504i
\(265\) 1746.01 + 3024.18i 0.404742 + 0.701034i
\(266\) −3166.03 + 2865.46i −0.729781 + 0.660499i
\(267\) −1629.83 + 15.0141i −0.373572 + 0.00344138i
\(268\) 314.150 3144.19i 0.0716035 0.716649i
\(269\) 3771.97 0.854949 0.427475 0.904027i \(-0.359403\pi\)
0.427475 + 0.904027i \(0.359403\pi\)
\(270\) −1604.30 6565.88i −0.361609 1.47995i
\(271\) 912.714i 0.204588i 0.994754 + 0.102294i \(0.0326183\pi\)
−0.994754 + 0.102294i \(0.967382\pi\)
\(272\) 5568.02 1872.61i 1.24122 0.417439i
\(273\) 31.8266 + 3454.88i 0.00705581 + 0.765930i
\(274\) 4986.52 4513.13i 1.09944 0.995065i
\(275\) −4254.78 + 2456.50i −0.932991 + 0.538663i
\(276\) −2484.71 225.162i −0.541892 0.0491057i
\(277\) 3177.08 + 1834.29i 0.689141 + 0.397876i 0.803290 0.595588i \(-0.203081\pi\)
−0.114149 + 0.993464i \(0.536414\pi\)
\(278\) 5243.28 1128.57i 1.13119 0.243480i
\(279\) −3964.11 + 2387.12i −0.850628 + 0.512233i
\(280\) 2532.00 + 3429.13i 0.540413 + 0.731891i
\(281\) −178.841 103.254i −0.0379671 0.0219203i 0.480896 0.876777i \(-0.340311\pi\)
−0.518863 + 0.854857i \(0.673645\pi\)
\(282\) 1942.46 1790.88i 0.410183 0.378174i
\(283\) −166.076 287.652i −0.0348841 0.0604210i 0.848056 0.529906i \(-0.177773\pi\)
−0.882940 + 0.469485i \(0.844440\pi\)
\(284\) −852.324 612.586i −0.178085 0.127994i
\(285\) −10407.1 + 6137.02i −2.16302 + 1.27553i
\(286\) 1551.07 4815.74i 0.320687 0.995666i
\(287\) −182.986 −0.0376354
\(288\) 4885.13 152.775i 0.999511 0.0312582i
\(289\) −3512.18 −0.714876
\(290\) −1922.76 + 5969.77i −0.389340 + 1.20882i
\(291\) −2890.41 1633.46i −0.582264 0.329056i
\(292\) 2663.97 + 1914.66i 0.533894 + 0.383723i
\(293\) −1010.55 1750.33i −0.201492 0.348994i 0.747518 0.664242i \(-0.231246\pi\)
−0.949009 + 0.315248i \(0.897912\pi\)
\(294\) 711.650 + 3164.29i 0.141171 + 0.627705i
\(295\) −10639.2 6142.55i −2.09979 1.21232i
\(296\) 3483.38 + 4717.61i 0.684012 + 0.926370i
\(297\) 1986.42 3671.26i 0.388093 0.717267i
\(298\) 8365.09 1800.52i 1.62610 0.350004i
\(299\) 3124.88 + 1804.15i 0.604403 + 0.348952i
\(300\) 2881.60 + 6230.05i 0.554564 + 1.19897i
\(301\) 1634.57 943.721i 0.313007 0.180715i
\(302\) −2621.69 + 2372.80i −0.499541 + 0.452117i
\(303\) 5364.45 + 3031.63i 1.01710 + 0.574794i
\(304\) −2784.92 8280.70i −0.525415 1.56227i
\(305\) 3222.11i 0.604909i
\(306\) −6710.60 2025.70i −1.25366 0.378437i
\(307\) −6085.37 −1.13130 −0.565652 0.824644i \(-0.691376\pi\)
−0.565652 + 0.824644i \(0.691376\pi\)
\(308\) −261.720 + 2619.44i −0.0484184 + 0.484599i
\(309\) 1931.78 + 3275.87i 0.355647 + 0.603100i
\(310\) 6121.75 5540.58i 1.12159 1.01511i
\(311\) −1912.33 3312.26i −0.348676 0.603925i 0.637338 0.770584i \(-0.280035\pi\)
−0.986015 + 0.166659i \(0.946702\pi\)
\(312\) −6505.28 2765.46i −1.18041 0.501805i
\(313\) −2367.38 + 4100.42i −0.427515 + 0.740478i −0.996652 0.0817649i \(-0.973944\pi\)
0.569136 + 0.822243i \(0.307278\pi\)
\(314\) −1374.66 6386.59i −0.247060 1.14782i
\(315\) −93.7035 5085.47i −0.0167606 0.909632i
\(316\) −548.219 1214.49i −0.0975940 0.216205i
\(317\) −2191.42 + 3795.64i −0.388272 + 0.672507i −0.992217 0.124519i \(-0.960261\pi\)
0.603945 + 0.797026i \(0.293595\pi\)
\(318\) 2876.37 + 897.272i 0.507230 + 0.158228i
\(319\) −3354.37 + 1936.65i −0.588742 + 0.339910i
\(320\) −8501.43 + 1944.40i −1.48514 + 0.339673i
\(321\) −7156.84 + 65.9294i −1.24441 + 0.0114636i
\(322\) −1787.06 575.583i −0.309283 0.0996148i
\(323\) 12529.8i 2.15845i
\(324\) −4857.90 3226.92i −0.832974 0.553312i
\(325\) 9927.50i 1.69440i
\(326\) 596.898 1853.24i 0.101408 0.314852i
\(327\) 10278.7 94.6885i 1.73827 0.0160131i
\(328\) 149.633 343.171i 0.0251893 0.0577697i
\(329\) 1721.83 994.100i 0.288534 0.166585i
\(330\) −2218.01 + 7110.25i −0.369992 + 1.18608i
\(331\) −650.703 + 1127.05i −0.108054 + 0.187155i −0.914982 0.403495i \(-0.867795\pi\)
0.806928 + 0.590650i \(0.201129\pi\)
\(332\) 1635.98 + 3624.26i 0.270440 + 0.599118i
\(333\) −128.912 6996.32i −0.0212143 1.15134i
\(334\) −2365.02 + 509.051i −0.387449 + 0.0833953i
\(335\) 3363.87 5826.40i 0.548621 0.950239i
\(336\) 3611.82 + 694.460i 0.586432 + 0.112756i
\(337\) −3214.30 5567.33i −0.519567 0.899916i −0.999741 0.0227432i \(-0.992760\pi\)
0.480174 0.877173i \(-0.340573\pi\)
\(338\) 2690.33 + 2972.53i 0.432942 + 0.478355i
\(339\) 737.408 + 1250.48i 0.118143 + 0.200345i
\(340\) 12445.6 + 1243.50i 1.98517 + 0.198347i
\(341\) 5099.16 0.809780
\(342\) −3012.60 + 9979.93i −0.476324 + 1.57793i
\(343\) 6234.20i 0.981385i
\(344\) 433.215 + 3837.17i 0.0678993 + 0.601413i
\(345\) −4624.58 2613.50i −0.721678 0.407844i
\(346\) 8265.80 + 9132.83i 1.28431 + 1.41903i
\(347\) 4391.49 2535.43i 0.679388 0.392245i −0.120236 0.992745i \(-0.538365\pi\)
0.799624 + 0.600500i \(0.205032\pi\)
\(348\) 2271.79 + 4911.63i 0.349944 + 0.756584i
\(349\) 1404.61 + 810.954i 0.215436 + 0.124382i 0.603835 0.797109i \(-0.293638\pi\)
−0.388399 + 0.921491i \(0.626972\pi\)
\(350\) 1086.93 + 5049.82i 0.165997 + 0.771212i
\(351\) 4417.56 + 7185.31i 0.671773 + 1.09266i
\(352\) −4698.46 2632.81i −0.711446 0.398663i
\(353\) 567.462 + 327.624i 0.0855607 + 0.0493985i 0.542170 0.840269i \(-0.317603\pi\)
−0.456609 + 0.889667i \(0.650936\pi\)
\(354\) −10341.8 + 2325.88i −1.55272 + 0.349206i
\(355\) −1117.40 1935.40i −0.167058 0.289352i
\(356\) 1464.54 2037.69i 0.218034 0.303363i
\(357\) −4592.35 2595.29i −0.680820 0.384754i
