Properties

Label 72.4.l.b.11.30
Level $72$
Weight $4$
Character 72.11
Analytic conductor $4.248$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(11,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.30
Character \(\chi\) \(=\) 72.11
Dual form 72.4.l.b.59.30

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.78409 - 0.498867i) q^{2} +(4.10749 + 3.18254i) q^{3} +(7.50226 - 2.77778i) q^{4} +(-1.46312 - 2.53420i) q^{5} +(13.0233 + 6.81136i) q^{6} +(-4.48829 - 2.59132i) q^{7} +(19.5012 - 11.4762i) q^{8} +(6.74292 + 26.1445i) q^{9} +O(q^{10})\) \(q+(2.78409 - 0.498867i) q^{2} +(4.10749 + 3.18254i) q^{3} +(7.50226 - 2.77778i) q^{4} +(-1.46312 - 2.53420i) q^{5} +(13.0233 + 6.81136i) q^{6} +(-4.48829 - 2.59132i) q^{7} +(19.5012 - 11.4762i) q^{8} +(6.74292 + 26.1445i) q^{9} +(-5.33769 - 6.32553i) q^{10} +(-13.6440 - 7.87738i) q^{11} +(39.6558 + 12.4665i) q^{12} +(-37.3474 + 21.5625i) q^{13} +(-13.7885 - 4.97539i) q^{14} +(2.05543 - 15.0656i) q^{15} +(48.5679 - 41.6792i) q^{16} +3.31600i q^{17} +(31.8155 + 69.4246i) q^{18} -15.0818 q^{19} +(-18.0162 - 14.9480i) q^{20} +(-10.1886 - 24.9279i) q^{21} +(-41.9159 - 15.1247i) q^{22} +(-61.7219 - 106.905i) q^{23} +(116.624 + 14.9250i) q^{24} +(58.2185 - 100.837i) q^{25} +(-93.2215 + 78.6633i) q^{26} +(-55.5092 + 128.848i) q^{27} +(-40.8704 - 6.97327i) q^{28} +(11.7175 - 20.2953i) q^{29} +(-1.79325 - 42.9694i) q^{30} +(-274.752 + 158.628i) q^{31} +(114.425 - 140.267i) q^{32} +(-30.9726 - 75.7788i) q^{33} +(1.65424 + 9.23203i) q^{34} +15.1657i q^{35} +(123.211 + 177.412i) q^{36} +286.660i q^{37} +(-41.9891 + 7.52382i) q^{38} +(-222.028 - 30.2916i) q^{39} +(-57.6157 - 32.6289i) q^{40} +(284.954 - 164.518i) q^{41} +(-40.8018 - 64.3188i) q^{42} +(-175.008 + 303.123i) q^{43} +(-124.243 - 21.1982i) q^{44} +(56.3896 - 55.3405i) q^{45} +(-225.170 - 266.843i) q^{46} +(165.936 - 287.410i) q^{47} +(332.138 - 16.6277i) q^{48} +(-158.070 - 273.786i) q^{49} +(111.781 - 309.783i) q^{50} +(-10.5533 + 13.6204i) q^{51} +(-220.294 + 265.510i) q^{52} +521.214 q^{53} +(-90.2646 + 386.415i) q^{54} +46.1023i q^{55} +(-117.266 + 0.974711i) q^{56} +(-61.9484 - 47.9984i) q^{57} +(22.4979 - 62.3494i) q^{58} +(-130.749 + 75.4878i) q^{59} +(-26.4286 - 118.736i) q^{60} +(650.051 + 375.307i) q^{61} +(-685.799 + 578.699i) q^{62} +(37.4844 - 134.817i) q^{63} +(248.594 - 447.599i) q^{64} +(109.288 + 63.0972i) q^{65} +(-124.034 - 195.524i) q^{66} +(126.364 + 218.868i) q^{67} +(9.21110 + 24.8775i) q^{68} +(86.7085 - 635.545i) q^{69} +(7.56564 + 42.2225i) q^{70} +1083.28 q^{71} +(431.534 + 432.465i) q^{72} +678.405 q^{73} +(143.005 + 798.086i) q^{74} +(560.051 - 228.906i) q^{75} +(-113.148 + 41.8939i) q^{76} +(40.8256 + 70.7119i) q^{77} +(-633.255 + 26.4277i) q^{78} +(97.5980 + 56.3482i) q^{79} +(-176.684 - 62.0992i) q^{80} +(-638.066 + 352.580i) q^{81} +(711.263 - 600.187i) q^{82} +(-857.418 - 495.030i) q^{83} +(-145.682 - 158.714i) q^{84} +(8.40342 - 4.85171i) q^{85} +(-336.020 + 931.226i) q^{86} +(112.720 - 46.0714i) q^{87} +(-356.477 + 2.96304i) q^{88} +566.656i q^{89} +(129.386 - 182.204i) q^{90} +223.501 q^{91} +(-760.013 - 630.583i) q^{92} +(-1633.38 - 222.845i) q^{93} +(318.601 - 882.953i) q^{94} +(22.0666 + 38.2204i) q^{95} +(916.405 - 211.985i) q^{96} +(73.8806 - 127.965i) q^{97} +(-576.663 - 683.386i) q^{98} +(113.949 - 409.832i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9} + 12 q^{10} + 48 q^{11} + 318 q^{12} + 72 q^{14} + 127 q^{16} + 330 q^{18} - 220 q^{19} - 234 q^{20} - 217 q^{22} + 189 q^{24} - 902 q^{25} - 252 q^{27} - 132 q^{28} + 420 q^{30} - 693 q^{32} - 660 q^{33} + 509 q^{34} - 537 q^{36} - 1977 q^{38} - 36 q^{40} + 1620 q^{41} + 72 q^{42} - 292 q^{43} + 48 q^{46} + 765 q^{48} + 1762 q^{49} - 1227 q^{50} - 1794 q^{51} + 330 q^{52} - 645 q^{54} + 942 q^{56} - 294 q^{57} - 282 q^{58} + 5592 q^{59} + 1236 q^{60} + 1090 q^{64} - 6 q^{65} + 3522 q^{66} + 68 q^{67} - 2025 q^{68} + 600 q^{70} + 1875 q^{72} - 868 q^{73} - 420 q^{74} - 4254 q^{75} - 1471 q^{76} + 3228 q^{78} + 498 q^{81} + 362 q^{82} + 3654 q^{83} - 2028 q^{84} - 4119 q^{86} + 3155 q^{88} + 2958 q^{90} - 1380 q^{91} - 744 q^{92} - 138 q^{94} - 4782 q^{96} - 1912 q^{97} - 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78409 0.498867i 0.984323 0.176376i
\(3\) 4.10749 + 3.18254i 0.790487 + 0.612479i
\(4\) 7.50226 2.77778i 0.937783 0.347222i
\(5\) −1.46312 2.53420i −0.130866 0.226666i 0.793145 0.609033i \(-0.208442\pi\)
−0.924011 + 0.382367i \(0.875109\pi\)
\(6\) 13.0233 + 6.81136i 0.886121 + 0.463455i
\(7\) −4.48829 2.59132i −0.242345 0.139918i 0.373909 0.927465i \(-0.378017\pi\)
−0.616254 + 0.787547i \(0.711351\pi\)
\(8\) 19.5012 11.4762i 0.861840 0.507181i
\(9\) 6.74292 + 26.1445i 0.249738 + 0.968313i
\(10\) −5.33769 6.32553i −0.168793 0.200031i
\(11\) −13.6440 7.87738i −0.373984 0.215920i 0.301213 0.953557i \(-0.402608\pi\)
−0.675198 + 0.737637i \(0.735942\pi\)
\(12\) 39.6558 + 12.4665i 0.953971 + 0.299899i
\(13\) −37.3474 + 21.5625i −0.796793 + 0.460028i −0.842348 0.538933i \(-0.818827\pi\)
0.0455558 + 0.998962i \(0.485494\pi\)
\(14\) −13.7885 4.97539i −0.263224 0.0949806i
\(15\) 2.05543 15.0656i 0.0353807 0.259329i
\(16\) 48.5679 41.6792i 0.758874 0.651238i
\(17\) 3.31600i 0.0473087i 0.999720 + 0.0236544i \(0.00753012\pi\)
−0.999720 + 0.0236544i \(0.992470\pi\)
\(18\) 31.8155 + 69.4246i 0.416610 + 0.909085i
\(19\) −15.0818 −0.182106 −0.0910528 0.995846i \(-0.529023\pi\)
−0.0910528 + 0.995846i \(0.529023\pi\)
\(20\) −18.0162 14.9480i −0.201427 0.167124i
\(21\) −10.1886 24.9279i −0.105874 0.259034i
\(22\) −41.9159 15.1247i −0.406204 0.146573i
\(23\) −61.7219 106.905i −0.559561 0.969188i −0.997533 0.0701991i \(-0.977637\pi\)
0.437972 0.898988i \(-0.355697\pi\)
\(24\) 116.624 + 14.9250i 0.991910 + 0.126939i
\(25\) 58.2185 100.837i 0.465748 0.806700i
\(26\) −93.2215 + 78.6633i −0.703163 + 0.593352i
\(27\) −55.5092 + 128.848i −0.395658 + 0.918398i
\(28\) −40.8704 6.97327i −0.275849 0.0470652i
\(29\) 11.7175 20.2953i 0.0750306 0.129957i −0.826069 0.563569i \(-0.809428\pi\)
0.901100 + 0.433612i \(0.142761\pi\)
\(30\) −1.79325 42.9694i −0.0109134 0.261504i
\(31\) −274.752 + 158.628i −1.59184 + 0.919048i −0.598846 + 0.800865i \(0.704374\pi\)
−0.992992 + 0.118183i \(0.962293\pi\)
\(32\) 114.425 140.267i 0.632114 0.774875i
\(33\) −30.9726 75.7788i −0.163383 0.399739i
\(34\) 1.65424 + 9.23203i 0.00834412 + 0.0465670i
\(35\) 15.1657i 0.0732418i
\(36\) 123.211 + 177.412i 0.570420 + 0.821353i
\(37\) 286.660i 1.27369i 0.770991 + 0.636846i \(0.219761\pi\)
−0.770991 + 0.636846i \(0.780239\pi\)
\(38\) −41.9891 + 7.52382i −0.179251 + 0.0321191i
\(39\) −222.028 30.2916i −0.911612 0.124373i
\(40\) −57.6157 32.6289i −0.227746 0.128977i
\(41\) 284.954 164.518i 1.08542 0.626669i 0.153068 0.988216i \(-0.451085\pi\)
0.932354 + 0.361547i \(0.117751\pi\)
\(42\) −40.8018 64.3188i −0.149901 0.236300i
\(43\) −175.008 + 303.123i −0.620663 + 1.07502i 0.368700 + 0.929548i \(0.379803\pi\)
−0.989363 + 0.145471i \(0.953530\pi\)
\(44\) −124.243 21.1982i −0.425688 0.0726305i
\(45\) 56.3896 55.3405i 0.186802 0.183326i
\(46\) −225.170 266.843i −0.721730 0.855300i
\(47\) 165.936 287.410i 0.514984 0.891979i −0.484864 0.874589i \(-0.661131\pi\)
0.999849 0.0173897i \(-0.00553559\pi\)
\(48\) 332.138 16.6277i 0.998749 0.0499999i
\(49\) −158.070 273.786i −0.460846 0.798209i
\(50\) 111.781 309.783i 0.316164 0.876200i
\(51\) −10.5533 + 13.6204i −0.0289756 + 0.0373969i
\(52\) −220.294 + 265.510i −0.587487 + 0.708071i
\(53\) 521.214 1.35083 0.675417 0.737436i \(-0.263964\pi\)
0.675417 + 0.737436i \(0.263964\pi\)
\(54\) −90.2646 + 386.415i −0.227471 + 0.973785i
\(55\) 46.1023i 0.113026i
\(56\) −117.266 + 0.974711i −0.279826 + 0.00232591i
\(57\) −61.9484 47.9984i −0.143952 0.111536i
\(58\) 22.4979 62.3494i 0.0509331 0.141153i
\(59\) −130.749 + 75.4878i −0.288509 + 0.166571i −0.637269 0.770641i \(-0.719936\pi\)
0.348760 + 0.937212i \(0.386603\pi\)
\(60\) −26.4286 118.736i −0.0568653 0.255479i
\(61\) 650.051 + 375.307i 1.36443 + 0.787756i 0.990210 0.139582i \(-0.0445760\pi\)
0.374223 + 0.927339i \(0.377909\pi\)
\(62\) −685.799 + 578.699i −1.40478 + 1.18540i
\(63\) 37.4844 134.817i 0.0749617 0.269609i
\(64\) 248.594 447.599i 0.485535 0.874217i
\(65\) 109.288 + 63.0972i 0.208546 + 0.120404i
\(66\) −124.034 195.524i −0.231326 0.364656i
\(67\) 126.364 + 218.868i 0.230415 + 0.399090i 0.957930 0.287001i \(-0.0926584\pi\)
−0.727515 + 0.686091i \(0.759325\pi\)
\(68\) 9.21110 + 24.8775i 0.0164266 + 0.0443653i
\(69\) 86.7085 635.545i 0.151282 1.10885i
\(70\) 7.56564 + 42.2225i 0.0129181 + 0.0720936i
\(71\) 1083.28 1.81072 0.905362 0.424640i \(-0.139599\pi\)
0.905362 + 0.424640i \(0.139599\pi\)
\(72\) 431.534 + 432.465i 0.706344 + 0.707869i
\(73\) 678.405 1.08769 0.543845 0.839186i \(-0.316968\pi\)
0.543845 + 0.839186i \(0.316968\pi\)
\(74\) 143.005 + 798.086i 0.224649 + 1.25372i
\(75\) 560.051 228.906i 0.862255 0.352424i
\(76\) −113.148 + 41.8939i −0.170776 + 0.0632311i
\(77\) 40.8256 + 70.7119i 0.0604221 + 0.104654i
\(78\) −633.255 + 26.4277i −0.919257 + 0.0383635i
\(79\) 97.5980 + 56.3482i 0.138995 + 0.0802490i 0.567885 0.823108i \(-0.307762\pi\)
−0.428890 + 0.903357i \(0.641095\pi\)
\(80\) −176.684 62.0992i −0.246924 0.0867863i
\(81\) −638.066 + 352.580i −0.875262 + 0.483649i
\(82\) 711.263 600.187i 0.957877 0.808287i
\(83\) −857.418 495.030i −1.13390 0.654658i −0.188988 0.981979i \(-0.560521\pi\)
−0.944913 + 0.327321i \(0.893854\pi\)
\(84\) −145.682 158.714i −0.189229 0.206157i
\(85\) 8.40342 4.85171i 0.0107233 0.00619109i
\(86\) −336.020 + 931.226i −0.421325 + 1.16764i
\(87\) 112.720 46.0714i 0.138907 0.0567744i
\(88\) −356.477 + 2.96304i −0.431825 + 0.00358933i
\(89\) 566.656i 0.674893i 0.941345 + 0.337446i \(0.109563\pi\)
−0.941345 + 0.337446i \(0.890437\pi\)
\(90\) 129.386 182.204i 0.151539 0.213399i
\(91\) 223.501 0.257465
\(92\) −760.013 630.583i −0.861270 0.714596i
\(93\) −1633.38 222.845i −1.82122 0.248473i
\(94\) 318.601 882.953i 0.349587 0.968826i
\(95\) 22.0666 + 38.2204i 0.0238314 + 0.0412771i
\(96\) 916.405 211.985i 0.974273 0.225371i
\(97\) 73.8806 127.965i 0.0773344 0.133947i −0.824765 0.565476i \(-0.808692\pi\)
0.902099 + 0.431529i \(0.142026\pi\)
\(98\) −576.663 683.386i −0.594406 0.704413i
\(99\) 113.949 409.832i 0.115680 0.416057i
\(100\) 156.667 918.227i 0.156667 0.918227i
\(101\) −733.536 + 1270.52i −0.722669 + 1.25170i 0.237258 + 0.971447i \(0.423751\pi\)
−0.959926 + 0.280252i \(0.909582\pi\)
\(102\) −22.5865 + 43.1851i −0.0219254 + 0.0419212i
\(103\) −1005.07 + 580.278i −0.961482 + 0.555112i −0.896629 0.442783i \(-0.853991\pi\)
−0.0648531 + 0.997895i \(0.520658\pi\)
\(104\) −480.863 + 849.101i −0.453390 + 0.800589i
\(105\) −48.2652 + 62.2927i −0.0448591 + 0.0578967i
\(106\) 1451.10 260.016i 1.32966 0.238255i
\(107\) 1244.09i 1.12402i −0.827130 0.562011i \(-0.810028\pi\)
0.827130 0.562011i \(-0.189972\pi\)
\(108\) −58.5349 + 1120.84i −0.0521530 + 0.998639i
\(109\) 569.937i 0.500826i −0.968139 0.250413i \(-0.919434\pi\)
0.968139 0.250413i \(-0.0805664\pi\)
\(110\) 22.9989 + 128.353i 0.0199351 + 0.111254i
\(111\) −912.306 + 1177.45i −0.780110 + 1.00684i
\(112\) −325.991 + 61.2135i −0.275029 + 0.0516441i
\(113\) −824.716 + 476.150i −0.686573 + 0.396393i −0.802327 0.596885i \(-0.796405\pi\)
0.115754 + 0.993278i \(0.463072\pi\)
\(114\) −196.414 102.728i −0.161368 0.0843977i
\(115\) −180.613 + 312.831i −0.146455 + 0.253667i
\(116\) 31.5320 184.809i 0.0252386 0.147924i
\(117\) −815.571 831.033i −0.644441 0.656658i
\(118\) −326.357 + 275.391i −0.254607 + 0.214845i
\(119\) 8.59280 14.8832i 0.00661934 0.0114650i
\(120\) −132.813 317.387i −0.101034 0.241444i
\(121\) −541.394 937.722i −0.406757 0.704524i
\(122\) 1997.02 + 720.598i 1.48198 + 0.534753i
\(123\) 1694.03 + 231.119i 1.24183 + 0.169426i
\(124\) −1620.63 + 1953.27i −1.17368 + 1.41459i
\(125\) −706.504 −0.505533
\(126\) 37.1039 394.042i 0.0262340 0.278603i
\(127\) 1274.79i 0.890701i −0.895356 0.445350i \(-0.853079\pi\)
0.895356 0.445350i \(-0.146921\pi\)
\(128\) 468.815 1370.17i 0.323732 0.946149i
\(129\) −1683.54 + 688.104i −1.14905 + 0.469645i
\(130\) 335.743 + 121.148i 0.226513 + 0.0817338i
\(131\) −470.494 + 271.640i −0.313796 + 0.181170i −0.648624 0.761109i \(-0.724655\pi\)
0.334828 + 0.942279i \(0.391322\pi\)
\(132\) −442.861 482.478i −0.292016 0.318139i
\(133\) 67.6916 + 39.0818i 0.0441324 + 0.0254798i
\(134\) 460.994 + 546.310i 0.297192 + 0.352194i
\(135\) 407.743 47.8483i 0.259948 0.0305047i
\(136\) 38.0551 + 64.6660i 0.0239941 + 0.0407725i
\(137\) 2185.39 + 1261.73i 1.36285 + 0.786840i 0.990002 0.141053i \(-0.0450488\pi\)
0.372846 + 0.927893i \(0.378382\pi\)