\(358\) −2540.88 818.374i −0.375111 0.120817i
\(359\) −4876.78 −0.716954 −0.358477 0.933538i \(-0.616704\pi\)
−0.358477 + 0.933538i \(0.616704\pi\)
\(360\) 9613.88 + 3982.79i 1.40749 + 0.583087i
\(361\) 11775.2 1.71676
\(362\) −10529.0 3391.20i −1.52870 0.492369i
\(363\) 1995.20 1176.57i 0.288488 0.170121i
\(364\) −4319.46 3104.50i −0.621981 0.447033i
\(365\) 3492.48 + 6049.16i 0.500835 + 0.867472i
\(366\) 1884.51 + 2044.02i 0.269139 + 0.291920i
\(367\) 4731.01 + 2731.45i 0.672907 + 0.388503i 0.797177 0.603745i \(-0.206326\pi\)
−0.124270 + 0.992248i \(0.539659\pi\)
\(368\) 2540.77 2880.77i 0.359910 0.408073i
\(369\) −382.690 + 230.449i −0.0539893 + 0.0325114i
\(370\) 2627.31 + 12206.3i 0.369155 + 1.71507i
\(371\) 1963.64 + 1133.71i 0.274790 + 0.158650i
\(372\) 642.962 7095.23i 0.0896129 0.988899i
\(373\) −691.653 + 399.326i −0.0960119 + 0.0554325i −0.547237 0.836978i \(-0.684320\pi\)
0.451225 + 0.892410i \(0.350987\pi\)
\(374\) 5183.34 + 5727.04i 0.716642 + 0.791813i
\(375\) 32.7152 + 3551.34i 0.00450508 + 0.489041i
\(376\) 456.341 + 4042.01i 0.0625905 + 0.554390i
\(377\) 7826.62i 1.06921i
\(378\) −3033.78 3171.29i −0.412806 0.431517i
\(379\) −8792.42 −1.19165 −0.595827 0.803113i \(-0.703175\pi\)
−0.595827 + 0.803113i \(0.703175\pi\)
\(380\) 1849.31 18509.0i 0.249652 2.49866i
\(381\) 6052.69 55.7578i 0.813881 0.00749754i
\(382\) 581.043 + 641.990i 0.0778239 + 0.0859871i
\(383\) 2819.36 + 4883.27i 0.376142 + 0.651497i 0.990497 0.137532i \(-0.0439171\pi\)
−0.614355 + 0.789030i \(0.710584\pi\)
\(384\) −4255.86 + 6205.70i −0.565576 + 0.824696i
\(385\) −2802.46 + 4854.01i −0.370978 + 0.642554i
\(386\) 3144.28 676.781i 0.414610 0.0892415i
\(387\) 2229.98 4032.20i 0.292910 0.529634i
\(388\) 4658.88 2103.00i 0.609585 0.275165i
\(389\) −2191.36 + 3795.54i −0.285620 + 0.494708i −0.972759 0.231817i \(-0.925533\pi\)
0.687139 + 0.726526i \(0.258866\pi\)
\(390\) −10201.6 11065.1i −1.32456 1.43667i
\(391\) −4770.90 + 2754.48i −0.617072 + 0.356266i
\(392\) −4577.24 1995.81i −0.589759 0.257152i
\(393\) −778.937 1320.91i −0.0999801 0.169544i
\(394\) 4405.19 13677.2i 0.563275 1.74885i
\(395\) 2837.06i 0.361388i
\(396\) 2751.52 + 5807.80i 0.349164 + 0.737002i
\(397\) 12772.4i 1.61469i −0.590082 0.807344i \(-0.700904\pi\)
0.590082 0.807344i \(-0.299096\pi\)
\(398\) −13332.6 4294.21i −1.67916 0.540827i
\(399\) −3859.68 + 6829.69i −0.484275 + 0.856922i
\(400\) −10359.2 2090.94i −1.29490 0.261367i
\(401\) 1752.46 1011.79i 0.218239 0.126000i −0.386896 0.922124i \(-0.626453\pi\)
0.605135 + 0.796123i \(0.293119\pi\)
\(402\) −1273.73 5663.54i −0.158030 0.702666i
\(403\) −5151.84 + 8923.25i −0.636803 + 1.10297i
\(404\) −8646.65 + 3903.07i −1.06482 + 0.480656i
\(405\) −6600.50 10517.5i −0.809831 1.29042i
\(406\) 856.914 + 3981.16i 0.104749 + 0.486655i
\(407\) −3855.48 + 6677.88i −0.469555 + 0.813293i
\(408\) 8622.46 6490.22i 1.04626 0.787534i
\(409\) 6852.57 + 11869.0i 0.828454 + 1.43492i 0.899251 + 0.437434i \(0.144112\pi\)
−0.0707969 + 0.997491i \(0.522554\pi\)
\(410\) 590.986 534.880i 0.0711871 0.0644289i
\(411\) 6079.03 10756.8i 0.729578 1.29099i
\(412\) −5826.15 582.116i −0.696684 0.0696088i
\(413\) −7976.87 −0.950402
\(414\) −4462.27 + 1046.84i −0.529730 + 0.124274i
\(415\) 8466.28i 1.00143i
\(416\) 9354.28 5562.04i 1.10248 0.655533i
\(417\) 8487.32 5004.96i 0.996704 0.587755i
\(418\) 8517.18 7708.60i 0.996624 0.902009i
\(419\) 10367.2 5985.52i 1.20876 0.697881i 0.246275 0.969200i \(-0.420793\pi\)
0.962489 + 0.271319i \(0.0874599\pi\)
\(420\) 6400.74 + 4511.54i 0.743629 + 0.524144i
\(421\) 7018.33 + 4052.04i 0.812477 + 0.469084i 0.847815 0.530292i \(-0.177918\pi\)
−0.0353385 + 0.999375i \(0.511251\pi\)
\(422\) −12615.1 + 2715.29i −1.45519 + 0.313219i
\(423\) 2349.02 4247.46i 0.270008 0.488223i
\(424\) −3731.86 + 2755.53i −0.427441 + 0.315614i
\(425\) 13126.2 + 7578.40i 1.49815 + 0.864956i
\(426\) −1840.80 574.230i −0.209360 0.0653088i
\(427\) 1046.08 + 1811.86i 0.118555 + 0.205344i
\(428\) 6431.02 8947.82i 0.726297 1.01054i
\(429\) −85.6193 9294.25i −0.00963576 1.04599i
\(430\) −2520.58 + 7825.86i −0.282681 + 0.877666i
\(431\) −2632.17 −0.294170 −0.147085 0.989124i \(-0.546989\pi\)
−0.147085 + 0.989124i \(0.546989\pi\)
\(432\) 8428.20 3096.29i 0.938662 0.344838i
\(433\) −2392.15 −0.265495 −0.132747 0.991150i \(-0.542380\pi\)
−0.132747 + 0.991150i \(0.542380\pi\)
\(434\) 1643.61 5103.05i 0.181787 0.564411i
\(435\) 106.137 + 11521.5i 0.0116986 + 1.26992i
\(436\) −9236.30 + 12851.0i −1.01454 + 1.41158i
\(437\) 4096.43 + 7095.23i 0.448419 + 0.776684i
\(438\) 5753.50 + 1794.78i 0.627655 + 0.195794i
\(439\) −13175.7 7606.99i −1.43244 0.827020i −0.435134 0.900366i \(-0.643299\pi\)
−0.997307 + 0.0733455i \(0.976632\pi\)
\(440\) −6811.52 9224.96i −0.738015 0.999506i
\(441\) 3073.75 + 5104.35i 0.331902 + 0.551166i
\(442\) −15258.9 + 3284.35i −1.64206 + 0.353441i
\(443\) 1983.58 + 1145.22i 0.212738 + 0.122824i 0.602583 0.798056i \(-0.294138\pi\)
−0.389845 + 0.920880i \(0.627472\pi\)
\(444\) 8805.80 + 6206.73i 0.941227 + 0.663420i
\(445\) 4627.03 2671.42i 0.492904 0.284579i
\(446\) 6136.37 5553.81i 0.651492 0.589642i
\(447\) 13540.6 7984.88i 1.43277 0.844903i
\(448\) −4149.27 + 3853.42i −0.437577 + 0.406377i
\(449\) 458.702i 0.0482126i 0.999709 + 0.0241063i \(0.00767402\pi\)
−0.999709 + 0.0241063i \(0.992326\pi\)