\(138\) −75.6483 1812.67i −0.0466638 1.11815i
\(139\) 937.946 + 1624.57i 0.572342 + 0.991326i 0.996325 + 0.0856555i \(0.0272984\pi\)
−0.423983 + 0.905670i \(0.639368\pi\)
\(140\) 42.1268 + 113.777i 0.0254312 + 0.0686849i
\(141\) 1596.27 652.434i 0.953407 0.389680i
\(142\) 3015.94 540.411i 1.78234 0.319368i
\(143\) 679.425 0.397317
\(144\) 1417.17 + 988.743i 0.820122 + 0.572189i
\(145\) −68.5766 −0.0392757
\(146\) 1888.74 338.434i 1.07064 0.191842i
\(147\) 222.061 1627.64i 0.124594 0.913232i
\(148\) 796.277 + 2150.60i 0.442254 + 1.19445i
\(149\) −998.646 1729.71i −0.549076 0.951027i −0.998338 0.0576270i \(-0.981647\pi\)
0.449263 0.893400i \(-0.351687\pi\)
\(150\) 1445.04 916.685i 0.786578 0.498980i
\(151\) −35.3646 20.4177i −0.0190591 0.0110038i 0.490440 0.871475i \(-0.336836\pi\)
−0.509499 + 0.860471i \(0.670169\pi\)
\(152\) −294.114 + 173.082i −0.156946 + 0.0923605i
\(153\) −86.6950 + 22.3595i −0.0458097 + 0.0118148i
\(154\) 148.938 + 176.502i 0.0779334 + 0.0923565i
\(155\) 803.992 + 464.185i 0.416634 + 0.240544i
\(156\) −1749.85 + 389.487i −0.898079 + 0.199897i
\(157\) 1170.05 675.530i 0.594779 0.343396i −0.172206 0.985061i \(-0.555089\pi\)
0.766985 + 0.641665i \(0.221756\pi\)
\(158\) 299.831 + 108.190i 0.150970 + 0.0544755i
\(159\) 2140.88 + 1658.78i 1.06782 + 0.827358i
\(160\) −522.884 84.7475i −0.258360 0.0418742i
\(161\) 639.763i 0.313170i
\(162\) −1600.54 + 1299.92i −0.776236 + 0.630442i
\(163\) −1922.43 −0.923779 −0.461890 0.886937i \(-0.652828\pi\)
−0.461890 + 0.886937i \(0.652828\pi\)
\(164\) 1680.80 2025.80i 0.800298 0.964562i
\(165\) −146.722 + 189.365i −0.0692261 + 0.0893455i
\(166\) −2634.08 950.470i −1.23159 0.444402i
\(167\) −1311.20 2271.06i −0.607566 1.05234i −0.991640 0.129033i \(-0.958813\pi\)
0.384074 0.923302i \(-0.374521\pi\)
\(168\) −484.769 369.198i −0.222623 0.169549i
\(169\) −168.615 + 292.049i −0.0767477 + 0.132931i
\(170\) 20.9755 17.6998i 0.00946321 0.00798536i
\(171\) −101.696 394.306i −0.0454787 0.176335i
\(172\) −470.950 + 2760.24i −0.208777 + 1.22364i
\(173\) −1385.77 + 2400.23i −0.609008 + 1.05483i 0.382396 + 0.923998i \(0.375099\pi\)
−0.991404 + 0.130834i \(0.958234\pi\)
\(174\) 290.839 184.499i 0.126715 0.0803841i
\(175\) −522.603 + 301.725i −0.225743 + 0.130333i
\(176\) −990.985 + 186.084i −0.424422 + 0.0796966i
\(177\) −777.291 106.047i −0.330084 0.0450339i
\(178\) 282.686 + 1577.62i 0.119035 + 0.664312i
\(179\) 2108.40i 0.880389i −0.897903 0.440194i \(-0.854910\pi\)
0.897903 0.440194i \(-0.145090\pi\)
\(180\) 269.327 571.817i 0.111525 0.236782i
\(181\) 583.190i 0.239493i 0.992805 + 0.119746i \(0.0382081\pi\)
−0.992805 + 0.119746i \(0.961792\pi\)
\(182\) 622.247 111.497i 0.253429 0.0454106i
\(183\) 1475.65 + 3610.38i 0.596082 + 1.45840i
\(184\) −2430.52 1376.45i −0.973805 0.551486i
\(185\) 726.455 419.419i 0.288703 0.166683i
\(186\) −4658.64 + 194.420i −1.83650 + 0.0766428i
\(187\) 26.1214 45.2436i 0.0102149 0.0176927i
\(188\) 446.537 2617.16i 0.173229 1.01530i
\(189\) 583.027 434.464i 0.224386 0.167210i
\(190\) 80.5020 + 95.4006i 0.0307381 + 0.0364268i
\(191\) −622.663 + 1078.48i −0.235886 + 0.408567i −0.959530 0.281607i \(-0.909133\pi\)
0.723644 + 0.690174i \(0.242466\pi\)
\(192\) 2445.60 1047.35i 0.919249 0.393677i
\(193\) −1316.15 2279.63i −0.490872 0.850215i 0.509073 0.860723i \(-0.329988\pi\)
−0.999945 + 0.0105083i \(0.996655\pi\)
\(194\) 141.852 393.122i 0.0524970 0.145487i
\(195\) 248.088 + 606.983i 0.0911076 + 0.222907i
\(196\) −1946.40 1614.93i −0.709329 0.588531i
\(197\) −1210.94 −0.437948 −0.218974 0.975731i \(-0.570271\pi\)
−0.218974 + 0.975731i \(0.570271\pi\)
\(198\) 112.793 1197.85i 0.0404840 0.429938i
\(199\) 2015.72i 0.718043i −0.933329 0.359021i \(-0.883110\pi\)
0.933329 0.359021i \(-0.116890\pi\)
\(200\) −21.8986 2634.58i −0.00774233 0.931465i
\(201\) −177.519 + 1301.16i −0.0622947 + 0.456600i
\(202\) −1408.41 + 3903.18i −0.490570 + 1.35954i
\(203\) −105.183 + 60.7275i −0.0363666 + 0.0209962i
\(204\) −41.3391 + 131.499i −0.0141878 + 0.0451311i
\(205\) −833.845 481.421i −0.284089 0.164019i
\(206\) −2508.72 + 2116.94i −0.848500 + 0.715992i
\(207\) 2378.80 2334.54i 0.798734 0.783873i
\(208\) −915.177 + 2603.86i −0.305077 + 0.868005i
\(209\) 205.777 + 118.805i 0.0681046 + 0.0393202i
\(210\) −103.299 + 197.506i −0.0339442 + 0.0649011i
\(211\) −601.260 1041.41i −0.196173 0.339781i 0.751112 0.660175i \(-0.229518\pi\)
−0.947284 + 0.320394i \(0.896185\pi\)
\(212\) 3910.28 1447.81i 1.26679 0.469039i
\(213\) 4449.55 + 3447.57i 1.43135 + 1.10903i
\(214\) −620.633 3463.64i −0.198250 1.10640i
\(215\) 1024.23 0.324894
\(216\) 396.184 + 3149.72i 0.124801 + 0.992182i
\(217\) 1644.22 0.514365
\(218\) −284.322 1586.75i −0.0883337 0.492974i
\(219\) 2786.54 + 2159.05i 0.859804 + 0.666188i
\(220\) 128.062 + 345.872i 0.0392451 + 0.105994i
\(221\) −71.5013 123.844i −0.0217634 0.0376952i
\(222\) −1952.55 + 3733.25i −0.590299 + 1.12865i
\(223\) −1135.80 655.752i −0.341070 0.196917i 0.319675 0.947527i \(-0.396426\pi\)
−0.660745 + 0.750611i \(0.729759\pi\)
\(224\) −877.049 + 333.050i −0.261609 + 0.0993430i
\(225\) 3028.90 + 842.153i 0.897453 + 0.249527i
\(226\) −2058.54 + 1737.07i −0.605895 + 0.511274i
\(227\) −2494.70 1440.32i −0.729423 0.421133i 0.0887881 0.996051i \(-0.471701\pi\)
−0.818211 + 0.574918i \(0.805034\pi\)
\(228\) −598.082 188.018i −0.173724 0.0546132i
\(229\) 3858.07 2227.46i 1.11331 0.642771i 0.173627 0.984812i \(-0.444451\pi\)
0.939685 + 0.342040i \(0.111118\pi\)
\(230\) −346.782 + 961.051i −0.0994178 + 0.275521i
\(231\) −57.3528 + 420.377i −0.0163357 + 0.119735i
\(232\) −4.40748 530.256i −0.00124727 0.150056i
\(233\) 1085.86i 0.305309i −0.988280 0.152654i \(-0.951218\pi\)
0.988280 0.152654i \(-0.0487821\pi\)
\(234\) −2685.20 1906.81i −0.750157 0.532700i
\(235\) −971.139 −0.269575
\(236\) −771.223 + 929.520i −0.212722 + 0.256384i
\(237\) 221.552 + 542.059i 0.0607231 + 0.148568i
\(238\) 16.4984 45.7227i 0.00449341 0.0124528i
\(239\) −1617.59 2801.74i −0.437795 0.758283i 0.559724 0.828679i \(-0.310907\pi\)
−0.997519 + 0.0703960i \(0.977574\pi\)
\(240\) −528.096 817.376i −0.142035 0.219839i
\(241\) 715.242 1238.84i 0.191173 0.331122i −0.754466 0.656339i \(-0.772104\pi\)
0.945639 + 0.325217i \(0.105437\pi\)
\(242\) −1975.08 2340.61i −0.524642 0.621737i
\(243\) −3742.95 582.449i −0.988108 0.153762i