\(450\) 8632.80 + 9192.12i 0.904343 + 0.962935i
\(451\) 492.266 0.0513967
\(452\) −2223.99 222.208i −0.231433 0.0231235i
\(453\) −3196.08 + 5655.46i −0.331490 + 0.586571i
\(454\) −372.195 + 336.861i −0.0384757 + 0.0348230i
\(455\) −5662.83 9808.31i −0.583467 1.01060i
\(456\) −9652.18 12823.2i −0.991239 1.31689i
\(457\) −2863.81 + 4960.26i −0.293136 + 0.507727i −0.974550 0.224172i \(-0.928032\pi\)
0.681413 + 0.731899i \(0.261366\pi\)
\(458\) −662.625 3078.51i −0.0676036 0.314082i
\(459\) −12872.7 + 355.833i −1.30903 + 0.0361849i
\(460\) 7454.09 3364.75i 0.755541 0.341049i
\(461\) 416.155 720.802i 0.0420440 0.0728223i −0.844238 0.535969i \(-0.819946\pi\)
0.886282 + 0.463147i \(0.153280\pi\)
\(462\) 1061.15 + 4718.33i 0.106860 + 0.475144i
\(463\) −8632.04 + 4983.71i −0.866447 + 0.500244i −0.866166 0.499756i \(-0.833423\pi\)
−0.000281312 1.00000i \(0.500090\pi\)
\(464\) −8166.96 1648.45i −0.817116 0.164930i
\(465\) 7462.98 13205.7i 0.744274 1.31699i
\(466\) −9454.83 3045.24i −0.939886 0.302721i
\(467\) 436.159i 0.0432185i −0.999766 0.0216092i \(-0.993121\pi\)
0.999766 0.0216092i \(-0.00687897\pi\)
\(468\) −12943.3 1052.79i −1.27843 0.103986i
\(469\) 4368.41i 0.430094i
\(470\) −2655.14 + 8243.64i −0.260579 + 0.809044i
\(471\) −6096.30 10338.0i −0.596397 1.01136i
\(472\) 6522.89 14959.7i 0.636102 1.45885i
\(473\) −4397.29 + 2538.78i −0.427458 + 0.246793i
\(474\) −1659.31 1799.76i −0.160791 0.174400i
\(475\) 11270.5 19521.1i 1.08869 1.88566i
\(476\) 7402.14 3341.30i 0.712766 0.321740i
\(477\) 5534.43 101.976i 0.531246 0.00978859i
\(478\) 6817.50 1467.41i 0.652354 0.140414i
\(479\) −801.979 + 1389.07i −0.0764997 + 0.132501i −0.901737 0.432284i \(-0.857708\pi\)
0.825238 + 0.564785i \(0.191041\pi\)
\(480\) −13694.9 + 8314.70i −1.30226 + 0.790651i
\(481\) −7790.62 13493.8i −0.738507 1.27913i
\(482\) 4952.18 + 5471.63i 0.467978 + 0.517066i
\(483\) −3448.98 + 31.7723i −0.324916 + 0.00299315i
\(484\) −354.544 + 3548.48i −0.0332968 + 0.333253i
\(485\) 10883.2 1.01893
\(486\) −10338.6 2811.62i −0.964953 0.262423i
\(487\) 17352.2i 1.61458i 0.590152 + 0.807292i \(0.299068\pi\)
−0.590152 + 0.807292i \(0.700932\pi\)
\(488\) −4253.35 + 480.201i −0.394549 + 0.0445444i
\(489\) −32.9490 3576.71i −0.00304704 0.330766i
\(490\) −7134.27 7882.61i −0.657742 0.726735i
\(491\) 534.280 308.467i 0.0491073 0.0283521i −0.475245 0.879853i \(-0.657641\pi\)
0.524353 + 0.851501i \(0.324307\pi\)
\(492\) 62.0706 684.964i 0.00568773 0.0627653i
\(493\) 10348.4 + 5974.64i 0.945370 + 0.545810i
\(494\) 4884.45 + 22692.8i 0.444862 + 2.06680i
\(495\) 252.079 + 13680.8i 0.0228891 + 1.24224i
\(496\) 8226.20 + 7255.30i 0.744692 + 0.656799i
\(497\) −1256.68 725.542i −0.113420 0.0654829i
\(498\) 4951.67 + 5370.79i 0.445562 + 0.483275i
\(499\) 3190.76 + 5526.56i 0.286249 + 0.495797i 0.972911 0.231179i \(-0.0742584\pi\)
−0.686663 + 0.726976i \(0.740925\pi\)
\(500\) −4440.05 3191.18i −0.397130 0.285427i
\(501\) −3828.26 + 2257.52i −0.341385 + 0.201314i
\(502\) 20453.4 + 6587.68i 1.81848 + 0.585702i
\(503\) 518.133 0.0459292 0.0229646 0.999736i \(-0.492689\pi\)
0.0229646 + 0.999736i \(0.492689\pi\)
\(504\) 6699.12 881.598i 0.592068 0.0779157i
\(505\) −20198.6 −1.77986
\(506\) 4807.52 + 1548.42i 0.422372 + 0.136039i
\(507\) 6412.27 + 3623.78i 0.561694 + 0.317431i
\(508\) −5438.85 + 7567.36i −0.475019 + 0.660920i
\(509\) −7194.61 12461.4i −0.626513 1.08515i −0.988246 0.152871i \(-0.951148\pi\)
0.361733 0.932282i \(-0.382185\pi\)
\(510\) 22418.0 5041.80i 1.94644 0.437754i
\(511\) 3927.79 + 2267.71i 0.340030 + 0.196316i
\(512\) −3833.70 10932.5i −0.330913 0.943661i
\(513\) 529.191 + 19144.1i 0.0455446 + 1.64763i
\(514\) −1794.83 8338.67i −0.154021 0.715570i
\(515\) −10796.3 6233.22i −0.923767 0.533337i
\(516\) 2978.12 + 6438.73i 0.254078 + 0.549320i
\(517\) −4632.04 + 2674.31i −0.394036 + 0.227497i
\(518\) 5440.25 + 6010.89i 0.461449 + 0.509852i
\(519\) 19701.1 + 11133.8i 1.66625 + 0.941652i
\(520\) 23025.1 2599.52i 1.94176 0.219224i
\(521\) 15224.9i 1.28026i −0.768267 0.640130i \(-0.778881\pi\)
0.768267 0.640130i \(-0.221119\pi\)
\(522\) 6805.91 + 7246.86i 0.570664 + 0.607637i
\(523\) 6328.57 0.529118 0.264559 0.964369i \(-0.414774\pi\)
0.264559 + 0.964369i \(0.414774\pi\)
\(524\) 2349.24 + 234.723i 0.195853 + 0.0195685i
\(525\) 4820.29 + 8174.16i 0.400714 + 0.679523i
\(526\) 4001.54 + 4421.27i 0.331702 + 0.366496i
\(527\) −7865.57 13623.6i −0.650151 1.12609i
\(528\) −9716.44 1868.22i −0.800860 0.153985i
\(529\) 4282.43 7417.39i 0.351971 0.609631i
\(530\) −9655.79 + 2078.33i −0.791360 + 0.170334i
\(531\) −16682.5 + 10045.9i −1.36339 + 0.821007i
\(532\) −4969.15 11008.4i −0.404962 0.897131i
\(533\) −497.352 + 861.439i −0.0404178 + 0.0700057i
\(534\) 1372.84 4400.89i 0.111252 0.356639i
\(535\) 20318.1 11730.6i 1.64192 0.947963i
\(536\) 8192.47 + 3572.16i 0.660188 + 0.287861i
\(537\) −4903.83 + 45.1745i −0.394071 + 0.00363021i
\(538\) −3270.76 + 10155.0i −0.262105 + 0.813781i
\(539\) 6565.88i 0.524698i
\(540\) 19068.0 + 1374.28i 1.51955 + 0.109518i
\(541\) 5488.92i 0.436206i 0.975926 + 0.218103i \(0.0699868\pi\)
−0.975926 + 0.218103i \(0.930013\pi\)
\(542\) −2457.24 791.434i −0.194737 0.0627214i
\(543\) −20320.6 + 187.195i −1.60597 + 0.0147943i
\(544\) 213.333 + 16614.2i 0.0168135 + 1.30942i
\(545\) −29181.0 + 16847.7i −2.29354 + 1.32417i
\(546\) −9328.93 2910.12i −0.731211 0.228098i
\(547\) −10861.9 + 18813.4i −0.849037 + 1.47058i 0.0330315 + 0.999454i \(0.489484\pi\)
−0.882069 + 0.471121i \(0.843849\pi\)
\(548\) 7826.45 + 17338.3i 0.610090 + 1.35156i
\(549\) 4469.53 + 2471.84i 0.347459 + 0.192159i
\(550\) −2924.04 13584.9i −0.226694 1.05320i
\(551\) 8885.41 15390.0i 0.686989 1.18990i
\(552\) 2760.74 6494.18i 0.212871 0.500744i
\(553\) −921.070 1595.34i −0.0708280 0.122678i
\(554\) −7693.23 + 6962.87i −0.589989 + 0.533978i
\(555\) 11651.5 + 19758.4i 0.891133 + 1.51117i
\(556\) −1508.18 + 15094.7i −0.115038 + 1.15137i
\(557\) −17630.6 −1.34117 −0.670586 0.741832i \(-0.733957\pi\)
−0.670586 + 0.741832i \(0.733957\pi\)
\(558\) −2989.30 12742.2i −0.226787 0.966705i
\(559\) 10260.0i 0.776302i
\(560\) −11427.5 + 3843.25i −0.862325 + 0.290012i
\(561\) 12354.2 + 6981.78i 0.929762 + 0.525439i
\(562\) 433.060 391.947i 0.0325045 0.0294187i
\(563\) −16401.0 + 9469.15i −1.22775 + 0.708840i −0.966558 0.256447i \(-0.917448\pi\)
−0.261189 + 0.965288i \(0.584115\pi\)
\(564\) 3137.10 + 6782.45i 0.234213 + 0.506370i
\(565\) −4121.21 2379.38i −0.306868 0.177170i
\(566\) 918.434 197.685i 0.0682061 0.0146808i
\(567\) −7126.18 3771.34i −0.527816 0.279332i
\(568\) 2388.29 1763.46i 0.176427 0.130270i
\(569\) 6640.91 + 3834.13i 0.489282 + 0.282487i 0.724277 0.689510i \(-0.242174\pi\)
−0.234995 + 0.971997i \(0.575507\pi\)
\(570\) −7498.10 33339.7i −0.550984 2.44991i
\(571\) −9216.49 15963.4i −0.675478 1.16996i −0.976329 0.216292i \(-0.930604\pi\)
0.300850 0.953671i \(-0.402730\pi\)
\(572\) 11620.1 + 8351.66i 0.849408 + 0.610490i
\(573\) 1384.89 + 782.645i 0.100968 + 0.0570601i
\(574\) 158.671 492.642i 0.0115380 0.0358231i
\(575\) 9910.56 0.718780
\(576\) −3824.70 + 13284.4i −0.276671 + 0.960965i
\(577\) 21712.7 1.56657 0.783286 0.621662i \(-0.213542\pi\)
0.783286 + 0.621662i \(0.213542\pi\)
\(578\) 3045.49 9455.61i 0.219162 0.680452i
\(579\) 5089.65 3001.36i 0.365317 0.215427i
\(580\) −14404.7 10353.0i −1.03125 0.741184i
\(581\) 2748.63 + 4760.77i 0.196269 + 0.339948i
\(582\) 6903.99 6365.23i 0.491718 0.453346i
\(583\) −5282.53 3049.87i −0.375266 0.216660i
\(584\) −7464.70 + 5511.78i −0.528924 + 0.390546i
\(585\) −24195.4 13381.0i −1.71001 0.945706i
\(586\) 5588.55 1202.89i 0.393961 0.0847969i
\(587\) 398.575 + 230.117i 0.0280255 + 0.0161805i 0.513947 0.857822i \(-0.328183\pi\)
−0.485922 + 0.874002i \(0.661516\pi\)
\(588\) −9136.09 827.902i −0.640759 0.0580648i
\(589\) −20260.8 + 11697.6i −1.41737 + 0.818320i
\(590\) 25762.7 23316.9i 1.79768 1.62702i
\(591\) −243.168 26396.6i −0.0169248 1.83724i
\(592\) −15721.4 + 5287.33i −1.09146 + 0.367074i
\(593\) 11291.5i 0.781930i 0.920406 + 0.390965i \(0.127859\pi\)
−0.920406 + 0.390965i \(0.872141\pi\)
\(594\) 8161.41 + 8531.32i 0.563749 + 0.589300i
\(595\) 17291.4 1.19139
\(596\) −2406.14 + 24082.0i −0.165368 + 1.65510i
\(597\) −25731.6 + 237.042i −1.76403 + 0.0162504i
\(598\) −7566.84 + 6848.48i −0.517443 + 0.468319i
\(599\) 13786.9 + 23879.6i 0.940431 + 1.62887i 0.764650 + 0.644445i \(0.222912\pi\)
0.175781 + 0.984429i \(0.443755\pi\)
\(600\) −19271.4 + 2355.72i −1.31125 + 0.160286i
\(601\) 2266.68 3926.00i 0.153843 0.266464i −0.778794 0.627280i \(-0.784168\pi\)
0.932637 + 0.360816i \(0.117502\pi\)
\(602\) 1123.34 + 5218.97i 0.0760531 + 0.353337i
\(603\) −5501.48 9135.90i −0.371538 0.616986i
\(604\) −4114.80 9115.70i −0.277200 0.614094i
\(605\) −3796.41 + 6575.58i −0.255117 + 0.441876i
\(606\) −12813.5 + 11813.6i −0.858930 + 0.791902i
\(607\) 9493.59 5481.13i 0.634815 0.366511i −0.147799 0.989017i \(-0.547219\pi\)
0.782615 + 0.622507i \(0.213886\pi\)
\(608\) 24708.4 317.266i 1.64812 0.0211625i
\(609\) 3800.21 + 6444.32i 0.252861 + 0.428797i
\(610\) −8674.65 2793.96i −0.575781 0.185449i
\(611\) 10807.7i 0.715605i
\(612\) 11272.6 16310.0i 0.744553 1.07727i
\(613\) 17689.3i 1.16552i −0.812644 0.582760i \(-0.801973\pi\)
0.812644 0.582760i \(-0.198027\pi\)
\(614\) 5276.76 16383.2i 0.346828 1.07683i
\(615\) 720.466 1274.86i 0.0472390 0.0835893i
\(616\) −6825.20 2975.98i −0.446421 0.194652i
\(617\) 11483.7 6630.14i 0.749300 0.432609i −0.0761408 0.997097i \(-0.524260\pi\)
0.825441 + 0.564488i \(0.190927\pi\)
\(618\) −10494.5 + 2360.21i −0.683091 + 0.153627i
\(619\) 400.480 693.652i 0.0260043 0.0450408i −0.852730 0.522351i \(-0.825055\pi\)
0.878735 + 0.477311i \(0.158388\pi\)
\(620\) 9608.22 + 21285.5i 0.622380 + 1.37879i
\(621\) −7173.05 + 4410.02i −0.463518 + 0.284973i
\(622\) 10575.6 2276.31i 0.681739 0.146739i
\(623\) 1734.59 3004.39i 0.111548 0.193208i
\(624\) 13086.1 15115.7i 0.839525 0.969733i
\(625\) 4499.49 + 7793.35i 0.287968 + 0.498774i
\(626\) −8986.48 9929.10i −0.573757 0.633940i
\(627\) 10383.2 18373.1i 0.661349 1.17026i
\(628\) 18386.2 + 1837.04i 1.16829 + 0.116729i
\(629\) 23788.6 1.50797
\(630\) 13772.5 + 4157.45i 0.870968 + 0.262916i
\(631\) 12560.3i 0.792422i −0.918160 0.396211i \(-0.870325\pi\)
0.918160 0.396211i \(-0.129675\pi\)
\(632\) 3745.07 422.817i 0.235713 0.0266120i
\(633\) −20420.0 + 12041.7i −1.28219 + 0.756104i
\(634\) −8318.52 9191.08i −0.521089 0.575748i
\(635\) −17183.4 + 9920.85i −1.07386 + 0.619995i
\(636\) −4909.83 + 6965.82i −0.306112 + 0.434296i
\(637\) 11489.9 + 6633.71i 0.714674 + 0.412617i
\(638\) −2305.25 10710.0i −0.143050 0.664600i
\(639\) −3541.89 + 65.2619i −0.219272 + 0.00404025i