\(244\) 5919.37 + 1009.96i 1.55307 + 0.264983i
\(245\) −462.552 + 801.164i −0.120618 + 0.208916i
\(246\) 4831.62 201.639i 1.25225 0.0522602i
\(247\) 563.267 325.202i 0.145100 0.0837738i
\(248\) −3537.55 + 6246.55i −0.905785 + 1.59942i
\(249\) −1946.38 4762.09i −0.495369 1.21199i
\(250\) −1966.97 + 352.451i −0.497608 + 0.0891639i
\(251\) 5903.80i 1.48464i 0.670046 + 0.742320i \(0.266275\pi\)
−0.670046 + 0.742320i \(0.733725\pi\)
\(252\) −93.2738 1115.56i −0.0233162 0.278863i
\(253\) 1944.83i 0.483281i
\(254\) −635.948 3549.11i −0.157098 0.876737i
\(255\) 49.9577 + 6.81582i 0.0122685 + 0.00167382i
\(256\) 621.688 4048.55i 0.151779 0.988414i
\(257\) 1225.66 707.636i 0.297489 0.171755i −0.343825 0.939034i \(-0.611723\pi\)
0.641314 + 0.767278i \(0.278389\pi\)
\(258\) −4343.86 + 2755.61i −1.04820 + 0.664948i
\(259\) 742.827 1286.61i 0.178212 0.308673i
\(260\) 995.175 + 169.796i 0.237377 + 0.0405011i
\(261\) 609.621 + 169.498i 0.144577 + 0.0401980i
\(262\) −1174.38 + 990.981i −0.276922 + 0.233676i
\(263\) −2793.50 + 4838.48i −0.654959 + 1.13442i 0.326945 + 0.945043i \(0.393981\pi\)
−0.981904 + 0.189379i \(0.939352\pi\)
\(264\) −1473.66 1122.33i −0.343550 0.261647i
\(265\) −762.599 1320.86i −0.176778 0.306188i
\(266\) 207.956 + 75.0379i 0.0479345 + 0.0172965i
\(267\) −1803.40 + 2327.53i −0.413358 + 0.533494i
\(268\) 1555.98 + 1291.00i 0.354652 + 0.294255i
\(269\) 5030.52 1.14021 0.570105 0.821572i \(-0.306903\pi\)
0.570105 + 0.821572i \(0.306903\pi\)
\(270\) 1111.32 336.623i 0.250492 0.0758750i
\(271\) 1317.52i 0.295328i −0.989038 0.147664i \(-0.952825\pi\)
0.989038 0.147664i \(-0.0471754\pi\)
\(272\) 138.208 + 161.051i 0.0308092 + 0.0359013i
\(273\) 918.029 + 711.301i 0.203522 + 0.157692i
\(274\) 6713.74 + 2422.56i 1.48026 + 0.534131i
\(275\) −1588.67 + 917.219i −0.348365 + 0.201129i
\(276\) −1114.89 5008.88i −0.243147 1.09239i
\(277\) −2626.49 1516.41i −0.569714 0.328924i 0.187321 0.982299i \(-0.440019\pi\)
−0.757035 + 0.653374i \(0.773353\pi\)
\(278\) 3421.77 + 4055.03i 0.738216 + 0.874837i
\(279\) −5999.88 6113.63i −1.28747 1.31188i
\(280\) 174.044 + 295.748i 0.0371468 + 0.0631227i
\(281\) −2118.05 1222.86i −0.449653 0.259607i 0.258031 0.966137i \(-0.416926\pi\)
−0.707683 + 0.706530i \(0.750260\pi\)
\(282\) 4118.68 2612.76i 0.869730 0.551729i
\(283\) 4229.51 + 7325.72i 0.888403 + 1.53876i 0.841763 + 0.539847i \(0.181518\pi\)
0.0466401 + 0.998912i \(0.485149\pi\)
\(284\) 8127.04 3009.10i 1.69807 0.628723i
\(285\) −30.9997 + 227.217i −0.00644302 + 0.0472253i
\(286\) 1891.58 338.942i 0.391088 0.0700772i
\(287\) −1705.27 −0.350729
\(288\) 4438.77 + 2045.77i 0.908185 + 0.418569i
\(289\) 4902.00 0.997762
\(290\) −190.923 + 34.2106i −0.0386600 + 0.00692729i
\(291\) 710.717 290.487i 0.143172 0.0585177i
\(292\) 5089.58 1884.46i 1.02002 0.377670i
\(293\) −219.370 379.960i −0.0437397 0.0757593i 0.843327 0.537401i \(-0.180594\pi\)
−0.887066 + 0.461642i \(0.847261\pi\)
\(294\) −193.736 4642.25i −0.0384316 0.920890i
\(295\) 382.603 + 220.896i 0.0755118 + 0.0435968i
\(296\) 3289.77 + 5590.22i 0.645992 + 1.09772i
\(297\) 1772.35 1320.73i 0.346270 0.258036i
\(298\) −3643.21 4317.46i −0.708206 0.839274i
\(299\) 4610.30 + 2661.76i 0.891708 + 0.514828i
\(300\) 3565.80 3273.01i 0.686239 0.629891i
\(301\) 1570.97 907.003i 0.300829 0.173684i
\(302\) −108.644 39.2025i −0.0207011 0.00746971i
\(303\) −7056.47 + 2884.15i −1.33790 + 0.546832i
\(304\) −732.493 + 628.598i −0.138195 + 0.118594i
\(305\) 2196.48i 0.412361i
\(306\) −230.212 + 105.500i −0.0430077 + 0.0197093i
\(307\) −7875.21 −1.46405 −0.732023 0.681280i \(-0.761423\pi\)
−0.732023 + 0.681280i \(0.761423\pi\)
\(308\) 502.706 + 417.095i 0.0930011 + 0.0771630i
\(309\) −5975.08 815.190i −1.10003 0.150079i
\(310\) 2469.95 + 891.246i 0.452528 + 0.163288i
\(311\) 532.946 + 923.090i 0.0971724 + 0.168308i 0.910513 0.413480i \(-0.135687\pi\)
−0.813341 + 0.581788i \(0.802354\pi\)
\(312\) −4677.44 + 1957.31i −0.848743 + 0.355163i
\(313\) −4954.30 + 8581.10i −0.894676 + 1.54962i −0.0604700 + 0.998170i \(0.519260\pi\)
−0.834206 + 0.551454i \(0.814073\pi\)
\(314\) 2920.53 2464.43i 0.524888 0.442917i
\(315\) −396.498 + 102.261i −0.0709210 + 0.0182913i
\(316\) 888.729 + 151.634i 0.158212 + 0.0269939i
\(317\) 35.1444 60.8718i 0.00622683 0.0107852i −0.862895 0.505383i \(-0.831351\pi\)
0.869122 + 0.494598i \(0.164685\pi\)
\(318\) 6787.90 + 3550.18i 1.19700 + 0.626050i
\(319\) −319.748 + 184.607i −0.0561205 + 0.0324012i
\(320\) −1498.03 + 24.9050i −0.261695 + 0.00435072i
\(321\) 3959.35 5110.07i 0.688440 0.888524i
\(322\) 319.157 + 1781.16i 0.0552357 + 0.308261i
\(323\) 50.0113i 0.00861518i
\(324\) −3807.55 + 4417.55i −0.652872 + 0.757468i
\(325\) 5021.36i 0.857030i
\(326\) −5352.20 + 959.034i −0.909297 + 0.162932i
\(327\) 1813.84 2341.01i 0.306746 0.395896i
\(328\) 3668.90 6478.49i 0.617626 1.09059i
\(329\) −1489.54 + 859.986i −0.249608 + 0.144111i
\(330\) −314.019 + 600.402i −0.0523824 + 0.100155i
\(331\) 4684.34 8113.51i 0.777868 1.34731i −0.155300 0.987867i \(-0.549634\pi\)
0.933168 0.359440i \(-0.117032\pi\)
\(332\) −7807.66 1332.13i −1.29067 0.220212i
\(333\) −7494.57 + 1932.93i −1.23333 + 0.318089i
\(334\) −4783.44 5668.71i −0.783648 0.928677i
\(335\) 369.771 640.463i 0.0603067 0.104454i
\(336\) −1533.82 786.044i −0.249038 0.127626i
\(337\) 3086.72 + 5346.35i 0.498944 + 0.864197i 0.999999 0.00121842i \(-0.000387836\pi\)
−0.501055 + 0.865416i \(0.667055\pi\)
\(338\) −323.744 + 897.206i −0.0520987 + 0.144383i
\(339\) −4902.87 668.908i −0.785509 0.107168i
\(340\) 49.5677 59.7416i 0.00790642 0.00952925i
\(341\) 4998.30 0.793763
\(342\) −479.835 1047.05i −0.0758670 0.165550i
\(343\) 3416.08i 0.537758i
\(344\) 65.8285 + 7919.69i 0.0103175 + 1.24128i
\(345\) −1737.46 + 710.143i −0.271136 + 0.110820i
\(346\) −2660.72 + 7373.76i −0.413413 + 1.14571i
\(347\) 5102.09 2945.69i 0.789321 0.455715i −0.0504023 0.998729i \(-0.516050\pi\)
0.839724 + 0.543014i \(0.182717\pi\)
\(348\) 717.680 658.751i 0.110551 0.101473i
\(349\) −8150.29 4705.57i −1.25007 0.721729i −0.278948 0.960306i \(-0.589986\pi\)
−0.971123 + 0.238577i \(0.923319\pi\)
\(350\) −1304.45 + 1100.74i −0.199217 + 0.168106i
\(351\) −705.157 6009.04i −0.107232 0.913787i
\(352\) −2666.16 + 1012.44i −0.403712 + 0.153305i
\(353\) −6050.47 3493.24i −0.912278 0.526704i −0.0311148 0.999516i \(-0.509906\pi\)
−0.881163 + 0.472812i \(0.843239\pi\)
\(354\) −2216.95 + 92.5203i −0.332852 + 0.0138910i
\(355\) −1584.97 2745.25i −0.236962 0.410430i
\(356\) 1574.04 + 4251.21i 0.234338 + 0.632903i
\(357\) 82.6611 33.7855i 0.0122546 0.00500874i
\(358\) −1051.81 5869.98i −0.155279 0.866587i
\(359\) 3844.64 0.565215 0.282607 0.959236i \(-0.408801\pi\)
0.282607 + 0.959236i \(0.408801\pi\)
\(360\) 464.568 1726.34i 0.0680135 0.252740i
\(361\) −6631.54 −0.966838
\(362\) 290.934 + 1623.65i 0.0422407 + 0.235738i
\(363\) 760.564 5574.69i 0.109970 0.806047i
\(364\) 1676.77 620.836i 0.241446 0.0893974i
\(365\) −992.590 1719.22i −0.142341 0.246542i
\(366\) 5909.43 + 9315.45i 0.843964 + 1.33040i
\(367\) 11663.0 + 6733.63i 1.65886 + 0.957746i 0.973240 + 0.229789i \(0.0738038\pi\)
0.685624 + 0.727956i \(0.259530\pi\)
\(368\) −7453.43 2619.66i −1.05581 0.371084i
\(369\) 6222.66 + 6340.63i 0.877883 + 0.894526i
\(370\) 1813.28 1530.10i 0.254778 0.214990i
\(371\) −2339.36 1350.63i −0.327368 0.189006i
\(372\) −12873.1 + 2865.32i −1.79419 + 0.399355i
\(373\) −5361.43 + 3095.42i −0.744248 + 0.429692i −0.823612 0.567154i \(-0.808044\pi\)
0.0793639 + 0.996846i \(0.474711\pi\)
\(374\) 50.1537 138.993i 0.00693418 0.0192170i
\(375\) −2901.96 2248.47i −0.399617 0.309629i
\(376\) −62.4160 7509.15i −0.00856080 1.02993i
\(377\) 1010.64i 0.138065i
\(378\) 1406.46 1500.44i 0.191376 0.204164i
\(379\) 7854.31 1.06451 0.532255 0.846584i \(-0.321345\pi\)
0.532255 + 0.846584i \(0.321345\pi\)
\(380\) 271.717 + 225.444i 0.0366810 + 0.0304342i
\(381\) 4057.05 5236.17i 0.545536 0.704087i
\(382\) −1195.53 + 3313.22i −0.160127 + 0.443767i
\(383\) 5216.45 + 9035.15i 0.695948 + 1.20542i 0.969860 + 0.243662i \(0.0783489\pi\)
−0.273912 + 0.961755i \(0.588318\pi\)
\(384\) 6286.27 4135.94i 0.835403 0.549638i
\(385\) 119.466 206.920i 0.0158144 0.0273913i
\(386\) −4801.50 5690.11i −0.633134 0.750308i
\(387\) −9105.06 2531.56i −1.19596 0.332523i
\(388\) 198.814 1165.25i 0.0260135 0.152466i
\(389\) 5731.82 9927.81i 0.747082 1.29398i −0.202133 0.979358i \(-0.564787\pi\)
0.949216 0.314626i \(-0.101879\pi\)
\(390\) 993.503 + 1566.13i 0.128995 + 0.203344i
\(391\) 354.498 204.670i 0.0458510 0.0264721i
\(392\) −6224.57 3525.10i −0.802011 0.454196i
\(393\) −2797.05 381.606i −0.359014 0.0489809i
\(394\) −3371.35 + 604.096i −0.431082 + 0.0772434i
\(395\) 329.777i 0.0420074i
\(396\) −283.544 3391.19i −0.0359814 0.430338i
\(397\) 8809.54i 1.11370i 0.830614 + 0.556849i \(0.187990\pi\)
−0.830614 + 0.556849i \(0.812010\pi\)
\(398\) −1005.58 5611.93i −0.126646 0.706786i
\(399\) 153.663 + 375.959i 0.0192802 + 0.0471716i
\(400\) −1375.27 7323.97i −0.171909 0.915496i
\(401\) −6817.45 + 3936.06i −0.848996 + 0.490168i −0.860312 0.509768i \(-0.829731\pi\)
0.0113159 + 0.999936i \(0.496398\pi\)
\(402\) 154.875 + 3711.09i 0.0192151 + 0.460429i
\(403\) 6840.85 11848.7i 0.845576 1.46458i
\(404\) −1973.96 + 11569.4i −0.243089 + 1.42475i
\(405\) 1827.08 + 1101.12i 0.224169 + 0.135099i
\(406\) −262.544 + 221.543i −0.0320932 + 0.0270813i
\(407\) 2258.13 3911.20i 0.275016 0.476341i
\(408\) −49.4912 + 386.726i −0.00600534 + 0.0469260i
\(409\) 170.965 + 296.120i 0.0206691 + 0.0358000i 0.876175 0.481993i \(-0.160087\pi\)
−0.855506 + 0.517793i \(0.826754\pi\)
\(410\) −2561.66 924.339i −0.308564 0.111341i
\(411\) 4960.94 + 12137.6i 0.595389 + 1.45670i
\(412\) −5928.43 + 7145.26i −0.708914 + 0.854422i
\(413\) 782.451 0.0932249
\(414\) 5458.15 7686.26i 0.647956 0.912462i
\(415\) 2897.16i 0.342689i
\(416\) −1248.95 + 7705.91i −0.147199 + 0.908205i
\(417\) −1317.65 + 9657.95i −0.154738 + 1.13418i
\(418\) 632.168 + 228.109i 0.0739721 + 0.0266918i
\(419\) 1154.35 666.463i 0.134591 0.0777060i −0.431193 0.902260i \(-0.641907\pi\)
0.565784 + 0.824554i \(0.308574\pi\)
\(420\) −189.063 + 601.407i −0.0219651 + 0.0698706i
\(421\) −5457.42 3150.84i −0.631777 0.364757i 0.149663 0.988737i \(-0.452181\pi\)
−0.781440 + 0.623980i \(0.785515\pi\)
\(422\) −2193.49 2599.44i −0.253027 0.299854i
\(423\) 8633.07 + 2400.33i 0.992326 + 0.275905i
\(424\) 10164.3 5981.55i 1.16420 0.685117i
\(425\) 334.377 + 193.053i 0.0381639 + 0.0220340i
\(426\) 14107.8 + 7378.60i 1.60452 + 0.839189i
\(427\) −1945.08 3368.97i −0.220442 0.381817i
\(428\) −3455.79 9333.46i −0.390285 1.05409i
\(429\) 2790.73 + 2162.29i 0.314074 + 0.243349i
\(430\) 2851.55 510.956i 0.319800 0.0573035i
\(431\) 1791.33 0.200198 0.100099 0.994977i \(-0.468084\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(432\) 2674.30 + 8571.45i 0.297841 + 0.954615i
\(433\) 7947.77 0.882092 0.441046 0.897485i \(-0.354608\pi\)
0.441046 + 0.897485i \(0.354608\pi\)
\(434\) 4577.66 820.249i 0.506301 0.0907216i
\(435\) −281.678 218.248i −0.0310469 0.0240556i
\(436\) −1583.16 4275.81i −0.173898 0.469666i
\(437\) 930.878 + 1612.33i 0.101899 + 0.176495i
\(438\) 8835.05 + 4620.87i 0.963824 + 0.504095i
\(439\) 10066.8 + 5812.07i 1.09445 + 0.631879i 0.934757 0.355288i \(-0.115617\pi\)
0.159690 + 0.987167i \(0.448951\pi\)
\(440\) 529.079 + 899.050i 0.0573246 + 0.0974103i
\(441\) 6092.12 5978.77i 0.657825 0.645586i
\(442\) −260.848 309.123i −0.0280707 0.0332657i
\(443\) 12771.4 + 7373.55i 1.36972 + 0.790808i 0.990892 0.134660i \(-0.0429942\pi\)
0.378827 + 0.925467i \(0.376328\pi\)
\(444\) −3573.66 + 11367.7i −0.381979 + 1.21507i
\(445\) 1436.02 829.088i 0.152975 0.0883203i
\(446\) −3489.29 1259.06i −0.370454 0.133673i
\(447\) 1402.92 10283.0i 0.148447 1.08807i
\(448\) −2275.63 + 1364.77i −0.239986 + 0.143927i
\(449\) 8413.52i 0.884317i −0.896937 0.442159i \(-0.854213\pi\)
0.896937 0.442159i \(-0.145787\pi\)
\(450\) 8852.85 + 833.607i 0.927394 + 0.0873258i
\(451\) −5183.89 −0.541241
\(452\) −4864.60 + 5863.08i −0.506220 + 0.610124i
\(453\) −80.2794 196.415i −0.00832639 0.0203717i
\(454\) −7663.98 2765.44i −0.792265 0.285878i
\(455\) −327.010 566.398i −0.0336933 0.0583585i
\(456\) −1758.91 225.096i −0.180632 0.0231164i
\(457\) −9060.70 + 15693.6i −0.927443 + 1.60638i −0.139860 + 0.990171i \(0.544665\pi\)
−0.787584 + 0.616208i \(0.788668\pi\)
\(458\) 9629.99 8126.10i 0.982489 0.829056i
\(459\) −427.259 184.069i −0.0434482 0.0187181i
\(460\) −486.033 + 2848.65i −0.0492639 + 0.288737i
\(461\) 8300.14 14376.3i 0.838560 1.45243i −0.0525393 0.998619i \(-0.516731\pi\)
0.891099 0.453809i \(-0.149935\pi\)