\(640\) 2137.00 24573.8i 0.131988 1.51776i
\(641\) −18575.0 10724.3i −1.14457 0.660816i −0.197010 0.980401i \(-0.563123\pi\)
−0.947558 + 0.319585i \(0.896456\pi\)
\(642\) 6028.35 19325.0i 0.370592 1.18800i
\(643\) −1549.71 2684.17i −0.0950458 0.164624i 0.814582 0.580049i \(-0.196966\pi\)
−0.909628 + 0.415424i \(0.863633\pi\)
\(644\) 3099.20 4312.08i 0.189636 0.263851i
\(645\) 139.137 + 15103.7i 0.00849379 + 0.922028i
\(646\) −33733.2 10864.9i −2.05451 0.661723i
\(647\) 7913.28 0.480840 0.240420 0.970669i \(-0.422715\pi\)
0.240420 + 0.970669i \(0.422715\pi\)
\(648\) 12900.0 10280.5i 0.782036 0.623233i
\(649\) 21459.2 1.29792
\(650\) 26727.1 + 8608.35i 1.61281 + 0.519457i
\(651\) −90.7275 9848.75i −0.00546220 0.592938i
\(652\) 4471.78 + 3213.98i 0.268602 + 0.193051i
\(653\) −3180.84 5509.37i −0.190621 0.330166i 0.754835 0.655915i \(-0.227717\pi\)
−0.945456 + 0.325749i \(0.894384\pi\)
\(654\) −8657.98 + 27754.8i −0.517667 + 1.65948i
\(655\) 4353.30 + 2513.38i 0.259691 + 0.149933i
\(656\) 794.146 + 700.417i 0.0472655 + 0.0416870i
\(657\) 11070.3 203.979i 0.657373 0.0121126i
\(658\) 1183.31 + 5497.57i 0.0701066 + 0.325711i
\(659\) 20242.2 + 11686.8i 1.19654 + 0.690825i 0.959783 0.280742i \(-0.0905806\pi\)
0.236762 + 0.971568i \(0.423914\pi\)
\(660\) −17219.1 12136.8i −1.01554 0.715796i
\(661\) −3037.57 + 1753.74i −0.178741 + 0.103196i −0.586701 0.809804i \(-0.699574\pi\)
0.407960 + 0.913000i \(0.366240\pi\)
\(662\) −2470.04 2729.13i −0.145016 0.160228i
\(663\) −24699.6 + 14565.3i −1.44684 + 0.853198i
\(664\) −11175.9 + 1261.76i −0.653178 + 0.0737435i
\(665\) 25715.6i 1.49956i
\(666\) 18947.5 + 5719.60i 1.10240 + 0.332778i
\(667\) 7813.26 0.453569
\(668\) 680.275 6808.58i 0.0394021 0.394359i
\(669\) 7480.79 13237.2i 0.432323 0.764994i
\(670\) 12769.1 + 14108.5i 0.736289 + 0.813521i
\(671\) −2814.13 4874.22i −0.161905 0.280428i
\(672\) −5001.53 + 9121.67i −0.287111 + 0.523625i
\(673\) 12801.6 22173.1i 0.733234 1.27000i −0.222261 0.974987i \(-0.571344\pi\)
0.955494 0.295010i \(-0.0953231\pi\)
\(674\) 17775.7 3826.08i 1.01587 0.218657i
\(675\) 20375.3 + 11024.5i 1.16185 + 0.628643i
\(676\) −10335.6 + 4665.44i −0.588050 + 0.265444i
\(677\) 3433.18 5946.45i 0.194901 0.337578i −0.751967 0.659201i \(-0.770895\pi\)
0.946868 + 0.321622i \(0.104228\pi\)
\(678\) −4006.01 + 900.952i −0.226917 + 0.0510337i
\(679\) 6119.83 3533.29i 0.345887 0.199698i
\(680\) −14139.6 + 32428.2i −0.797398 + 1.82877i
\(681\) −453.740 + 802.891i −0.0255321 + 0.0451790i
\(682\) −4421.59 + 13728.1i −0.248257 + 0.770787i
\(683\) 5563.45i 0.311683i 0.987782 + 0.155841i \(0.0498089\pi\)
−0.987782 + 0.155841i \(0.950191\pi\)
\(684\) −24256.0 16764.4i −1.35592 0.937140i
\(685\) 40502.3i 2.25915i
\(686\) −16783.9 5405.81i −0.934128 0.300867i
\(687\) −2938.59 4983.20i −0.163194 0.276741i
\(688\) −10706.2 2160.98i −0.593270 0.119748i
\(689\) 10674.2 6162.76i 0.590211 0.340758i
\(690\) 11046.2 10184.2i 0.609452 0.561893i
\(691\) 16086.6 27862.8i 0.885620 1.53394i 0.0406192 0.999175i \(-0.487067\pi\)
0.845001 0.534765i \(-0.179600\pi\)
\(692\) −31755.1 + 14334.2i −1.74443 + 0.787432i
\(693\) 4583.31 + 7611.18i 0.251235 + 0.417207i
\(694\) 3018.00 + 14021.4i 0.165075 + 0.766925i
\(695\) −16149.4 + 27971.6i −0.881412 + 1.52665i
\(696\) −15193.2 + 1857.19i −0.827435 + 0.101145i
\(697\) −759.331 1315.20i −0.0412650 0.0714731i
\(698\) −3401.25 + 3078.35i −0.184440 + 0.166930i
\(699\) −18247.6 + 168.098i −0.987392 + 0.00909593i
\(700\) −14537.8 1452.53i −0.784966 0.0784294i
\(701\) 18575.6 1.00084 0.500422 0.865782i \(-0.333178\pi\)
0.500422 + 0.865782i \(0.333178\pi\)
\(702\) −23175.1 + 5662.56i −1.24599 + 0.304444i
\(703\) 35378.2i 1.89803i
\(704\) 11162.3 10366.4i 0.597577 0.554968i
\(705\) 146.564 + 15910.0i 0.00782968 + 0.849937i
\(706\) −1374.10 + 1243.65i −0.0732505 + 0.0662964i
\(707\) −11358.1 + 6557.60i −0.604194 + 0.348832i
\(708\) 2705.82 29859.4i 0.143632 1.58501i
\(709\) −11602.4 6698.64i −0.614579 0.354827i 0.160176 0.987088i \(-0.448794\pi\)
−0.774756 + 0.632261i \(0.782127\pi\)
\(710\) 6179.45 1330.08i 0.326635 0.0703055i
\(711\) −3935.42 2176.45i −0.207581 0.114801i
\(712\) 4215.99 + 5709.79i 0.221911 + 0.300539i
\(713\) −8908.02 5143.05i −0.467893 0.270138i
\(714\) 10969.2 10113.2i 0.574948 0.530081i
\(715\) 15234.0 + 26386.1i 0.796812 + 1.38012i
\(716\) 4406.50 6131.00i 0.229998 0.320009i
\(717\) 11035.5 6507.62i 0.574796 0.338956i
\(718\) 4228.76 13129.4i 0.219799 0.682431i
\(719\) 10940.1 0.567449 0.283724 0.958906i \(-0.408430\pi\)
0.283724 + 0.958906i \(0.408430\pi\)
\(720\) −19059.0 + 22429.2i −0.986509 + 1.16095i
\(721\) −8094.61 −0.418113
\(722\) −10210.5 + 31701.6i −0.526312 + 1.63409i
\(723\) 11803.3 + 6670.42i 0.607149 + 0.343120i
\(724\) 18259.8 25405.8i 0.937320 1.30414i
\(725\) −10748.3 18616.6i −0.550595 0.953659i
\(726\) 1437.51 + 6391.78i 0.0734862 + 0.326751i
\(727\) 21844.7 + 12612.0i 1.11441 + 0.643403i 0.939967 0.341265i \(-0.110855\pi\)
0.174439 + 0.984668i \(0.444189\pi\)
\(728\) 12103.5 8936.99i 0.616190 0.454982i
\(729\) −19652.9 + 1087.34i −0.998473 + 0.0552428i
\(730\) −19314.1 + 4157.21i −0.979243 + 0.210774i
\(731\) 13565.8 + 7832.24i 0.686389 + 0.396287i
\(732\) −7137.07 + 3301.12i −0.360374 + 0.166685i
\(733\) −18183.8 + 10498.4i −0.916281 + 0.529015i −0.882447 0.470413i \(-0.844105\pi\)