\(462\) 50.0371 + 1198.98i 0.00503882 + 0.120739i
\(463\) −9006.61 + 5199.97i −0.904045 + 0.521950i −0.878510 0.477724i \(-0.841462\pi\)
−0.0255344 + 0.999674i \(0.508129\pi\)
\(464\) −276.798 1474.08i −0.0276940 0.147484i
\(465\) 1825.10 + 4465.37i 0.182015 + 0.445326i
\(466\) −541.698 3023.12i −0.0538491 0.300522i
\(467\) 4926.33i 0.488144i −0.969757 0.244072i \(-0.921517\pi\)
0.969757 0.244072i \(-0.0784833\pi\)
\(468\) −8427.06 3969.16i −0.832352 0.392039i
\(469\) 1309.79i 0.128957i
\(470\) −2703.73 + 484.469i −0.265349 + 0.0475466i
\(471\) 6955.87 + 949.002i 0.680488 + 0.0928401i
\(472\) −1683.44 + 2972.60i −0.164167 + 0.289884i
\(473\) 4775.63 2757.21i 0.464236 0.268027i
\(474\) 887.236 + 1398.61i 0.0859749 + 0.135528i
\(475\) −878.042 + 1520.81i −0.0848154 + 0.146905i
\(476\) 23.1234 135.526i 0.00222659 0.0130501i
\(477\) 3514.50 + 13626.9i 0.337354 + 1.30803i
\(478\) −5901.20 6993.33i −0.564674 0.669179i
\(479\) 934.274 1618.21i 0.0891191 0.154359i −0.818020 0.575190i \(-0.804928\pi\)
0.907139 + 0.420831i \(0.138261\pi\)
\(480\) −1878.03 2012.20i −0.178583 0.191341i
\(481\) −6181.12 10706.0i −0.585935 1.01487i
\(482\) 1373.28 3805.84i 0.129774 0.359650i
\(483\) −2036.07 + 2627.82i −0.191810 + 0.247557i
\(484\) −6666.46 5531.16i −0.626076 0.519456i
\(485\) −432.385 −0.0404817
\(486\) −10711.3 + 245.645i −0.999737 + 0.0229274i
\(487\) 3289.20i 0.306053i −0.988222 0.153026i \(-0.951098\pi\)
0.988222 0.153026i \(-0.0489020\pi\)
\(488\) 16983.9 141.170i 1.57546 0.0130952i
\(489\) −7896.34 6118.19i −0.730235 0.565796i
\(490\) −888.111 + 2461.26i −0.0818791 + 0.226915i
\(491\) −1189.49 + 686.750i −0.109329 + 0.0631214i −0.553668 0.832738i \(-0.686772\pi\)
0.444338 + 0.895859i \(0.353439\pi\)
\(492\) 13351.1 2971.72i 1.22340 0.272307i
\(493\) 67.2993 + 38.8553i 0.00614809 + 0.00354960i
\(494\) 1405.95 1186.39i 0.128050 0.108053i
\(495\) −1205.32 + 310.864i −0.109445 + 0.0282269i
\(496\) −6732.65 + 19155.7i −0.609485 + 1.73411i
\(497\) −4862.07 2807.11i −0.438820 0.253353i
\(498\) −7794.54 12287.1i −0.701369 1.10562i
\(499\) −925.039 1602.21i −0.0829868 0.143737i 0.821545 0.570144i \(-0.193113\pi\)
−0.904532 + 0.426407i \(0.859779\pi\)
\(500\) −5300.38 + 1962.51i −0.474080 + 0.175532i
\(501\) 1842.00 13501.3i 0.164261 1.20398i
\(502\) 2945.21 + 16436.7i 0.261855 + 1.46137i
\(503\) −17948.3 −1.59100 −0.795502 0.605951i \(-0.792793\pi\)
−0.795502 + 0.605951i \(0.792793\pi\)
\(504\) −816.196 3059.27i −0.0721354 0.270379i
\(505\) 4293.01 0.378290
\(506\) 970.209 + 5414.56i 0.0852392 + 0.475705i
\(507\) −1622.04 + 662.966i −0.142085 + 0.0580737i
\(508\) −3541.07 9563.78i −0.309271 0.835284i
\(509\) 131.163 + 227.180i 0.0114218 + 0.0197831i 0.871680 0.490076i \(-0.163031\pi\)
−0.860258 + 0.509859i \(0.829698\pi\)
\(510\) 142.487 5.94642i 0.0123714 0.000516298i
\(511\) −3044.88 1757.96i −0.263596 0.152187i
\(512\) −288.853 11581.6i −0.0249328 0.999689i
\(513\) 837.180 1943.26i 0.0720515 0.167245i
\(514\) 3059.33 2581.56i 0.262532 0.221533i
\(515\) 2941.09 + 1698.04i 0.251650 + 0.145290i
\(516\) −10719.0 + 9838.85i −0.914491 + 0.839401i
\(517\) −4528.07 + 2614.28i −0.385192 + 0.222391i
\(518\) 1426.24 3952.61i 0.120976 0.335266i
\(519\) −13330.9 + 5448.64i −1.12748 + 0.460826i
\(520\) 2855.36 23.7337i 0.240799 0.00200152i
\(521\) 938.595i 0.0789263i 0.999221 + 0.0394631i \(0.0125648\pi\)
−0.999221 + 0.0394631i \(0.987435\pi\)
\(522\) 1781.79 + 167.778i 0.149400 + 0.0140679i
\(523\) −7118.07 −0.595127 −0.297563 0.954702i \(-0.596174\pi\)
−0.297563 + 0.954702i \(0.596174\pi\)
\(524\) −2775.21 + 3344.84i −0.231366 + 0.278855i
\(525\) −3106.84 423.872i −0.258274 0.0352367i
\(526\) −5363.57 + 14864.3i −0.444606 + 1.23216i
\(527\) −526.011 911.078i −0.0434790 0.0753078i
\(528\) −4662.68 2389.51i −0.384312 0.196951i
\(529\) −1535.67 + 2659.87i −0.126216 + 0.218613i
\(530\) −2782.08 3296.95i −0.228011 0.270209i
\(531\) −2855.22 2909.35i −0.233344 0.237768i
\(532\) 616.401 + 105.170i 0.0502337 + 0.00857083i
\(533\) −7094.86 + 12288.7i −0.576571 + 0.998650i
\(534\) −3859.70 + 7379.71i −0.312782 + 0.598036i
\(535\) −3152.77 + 1820.25i −0.254777 + 0.147096i
\(536\) 4976.02 + 2818.02i 0.400991 + 0.227090i
\(537\) 6710.07 8660.25i 0.539220 0.695935i
\(538\) 14005.4 2509.56i 1.12233 0.201106i
\(539\) 4980.71i 0.398023i
\(540\) 2926.08 1491.59i 0.233183 0.118866i
\(541\) 6529.45i 0.518896i −0.965757 0.259448i \(-0.916459\pi\)
0.965757 0.259448i \(-0.0835407\pi\)
\(542\) −657.269 3668.10i −0.0520888 0.290698i
\(543\) −1856.02 + 2395.45i −0.146684 + 0.189316i
\(544\) 465.127 + 379.433i 0.0366583 + 0.0299045i
\(545\) −1444.33 + 833.887i −0.113520 + 0.0655409i
\(546\) 2910.72 + 1522.35i 0.228145 + 0.119323i
\(547\) −902.529 + 1563.23i −0.0705473 + 0.122192i −0.899141 0.437658i \(-0.855808\pi\)
0.828594 + 0.559850i \(0.189141\pi\)
\(548\) 19900.2 + 3395.34i 1.55126 + 0.264675i
\(549\) −5428.96 + 19525.9i −0.422044 + 1.51793i
\(550\) −3965.42 + 3346.15i −0.307429 + 0.259419i
\(551\) −176.721 + 306.090i −0.0136635 + 0.0236659i
\(552\) −5602.71 13389.0i −0.432006 1.03238i
\(553\) −292.032 505.814i −0.0224565 0.0388959i
\(554\) −8068.87 2911.54i −0.618797 0.223284i
\(555\) 4318.72 + 589.210i 0.330305 + 0.0450641i
\(556\) 11549.4 + 9582.55i 0.880943 + 0.730919i
\(557\) −25569.6 −1.94510 −0.972550 0.232694i \(-0.925246\pi\)
−0.972550 + 0.232694i \(0.925246\pi\)
\(558\) −19754.1 14027.7i −1.49867 1.06423i
\(559\) 15094.5i 1.14209i
\(560\) 632.092 + 736.564i 0.0476978 + 0.0555813i
\(561\) 251.283 102.705i 0.0189112 0.00772944i
\(562\) −6506.88 2347.91i −0.488392 0.176229i
\(563\) −4254.07 + 2456.09i −0.318451 + 0.183858i −0.650702 0.759333i \(-0.725525\pi\)
0.332251 + 0.943191i \(0.392192\pi\)
\(564\) 10163.3 9328.82i 0.758783 0.696479i
\(565\) 2413.32 + 1393.33i 0.179698 + 0.103748i
\(566\) 15429.9 + 18285.5i 1.14588 + 1.35794i
\(567\) 3777.47 + 70.9477i 0.279786 + 0.00525489i
\(568\) 21125.2 12431.9i 1.56055 0.918365i
\(569\) 13142.2 + 7587.64i 0.968275 + 0.559034i 0.898710 0.438544i \(-0.144506\pi\)
0.0695650 + 0.997577i \(0.477839\pi\)
\(570\) 27.0455 + 648.057i 0.00198739 + 0.0476213i
\(571\) 6558.52 + 11359.7i 0.480675 + 0.832554i 0.999754 0.0221726i \(-0.00705833\pi\)
−0.519079 + 0.854726i \(0.673725\pi\)
\(572\) 5097.22 1887.29i 0.372597 0.137957i