−0.0338341 + 0.999427i \(0.510772\pi\)
\(734\) −11456.1 + 10368.5i −0.576091 + 0.521400i
\(735\) −17004.2 9609.63i −0.853346 0.482254i
\(736\) 5552.55 + 9338.32i 0.278084 + 0.467683i
\(737\) 11751.8i 0.587358i
\(738\) −288.583 1230.12i −0.0143942 0.0613567i
\(739\) −13554.1 −0.674691 −0.337346 0.941381i \(-0.609529\pi\)
−0.337346 + 0.941381i \(0.609529\pi\)
\(740\) −35140.4 3511.03i −1.74566 0.174416i
\(741\) 21661.4 + 36733.0i 1.07389 + 1.82108i
\(742\) −4754.91 + 4303.50i −0.235254 + 0.212920i
\(743\) −3833.05 6639.04i −0.189261 0.327810i 0.755743 0.654868i \(-0.227276\pi\)
−0.945004 + 0.327058i \(0.893943\pi\)
\(744\) 18544.5 + 7883.42i 0.913807 + 0.388468i
\(745\) −25764.6 + 44625.7i −1.26704 + 2.19457i
\(746\) −475.330 2208.35i −0.0233285 0.108383i
\(747\) 11744.0 + 6494.91i 0.575221 + 0.318121i
\(748\) −19913.1 + 8988.70i −0.973388 + 0.439384i
\(749\) 7616.85 13192.8i 0.371580 0.643596i
\(750\) −9589.39 2991.37i −0.466873 0.145639i
\(751\) −19535.6 + 11278.9i −0.949220 + 0.548032i −0.892838 0.450377i \(-0.851290\pi\)
−0.0563812 + 0.998409i \(0.517956\pi\)
\(752\) −11277.7 2276.34i −0.546883 0.110385i
\(753\) 39474.4 363.642i 1.91040 0.0175987i
\(754\) 21071.1 + 6786.63i 1.01772 + 0.327791i
\(755\) 21294.3i 1.02646i
\(756\) 11168.5 5417.74i 0.537294 0.260637i
\(757\) 1488.41i 0.0714625i −0.999361 0.0357312i \(-0.988624\pi\)
0.999361 0.0357312i \(-0.0113760\pi\)
\(758\) 7624.10 23671.2i 0.365330 1.13427i
\(759\) 9278.38 85.4732i 0.443721 0.00408759i
\(760\) 48226.9 + 21028.3i 2.30181 + 1.00365i
\(761\) 6200.52 3579.87i 0.295360 0.170526i −0.344997 0.938604i \(-0.612120\pi\)
0.640356 + 0.768078i \(0.278787\pi\)
\(762\) −5098.30 + 16343.6i −0.242378 + 0.776989i
\(763\) −10939.4 + 18947.6i −0.519047 + 0.899016i
\(764\) −2232.22 + 1007.62i −0.105705 + 0.0477150i
\(765\) 36162.6 21776.5i 1.70910 1.02919i
\(766\) −15591.6 + 3355.97i −0.735441 + 0.158298i
\(767\) −21680.9 + 37552.4i −1.02067 + 1.76785i
\(768\) −13016.8 16838.9i −0.611594 0.791172i
\(769\) −13431.2 23263.6i −0.629835 1.09091i −0.987585 0.157089i \(-0.949789\pi\)
0.357750 0.933818i \(-0.383544\pi\)
\(770\) −10638.0 11753.9i −0.497880 0.550105i
\(771\) −7959.65 13497.8i −0.371803 0.630496i
\(772\) −904.422 + 9051.97i −0.0421643 + 0.422004i
\(773\) −30329.6 −1.41123 −0.705613 0.708597i \(-0.749328\pi\)
−0.705613 + 0.708597i \(0.749328\pi\)
\(774\) 8921.96 + 9500.02i 0.414332 + 0.441177i
\(775\) 28300.1i 1.31170i
\(776\) 1621.95 + 14366.3i 0.0750319 + 0.664589i
\(777\) 12966.6 + 7327.83i 0.598678 + 0.338333i
\(778\) −8318.29 9190.83i −0.383323 0.423531i
\(779\) −1955.95 + 1129.27i −0.0899605 + 0.0519387i
\(780\) 38635.8 17870.3i 1.77357 0.820333i
\(781\) 3380.68 + 1951.84i 0.154892 + 0.0894267i
\(782\) −3278.75 15232.8i −0.149933 0.696580i
\(783\) 16063.4 + 8691.49i 0.733155 + 0.396690i
\(784\) 9342.20 10592.4i 0.425574 0.482524i
\(785\) 34070.8 + 19670.8i 1.54910 + 0.894371i
\(786\) 4231.62 951.691i 0.192031 0.0431879i
\(787\) −13373.7 23164.0i −0.605746 1.04918i −0.991933 0.126763i \(-0.959541\pi\)
0.386187 0.922421i \(-0.373792\pi\)
\(788\) 33002.3 + 23719.6i 1.49195 + 1.07230i
\(789\) 9537.48 + 5389.94i 0.430346 + 0.243203i
\(790\) 7638.03 + 2460.08i 0.343986 + 0.110792i
\(791\) −3089.92 −0.138894
\(792\) −18021.8 + 2371.66i −0.808558 + 0.106405i
\(793\) 11372.8 0.509282
\(794\) 34386.4 + 11075.3i 1.53693 + 0.495021i
\(795\) −15629.9 + 9216.91i −0.697276 + 0.411182i
\(796\) 23122.0 32170.9i 1.02957 1.43250i
\(797\) −17637.8 30549.6i −0.783894 1.35775i −0.929657 0.368426i \(-0.879897\pi\)
0.145763 0.989320i \(-0.453436\pi\)
\(798\) −15040.3 16313.3i −0.667193 0.723665i
\(799\) 14290.0 + 8250.35i 0.632722 + 0.365302i
\(800\) 14612.0 26076.2i 0.645764 1.15242i
\(801\) −156.024 8467.75i −0.00688246 0.373525i
\(802\) 1204.36 + 5595.38i 0.0530267 + 0.246359i
\(803\) −10566.5 6100.55i −0.464361 0.268099i
\(804\) 16352.0 + 1481.80i 0.717278 + 0.0649989i
\(805\) 9791.57 5653.17i 0.428705 0.247513i
\(806\) −19556.2 21607.5i −0.854636 0.944282i
\(807\) 180.547 + 19598.9i 0.00787552 + 0.854913i
\(808\) −3010.27 26663.2i −0.131065 1.16090i
\(809\) 15744.5i 0.684238i 0.939657 + 0.342119i \(0.111145\pi\)
−0.939657 + 0.342119i \(0.888855\pi\)
\(810\) 34039.1 8650.09i 1.47656 0.375226i
\(811\) −24665.7 −1.06798 −0.533989 0.845491i \(-0.679308\pi\)
−0.533989 + 0.845491i \(0.679308\pi\)
\(812\) −11461.3 1145.14i −0.495334 0.0494910i
\(813\) −4742.40 + 43.6874i −0.204580 + 0.00188460i
\(814\) −14635.2 16170.4i −0.630178 0.696279i
\(815\) 5862.52 + 10154.2i 0.251970 + 0.436424i
\(816\) 9996.45 + 28841.4i 0.428855 + 1.23732i
\(817\) 11648.0 20174.9i 0.498791 0.863932i
\(818\) −37896.1 + 8156.83i −1.61981 + 0.348651i
\(819\) −17949.8 + 330.738i −0.765833 + 0.0141110i
\(820\) 927.565 + 2054.88i 0.0395024 + 0.0875114i
\(821\) 8244.80 14280.4i 0.350482 0.607052i −0.635852 0.771811i \(-0.719351\pi\)
0.986334 + 0.164759i \(0.0526845\pi\)
\(822\) 23688.6 + 25693.6i 1.00515 + 1.09023i
\(823\) 19313.2 11150.5i 0.818004 0.472275i −0.0317237 0.999497i \(-0.510100\pi\)
0.849728 + 0.527222i \(0.176766\pi\)
\(824\) 6619.17 15180.6i 0.279842 0.641796i
\(825\) −12967.4 21989.9i −0.547234 0.927990i
\(826\) 6916.91 21475.6i 0.291368 0.904637i
\(827\) 25362.4i 1.06643i −0.845980 0.533214i \(-0.820984\pi\)
0.845980 0.533214i \(-0.179016\pi\)