\(573\) −5989.89 + 2448.21i −0.436704 + 0.178491i
\(574\) −4747.63 + 850.705i −0.345230 + 0.0618602i
\(575\) −14373.4 −1.04246
\(576\) 13378.5 + 3481.23i 0.967773 + 0.251825i
\(577\) 9122.28 0.658173 0.329086 0.944300i \(-0.393259\pi\)
0.329086 + 0.944300i \(0.393259\pi\)
\(578\) 13647.6 2445.45i 0.982120 0.175981i
\(579\) 1848.96 13552.2i 0.132712 0.972733i
\(580\) −514.480 + 190.490i −0.0368321 + 0.0136374i
\(581\) 2565.56 + 4443.68i 0.183197 + 0.317306i
\(582\) 1833.78 1163.29i 0.130606 0.0828523i
\(583\) −7111.45 4105.80i −0.505191 0.291672i
\(584\) 13229.7 7785.51i 0.937414 0.551655i
\(585\) −912.725 + 3282.73i −0.0645069 + 0.232007i
\(586\) −800.294 948.404i −0.0564161 0.0668570i
\(587\) −13405.1 7739.45i −0.942570 0.544193i −0.0518051 0.998657i \(-0.516497\pi\)
−0.890765 + 0.454464i \(0.849831\pi\)
\(588\) −2855.24 12827.8i −0.200252 0.899675i
\(589\) 4143.76 2392.40i 0.289883 0.167364i
\(590\) 1175.40 + 424.125i 0.0820175 + 0.0295948i
\(591\) −4973.91 3853.85i −0.346192 0.268234i
\(592\) 11947.8 + 13922.5i 0.829476 + 0.966572i
\(593\) 13499.3i 0.934824i 0.884040 + 0.467412i \(0.154813\pi\)
−0.884040 + 0.467412i \(0.845187\pi\)
\(594\) 4275.51 4561.20i 0.295330 0.315065i
\(595\) −50.2893 −0.00346498
\(596\) −12296.8 10202.7i −0.845131 0.701206i
\(597\) 6415.10 8279.54i 0.439787 0.567603i
\(598\) 14163.3 + 5110.64i 0.968531 + 0.349481i
\(599\) 7097.54 + 12293.3i 0.484136 + 0.838548i 0.999834 0.0182222i \(-0.00580063\pi\)
−0.515698 + 0.856771i \(0.672467\pi\)
\(600\) 8294.70 10891.2i 0.564383 0.741052i
\(601\) 505.327 875.253i 0.0342974 0.0594048i −0.848367 0.529408i \(-0.822414\pi\)
0.882665 + 0.470003i \(0.155747\pi\)
\(602\) 3921.25 3308.88i 0.265479 0.224020i
\(603\) −4870.14 + 4779.52i −0.328901 + 0.322782i
\(604\) −322.030 54.9445i −0.0216941 0.00370142i
\(605\) −1584.25 + 2744.00i −0.106461 + 0.184396i
\(606\) −18207.0 + 11550.0i −1.22048 + 0.774232i
\(607\) 7769.04 4485.46i 0.519498 0.299933i −0.217231 0.976120i \(-0.569702\pi\)
0.736729 + 0.676188i \(0.236369\pi\)
\(608\) −1725.74 + 2115.49i −0.115112 + 0.141109i
\(609\) −625.306 85.3116i −0.0416070 0.00567652i
\(610\) −1095.75 6115.19i −0.0727306 0.405896i
\(611\) 14312.0i 0.947630i
\(612\) −588.299 + 408.566i −0.0388572 + 0.0269858i
\(613\) 14462.3i 0.952897i −0.879202 0.476449i \(-0.841924\pi\)
0.879202 0.476449i \(-0.158076\pi\)
\(614\) −21925.3 + 3928.68i −1.44109 + 0.258222i
\(615\) −1892.87 4631.17i −0.124110 0.303653i
\(616\) 1607.65 + 910.446i 0.105153 + 0.0595502i
\(617\) 18159.9 10484.6i 1.18491 0.684108i 0.227764 0.973716i \(-0.426858\pi\)
0.957145 + 0.289608i \(0.0935251\pi\)
\(618\) −17041.8 + 711.208i −1.10926 + 0.0462928i
\(619\) −3168.60 + 5488.18i −0.205746 + 0.356363i −0.950370 0.311121i \(-0.899295\pi\)
0.744624 + 0.667484i \(0.232629\pi\)
\(620\) 7321.17 + 1249.13i 0.474234 + 0.0809133i
\(621\) 17200.6 2018.48i 1.11149 0.130433i
\(622\) 1944.27 + 2304.09i 0.125334 + 0.148530i
\(623\) 1468.39 2543.32i 0.0944296 0.163557i
\(624\) −12045.9 + 7782.73i −0.772795 + 0.499293i
\(625\) −6243.62 10814.3i −0.399591 0.692113i
\(626\) −9512.37 + 26362.0i −0.607333 + 1.68313i
\(627\) 467.123 + 1142.88i 0.0297530 + 0.0727948i
\(628\) 6901.57 8318.14i 0.438539 0.528551i
\(629\) −950.565 −0.0602568
\(630\) −1052.87 + 482.502i −0.0665830 + 0.0305133i
\(631\) 26190.2i 1.65232i −0.563436 0.826160i \(-0.690521\pi\)
0.563436 0.826160i \(-0.309479\pi\)
\(632\) 2549.94 21.1951i 0.160492 0.00133401i
\(633\) 844.666 6191.13i 0.0530371 0.388744i
\(634\) 67.4780 187.005i 0.00422696 0.0117144i
\(635\) −3230.57 + 1865.17i −0.201892 + 0.116562i
\(636\) 20669.2 + 6497.74i 1.28866 + 0.405113i
\(637\) 11807.0 + 6816.79i 0.734397 + 0.424004i
\(638\) −798.111 + 673.472i −0.0495259 + 0.0417916i
\(639\) 7304.46 + 28321.7i 0.452207 + 1.75335i
\(640\) −4158.22 + 816.655i −0.256825 + 0.0504393i
\(641\) −21831.2 12604.3i −1.34521 0.776660i −0.357647 0.933857i \(-0.616421\pi\)
−0.987567 + 0.157197i \(0.949754\pi\)
\(642\) 8473.92 16202.1i 0.520933 0.996019i
\(643\) 3931.26 + 6809.13i 0.241110 + 0.417614i 0.961031 0.276442i \(-0.0891553\pi\)
−0.719921 + 0.694056i \(0.755822\pi\)
\(644\) 1777.12 + 4799.67i 0.108740 + 0.293686i
\(645\) 4207.03 + 3259.66i 0.256824 + 0.198991i
\(646\) −24.9490 139.236i −0.00151951 0.00848012i
\(647\) 188.733 0.0114681 0.00573404 0.999984i \(-0.498175\pi\)
0.00573404 + 0.999984i \(0.498175\pi\)
\(648\) −8396.78 + 14198.3i −0.509038 + 0.860744i
\(649\) 2378.58 0.143864
\(650\) 2504.99 + 13979.9i 0.151160 + 0.843594i
\(651\) 6753.63 + 5232.80i 0.406599 + 0.315038i
\(652\) −14422.5 + 5340.07i −0.866304 + 0.320756i
\(653\) 15259.4 + 26430.1i 0.914468 + 1.58390i 0.807678 + 0.589623i \(0.200724\pi\)
0.106790 + 0.994282i \(0.465943\pi\)
\(654\) 3882.05 7422.43i 0.232110 0.443792i
\(655\) 1376.78 + 794.884i 0.0821301 + 0.0474178i
\(656\) 6982.63 19867.0i 0.415588 1.18243i
\(657\) 4574.44 + 17736.5i 0.271637 + 1.05322i
\(658\) −3717.98 + 3137.35i −0.220277 + 0.185877i
\(659\) −16805.7 9702.80i −0.993412 0.573547i −0.0871197 0.996198i \(-0.527766\pi\)
−0.906292 + 0.422651i \(0.861100\pi\)
\(660\) −574.736 + 1828.22i −0.0338963 + 0.107824i
\(661\) 26953.4 15561.6i 1.58603 0.915696i 0.592079 0.805880i \(-0.298307\pi\)
0.993952 0.109816i \(-0.0350262\pi\)
\(662\) 8994.03 24925.6i 0.528041 1.46338i
\(663\) 100.447 736.243i 0.00588392 0.0431272i
\(664\) −22401.7 + 186.203i −1.30927 + 0.0108827i
\(665\) 228.726i 0.0133377i
\(666\) −19901.3 + 9120.23i −1.15790 + 0.530633i
\(667\) −2892.91 −0.167937
\(668\) −16145.4 13395.9i −0.935159 0.775902i
\(669\) −2578.31 6308.21i −0.149004 0.364558i
\(670\) 709.969 1967.57i 0.0409381 0.113453i
\(671\) −5912.87 10241.4i −0.340185 0.589217i
\(672\) −4662.41 1423.24i −0.267644 0.0817006i
\(673\) 16571.1 28701.9i 0.949134 1.64395i 0.201880 0.979410i \(-0.435295\pi\)
0.747254 0.664539i \(-0.231372\pi\)
\(674\) 11260.8 + 13344.8i 0.643546 + 0.762647i
\(675\) 9761.01 + 13098.7i 0.556595 + 0.746919i
\(676\) −453.745 + 2659.40i −0.0258162 + 0.151309i
\(677\) −3831.16 + 6635.77i −0.217494 + 0.376711i −0.954041 0.299675i \(-0.903122\pi\)
0.736547 + 0.676386i \(0.236455\pi\)
\(678\) −13983.7 + 583.585i −0.792097 + 0.0330567i
\(679\) −663.195 + 382.896i −0.0374832 + 0.0216409i
\(680\) 108.198 191.054i 0.00610174 0.0107744i
\(681\) −5663.09 13855.5i −0.318664 0.779656i