\(828\) 1050.99 12921.2i 0.0441118 0.542321i
\(829\) 14068.1i 0.589390i −0.955591 0.294695i \(-0.904782\pi\)
0.955591 0.294695i \(-0.0952180\pi\)
\(830\) −22793.2 7341.30i −0.953208 0.307012i
\(831\) −9378.75 + 16595.7i −0.391511 + 0.692777i
\(832\) 6863.00 + 30006.8i 0.285976 + 1.25036i
\(833\) −17542.2 + 10128.0i −0.729655 + 0.421266i
\(834\) 6114.97 + 27189.7i 0.253890 + 1.12890i
\(835\) 7284.29 12616.8i 0.301896 0.522899i
\(836\) 13367.9 + 29614.5i 0.553036 + 1.22517i
\(837\) −12593.0 20483.0i −0.520047 0.845874i
\(838\) 7124.76 + 33101.1i 0.293700 + 1.36451i
\(839\) 17579.0 30447.8i 0.723355 1.25289i −0.236292 0.971682i \(-0.575932\pi\)
0.959647 0.281206i \(-0.0907344\pi\)
\(840\) −17696.3 + 13320.2i −0.726882 + 0.547132i
\(841\) 3720.79 + 6444.60i 0.152560 + 0.264242i
\(842\) −16994.8 + 15381.4i −0.695580 + 0.629545i
\(843\) 527.939 934.187i 0.0215696 0.0381674i
\(844\) 3628.60 36317.1i 0.147988 1.48115i
\(845\) −24143.9 −0.982930
\(846\) 9398.25 + 10007.2i 0.381937 + 0.406682i
\(847\) 4930.11i 0.200001i
\(848\) −4182.54 12436.4i −0.169374 0.503617i
\(849\) 1486.67 876.688i 0.0600971 0.0354392i
\(850\) −31784.8 + 28767.3i −1.28260 + 1.16083i
\(851\) 13470.7 7777.32i 0.542621 0.313282i
\(852\) 3142.16 4457.94i 0.126348 0.179256i
\(853\) −24779.3 14306.3i −0.994637 0.574254i −0.0879799 0.996122i \(-0.528041\pi\)
−0.906657 + 0.421868i \(0.861374\pi\)
\(854\) −5785.01 + 1245.18i −0.231802 + 0.0498936i
\(855\) −32385.7 53780.6i −1.29540 2.15118i
\(856\) 18513.1 + 25072.6i 0.739212 + 1.00113i
\(857\) −3490.42 2015.20i −0.139126 0.0803242i 0.428822 0.903389i \(-0.358929\pi\)
−0.567947 + 0.823065i \(0.692262\pi\)
\(858\) 25096.5 + 7828.73i 0.998578 + 0.311502i
\(859\) 16530.6 + 28631.9i 0.656599 + 1.13726i 0.981490 + 0.191511i \(0.0613387\pi\)
−0.324892 + 0.945751i \(0.605328\pi\)
\(860\) −18883.4 13571.9i −0.748741 0.538139i
\(861\) −8.75871 950.785i −0.000346685 0.0376338i
\(862\) 2282.41 7086.41i 0.0901847 0.280005i
\(863\) −7712.99 −0.304233 −0.152117 0.988363i \(-0.548609\pi\)
−0.152117 + 0.988363i \(0.548609\pi\)
\(864\) 1027.64 + 25375.5i 0.0404641 + 0.999181i
\(865\) −74180.1 −2.91584
\(866\) 2074.28 6440.21i 0.0813938 0.252711i
\(867\) −168.112 18249.1i −0.00658521 0.714845i
\(868\) 12313.4 + 8849.93i 0.481501 + 0.346067i
\(869\) 2477.84 + 4291.75i 0.0967262 + 0.167535i
\(870\) −31110.6 9704.80i −1.21235 0.378188i
\(871\) −20565.0 11873.2i −0.800021 0.461892i
\(872\) −26588.7 36009.6i −1.03258 1.39844i
\(873\) 8349.02 15096.6i 0.323679 0.585270i
\(874\) −22654.1 + 4876.11i −0.876758 + 0.188715i
\(875\) −6546.46 3779.60i −0.252927 0.146027i
\(876\) −9820.94 + 13933.5i −0.378789 + 0.537406i
\(877\) 6756.94 3901.12i 0.260166 0.150207i −0.364244 0.931303i \(-0.618673\pi\)
0.624410 + 0.781096i \(0.285339\pi\)
\(878\) 31904.7 28875.8i 1.22635 1.10992i
\(879\) 9046.21 5334.54i 0.347123 0.204698i
\(880\) 30742.1 10339.0i 1.17763 0.396055i
\(881\) 13478.5i 0.515439i 0.966220 + 0.257720i \(0.0829711\pi\)
−0.966220 + 0.257720i \(0.917029\pi\)
\(882\) −16407.4 + 3849.14i −0.626378 + 0.146947i
\(883\) 7582.25 0.288973 0.144486 0.989507i \(-0.453847\pi\)
0.144486 + 0.989507i \(0.453847\pi\)
\(884\) 4389.07 43928.4i 0.166992 1.67135i
\(885\) 31407.0 55574.6i 1.19292 2.11087i
\(886\) −4803.20 + 4347.21i −0.182130 + 0.164839i
\(887\) 23011.6 + 39857.2i 0.871086 + 1.50877i 0.860874 + 0.508817i \(0.169917\pi\)
0.0102115 + 0.999948i \(0.496750\pi\)
\(888\) −24345.6 + 18325.2i −0.920029 + 0.692517i
\(889\) −6441.73 + 11157.4i −0.243024 + 0.420930i
\(890\) 3179.87 + 14773.5i 0.119764 + 0.556414i
\(891\) 19170.7 + 10145.6i 0.720811 + 0.381470i
\(892\) 9631.15 + 21336.3i 0.361519 + 0.800889i
\(893\) 12269.8 21252.0i 0.459792 0.796383i
\(894\) 9755.78 + 43378.3i 0.364969 + 1.62280i
\(895\) 13921.8 8037.78i 0.519951 0.300194i
\(896\) −6776.36 14512.2i −0.252659 0.541091i
\(897\) −9224.67 + 16323.0i −0.343370 + 0.607592i
\(898\) −1234.93 397.750i −0.0458911 0.0147807i
\(899\) 22311.2i 0.827718i
\(900\) −32233.0 + 15270.8i −1.19381 + 0.565585i
\(901\) 18818.0i 0.695802i
\(902\) −426.855 + 1325.29i −0.0157569 + 0.0489218i
\(903\) 4981.75 + 8447.96i 0.183590 + 0.311329i
\(904\) 2526.70 5794.81i 0.0929612 0.213200i
\(905\) 57689.7 33307.1i 2.11897 1.22339i
\(906\) −12454.4 13508.6i −0.456700 0.495355i
\(907\) −23434.9 + 40590.5i −0.857931 + 1.48598i 0.0159676 + 0.999873i \(0.494917\pi\)
−0.873899 + 0.486108i \(0.838416\pi\)
\(908\) −584.168 1294.13i −0.0213505 0.0472988i
\(909\) −15495.4 + 28018.5i −0.565400 + 1.02235i
\(910\) 31316.6 6740.65i 1.14081 0.245550i
\(911\) −19401.4 + 33604.1i −0.705593 + 1.22212i 0.260884 + 0.965370i \(0.415986\pi\)
−0.966477 + 0.256753i \(0.917347\pi\)
\(912\) 42892.7 14866.6i 1.55737 0.539783i
\(913\) −7394.31 12807.3i −0.268035 0.464250i
\(914\) −10870.9 12011.2i −0.393411 0.434677i
\(915\) −16741.8 + 154.227i −0.604883 + 0.00557223i
\(916\) 8862.64 + 885.506i 0.319683 + 0.0319410i
\(917\) 3263.93 0.117540
\(918\) 10204.2 34964.8i 0.366872 1.25709i
\(919\) 7904.72i 0.283735i −0.989886 0.141868i \(-0.954689\pi\)
0.989886 0.141868i \(-0.0453107\pi\)
\(920\) 2595.08 + 22985.8i 0.0929972 + 0.823715i
\(921\) −291.278 31619.2i −0.0104212 1.13126i
\(922\) 1579.71 + 1745.41i 0.0564261 + 0.0623448i
\(923\) −6831.22 + 3944.00i −0.243610 + 0.140648i
\(924\) −13623.0 1234.50i −0.485025 0.0439524i
\(925\) −37061.9 21397.7i −1.31739 0.760597i
\(926\) −5932.27 27560.9i −0.210525 0.978087i
\(927\) −16928.7 + 10194.2i −0.599798 + 0.361188i
\(928\) 11519.8 20557.9i 0.407494 0.727206i
\(929\) −10521.4 6074.56i −0.371579 0.214532i 0.302569 0.953128i \(-0.402156\pi\)
−0.674148 + 0.738596i \(0.735489\pi\)
\(930\) 29081.5 + 31543.0i 1.02540 + 1.11219i
\(931\) 15062.3 + 26088.6i 0.530232 + 0.918388i
\(932\) 16397.0 22814.0i 0.576289 0.801821i
\(933\) 17118.7 10094.9i 0.600688 0.354225i
\(934\) 1174.24 + 378.203i 0.0411374 + 0.0132497i
\(935\) −46517.0 −1.62703
\(936\) 14057.7 33933.4i 0.490910 1.18499i
\(937\) −16651.7 −0.580561 −0.290281 0.956942i \(-0.593749\pi\)
−0.290281 + 0.956942i \(0.593749\pi\)
\(938\) 11760.8 + 3787.94i 0.409384 + 0.131856i
\(939\) −21418.8 12104.5i −0.744385 0.420676i
\(940\) −19891.4 14296.5i −0.690199 0.496063i
\(941\) 19863.7 + 34404.9i 0.688138 + 1.19189i 0.972439 + 0.233155i \(0.0749051\pi\)
−0.284301 + 0.958735i \(0.591762\pi\)
\(942\) 33118.5 7448.35i 1.14550 0.257622i
\(943\) −859.968 496.503i −0.0296972 0.0171457i
\(944\) 34618.9 + 30533.0i 1.19359 + 1.05272i
\(945\) 26419.3 730.295i 0.909439 0.0251392i
\(946\) −3021.99 14039.9i −0.103862 0.482535i
\(947\) −7635.77 4408.51i −0.262016 0.151275i 0.363238 0.931696i \(-0.381671\pi\)
−0.625254 + 0.780421i \(0.715005\pi\)
\(948\) 6284.19 2906.64i 0.215296 0.0995815i
\(949\) 21351.2 12327.1i 0.730338 0.421661i
\(950\) 42782.3 + 47269.9i 1.46110 + 1.61436i
\(951\) −19826.8 11204.8i −0.676055 0.382060i
\(952\) 2577.00 + 22825.6i 0.0877322 + 0.777081i
\(953\) 13435.9i 0.456697i 0.973579 + 0.228348i \(0.0733326\pi\)
−0.973579 + 0.228348i \(0.926667\pi\)
\(954\) −4524.48 + 14988.4i −0.153549 + 0.508666i
\(955\) −5214.47 −0.176687
\(956\) −1960.99 + 19626.7i −0.0663419 + 0.663988i
\(957\) −10223.2 17336.4i −0.345319 0.585586i
\(958\) −3044.28 3363.60i −0.102668 0.113437i
\(959\) 13149.3 + 22775.3i 0.442767 + 0.766896i
\(960\) −10509.9 44079.8i −0.353339 1.48195i
\(961\) −209.265 + 362.458i −0.00702444 + 0.0121667i
\(962\) 43083.7 9273.42i 1.44394 0.310797i
\(963\) −685.129 37183.3i −0.0229263 1.24425i
\(964\) −19025.0 + 8587.84i −0.635638 + 0.286925i
\(965\) −9684.43 + 16773.9i −0.323060 + 0.559556i
\(966\) 2905.15 9313.01i 0.0967616 0.310188i
\(967\) −20368.5 + 11759.8i −0.677361 + 0.391075i −0.798860 0.601517i \(-0.794563\pi\)
0.121499 + 0.992592i \(0.461230\pi\)
\(968\) −9245.89 4031.48i −0.306998 0.133860i
\(969\) −65104.2 + 599.745i −2.15836 + 0.0198829i
\(970\) −9437.03 + 29300.0i −0.312376 + 0.969862i
\(971\) 47072.5i 1.55575i 0.628422 + 0.777873i \(0.283701\pi\)
−0.628422 + 0.777873i \(0.716299\pi\)
\(972\) 16534.3 25395.8i 0.545616 0.838036i
\(973\) 20972.0i 0.690988i
\(974\) −46716.1 15046.4i −1.53684 0.494989i
\(975\) 51582.6 475.183i 1.69432 0.0156082i
\(976\) 2395.36 11867.4i 0.0785589 0.389206i
\(977\) −22592.2 + 13043.6i −0.739805 + 0.427126i −0.821998 0.569490i \(-0.807141\pi\)
0.0821936 + 0.996616i \(0.473807\pi\)
\(978\) 9657.90 + 3012.74i 0.315773 + 0.0985038i
\(979\) −4666.34 + 8082.34i −0.152336 + 0.263854i
\(980\) 27408.1 12371.9i 0.893387 0.403272i
\(981\) 983.990 + 53403.0i 0.0320248 + 1.73805i
\(982\) 367.177 + 1705.88i 0.0119319 + 0.0554347i
\(983\) 7003.52 12130.5i 0.227241 0.393593i −0.729749 0.683716i \(-0.760363\pi\)
0.956989 + 0.290123i \(0.0936962\pi\)
\(984\) 1790.26 + 761.055i 0.0579993 + 0.0246560i
\(985\) 43266.2 + 74939.3i 1.39957 + 2.42413i
\(986\) −25058.4 + 22679.5i −0.809353 + 0.732517i
\(987\) 5247.69 + 8898.94i 0.169236 + 0.286987i
\(988\) −65329.7 6527.38i −2.10366 0.210186i
\(989\) 10242.5 0.329315
\(990\) −37050.5 11184.3i −1.18944 0.359050i
\(991\) 27361.4i 0.877056i −0.898718 0.438528i \(-0.855500\pi\)
0.898718 0.438528i \(-0.144500\pi\)
\(992\) −26666.0 + 15855.6i −0.853475 + 0.507475i
\(993\) −5887.22 3327.06i −0.188142 0.106325i
\(994\) 3043.02 2754.13i 0.0971012 0.0878829i
\(995\) 73051.3 42176.2i 2.32752 1.34379i
\(996\) −18753.1 + 8673.91i −0.596601 + 0.275947i
\(997\) 12223.6 + 7057.31i 0.388291 + 0.224180i 0.681419 0.731893i \(-0.261363\pi\)
−0.293128 + 0.956073i \(0.594696\pi\)
\(998\) −17645.5 + 3798.06i −0.559679 + 0.120466i
\(999\) 36346.2 1004.70i 1.15110 0.0318191i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.4.l.b.11.13 64
3.2 odd 2 216.4.l.b.35.20 64
4.3 odd 2 288.4.p.b.47.17 64
8.3 odd 2 inner 72.4.l.b.11.25 yes 64
8.5 even 2 288.4.p.b.47.18 64
9.4 even 3 216.4.l.b.179.8 64
9.5 odd 6 inner 72.4.l.b.59.25 yes 64
12.11 even 2 864.4.p.b.143.30 64
24.5 odd 2 864.4.p.b.143.3 64
24.11 even 2 216.4.l.b.35.8 64
36.23 even 6 288.4.p.b.239.18 64
36.31 odd 6 864.4.p.b.719.3 64
72.5 odd 6 288.4.p.b.239.17 64
72.13 even 6 864.4.p.b.719.30 64
72.59 even 6 inner 72.4.l.b.59.13 yes 64
72.67 odd 6 216.4.l.b.179.20 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.13 64 1.1 even 1 trivial
72.4.l.b.11.25 yes 64 8.3 odd 2 inner
72.4.l.b.59.13 yes 64 72.59 even 6 inner
72.4.l.b.59.25 yes 64 9.5 odd 6 inner
216.4.l.b.35.8 64 24.11 even 2
216.4.l.b.35.20 64 3.2 odd 2
216.4.l.b.179.8 64 9.4 even 3
216.4.l.b.179.20 64 72.67 odd 6
288.4.p.b.47.17 64 4.3 odd 2
288.4.p.b.47.18 64 8.5 even 2
288.4.p.b.239.17 64 72.5 odd 6
288.4.p.b.239.18 64 36.23 even 6
864.4.p.b.143.3 64 24.5 odd 2
864.4.p.b.143.30 64 12.11 even 2
864.4.p.b.719.3 64 36.31 odd 6
864.4.p.b.719.30 64 72.13 even 6