\(682\) 13915.7 2493.49i 0.781319 0.140001i
\(683\) 8233.45i 0.461265i −0.973041 0.230633i \(-0.925920\pi\)
0.973041 0.230633i \(-0.0740795\pi\)
\(684\) −1858.24 2675.70i −0.103877 0.149573i
\(685\) 7384.28i 0.411882i
\(686\) 1704.17 + 9510.66i 0.0948477 + 0.529328i
\(687\) 22935.9 + 3129.19i 1.27374 + 0.173779i
\(688\) 4134.14 + 22016.3i 0.229088 + 1.22000i
\(689\) −19466.0 + 11238.7i −1.07633 + 0.621422i
\(690\) −4482.98 + 2843.86i −0.247339 + 0.156904i
\(691\) −9201.53 + 15937.5i −0.506574 + 0.877412i 0.493397 + 0.869804i \(0.335755\pi\)
−0.999971 + 0.00760808i \(0.997578\pi\)
\(692\) −3729.14 + 21856.5i −0.204856 + 1.20067i
\(693\) −1573.44 + 1544.17i −0.0862484 + 0.0846437i
\(694\) 12735.1 10746.3i 0.696570 0.587788i
\(695\) 2744.66 4753.89i 0.149800 0.259461i
\(696\) 1669.45 2192.05i 0.0909203 0.119381i
\(697\) 545.542 + 944.907i 0.0296469 + 0.0513499i
\(698\) −25038.5 9034.80i −1.35777 0.489932i
\(699\) 3455.78 4460.15i 0.186995 0.241342i
\(700\) −3082.58 + 3715.30i −0.166444 + 0.200607i
\(701\) 2617.11 0.141008 0.0705041 0.997511i \(-0.477539\pi\)
0.0705041 + 0.997511i \(0.477539\pi\)
\(702\) −4960.93 16377.9i −0.266721 0.880548i
\(703\) 4323.36i 0.231947i
\(704\) −6917.73 + 4148.78i −0.370343 + 0.222107i
\(705\) −3988.94 3090.69i −0.213095 0.165109i
\(706\) −18587.7 6707.11i −0.990874 0.357543i
\(707\) 6584.64 3801.65i 0.350270 0.202229i
\(708\) −6126.02 + 1363.55i −0.325184 + 0.0723803i
\(709\) 15311.9 + 8840.30i 0.811070 + 0.468271i 0.847327 0.531071i \(-0.178210\pi\)
−0.0362573 + 0.999342i \(0.511544\pi\)
\(710\) −5782.20 6852.31i −0.305637 0.362201i
\(711\) −815.098 + 2931.60i −0.0429938 + 0.154632i
\(712\) 6503.06 + 11050.5i 0.342293 + 0.581649i
\(713\) 33916.4 + 19581.7i 1.78146 + 1.02853i
\(714\) 213.281 135.299i 0.0111790 0.00709163i
\(715\) −994.082 1721.80i −0.0519952 0.0900583i
\(716\) −5856.67 15817.8i −0.305690 0.825613i
\(717\) 2272.43 16656.2i 0.118362 0.867553i
\(718\) 10703.8 1917.96i 0.556354 0.0996903i
\(719\) 7767.21 0.402876 0.201438 0.979501i \(-0.435438\pi\)
0.201438 + 0.979501i \(0.435438\pi\)
\(720\) 432.181 5038.05i 0.0223700 0.260774i
\(721\) 6014.74 0.310680
\(722\) −18462.8 + 3308.25i −0.951680 + 0.170527i
\(723\) 6880.49 2812.22i 0.353926 0.144658i
\(724\) 1619.97 + 4375.24i 0.0831571 + 0.224592i
\(725\) −1364.35 2363.13i −0.0698907 0.121054i
\(726\) −663.550 15899.8i −0.0339210 0.812807i
\(727\) −9187.03 5304.13i −0.468677 0.270591i 0.247009 0.969013i \(-0.420552\pi\)
−0.715686 + 0.698423i \(0.753886\pi\)
\(728\) 4358.54 2564.94i 0.221893 0.130581i
\(729\) −13520.5 14304.5i −0.686910 0.726742i
\(730\) −3621.12 4291.28i −0.183594 0.217572i
\(731\) −1005.16 580.327i −0.0508578 0.0293628i
\(732\) 21099.5 + 22987.0i 1.06538 + 1.16069i
\(733\) −7738.67 + 4467.92i −0.389951 + 0.225138i −0.682139 0.731223i \(-0.738950\pi\)
0.292188 + 0.956361i \(0.405617\pi\)
\(734\) 35829.9 + 12928.7i 1.80178 + 0.650147i
\(735\) −4449.66 + 1818.68i −0.223304 + 0.0912695i
\(736\) −22057.9 3575.07i −1.10471 0.179048i
\(737\) 3981.66i 0.199005i
\(738\) 20487.6 + 14548.6i 1.02189 + 0.725665i
\(739\) 5767.08 0.287071 0.143535 0.989645i \(-0.454153\pi\)
0.143535 + 0.989645i \(0.454153\pi\)
\(740\) 4285.00 5164.52i 0.212865 0.256556i
\(741\) 3348.58 + 456.853i 0.166010 + 0.0226490i
\(742\) −7186.76 2593.24i −0.355572 0.128303i
\(743\) 711.865 + 1232.99i 0.0351491 + 0.0608801i 0.883065 0.469251i \(-0.155476\pi\)
−0.847916 + 0.530131i \(0.822143\pi\)
\(744\) −34410.3 + 14399.3i −1.69562 + 0.709546i
\(745\) −2922.28 + 5061.54i −0.143710 + 0.248913i
\(746\) −13382.5 + 11292.6i −0.656793 + 0.554223i
\(747\) 7160.80 25754.7i 0.350736 1.26147i
\(748\) 70.2931 411.989i 0.00343606 0.0201388i
\(749\) −3223.82 + 5583.82i −0.157271 + 0.272401i
\(750\) −9200.99 4812.26i −0.447963 0.234292i
\(751\) −16310.8 + 9417.02i −0.792527 + 0.457566i −0.840851 0.541266i \(-0.817945\pi\)
0.0483243 + 0.998832i \(0.484612\pi\)
\(752\) −3919.84 20875.0i −0.190082 1.01228i
\(753\) −18789.1 + 24249.8i −0.909311 + 1.17359i
\(754\) 504.173 + 2813.70i 0.0243513 + 0.135900i
\(755\) 119.495i 0.00576007i
\(756\) 3167.18 4878.98i 0.152367 0.234718i
\(757\) 21381.1i 1.02657i 0.858219 + 0.513283i \(0.171571\pi\)
−0.858219 + 0.513283i \(0.828429\pi\)
\(758\) 21867.1 3918.26i 1.04782 0.187754i
\(759\) −6189.48 + 7988.35i −0.296000 + 0.382027i
\(760\) 868.949 + 492.104i 0.0414738 + 0.0234875i
\(761\) 15809.6 9127.66i 0.753083 0.434793i −0.0737237 0.997279i \(-0.523488\pi\)
0.826807 + 0.562486i \(0.190155\pi\)
\(762\) 8683.03 16601.9i 0.412799 0.789268i
\(763\) −1476.89 + 2558.04i −0.0700745 + 0.121373i
\(764\) −1675.60 + 9820.68i −0.0793467 + 0.465052i
\(765\) 183.509 + 186.988i 0.00867292 + 0.00883734i
\(766\) 19030.4 + 22552.3i 0.897644 + 1.06377i
\(767\) 3255.42 5638.55i 0.153255 0.265445i
\(768\) 15438.2 14650.8i 0.725363 0.688367i
\(769\) −7996.45 13850.3i −0.374980 0.649484i 0.615344 0.788259i \(-0.289017\pi\)
−0.990324 + 0.138774i \(0.955684\pi\)
\(770\) 229.377 635.682i 0.0107353 0.0297511i
\(771\) 7286.47 + 994.106i 0.340358 + 0.0464356i
\(772\) −16206.4 13446.4i −0.755545 0.626876i
\(773\) −23733.1 −1.10429 −0.552147 0.833747i \(-0.686191\pi\)
−0.552147 + 0.833747i \(0.686191\pi\)
\(774\) −26612.2 2505.87i −1.23586 0.116371i
\(775\) 36940.4i 1.71218i
\(776\) −27.7898 3343.34i −0.00128556 0.154663i
\(777\) 7145.85 2920.68i 0.329930 0.134850i
\(778\) 11005.2 30499.3i 0.507142 1.40547i
\(779\) −4297.62 + 2481.23i −0.197662 + 0.114120i
\(780\) 3547.29 + 3864.61i 0.162838 + 0.177404i
\(781\) −14780.3 8533.39i −0.677182 0.390971i
\(782\) 884.851 746.665i 0.0404632 0.0341441i
\(783\) 1964.58 + 2636.35i 0.0896657 + 0.120326i
\(784\) −19088.3 6708.96i −0.869547 0.305619i
\(785\) −3423.86 1976.77i −0.155672 0.0898775i
\(786\) −7977.60 + 332.930i −0.362025 + 0.0151084i
\(787\) 3774.80 + 6538.15i 0.170975 + 0.296137i 0.938761 0.344569i \(-0.111975\pi\)
−0.767786 + 0.640706i \(0.778642\pi\)
\(788\) −9084.77 + 3363.71i −0.410700 + 0.152065i
\(789\) −26872.9 + 10983.6i −1.21255 + 0.495597i
\(790\) −164.515 918.129i −0.00740909 0.0413488i
\(791\) 4935.42 0.221850
\(792\) −2481.17 9299.92i −0.111319 0.417246i
\(793\) −32370.3 −1.44956
\(794\) 4394.79 + 24526.5i 0.196430 + 1.09624i
\(795\) 1071.32 7852.42i 0.0477935 0.350310i
\(796\) −5599.21 15122.5i −0.249320 0.673368i
\(797\) −13480.4 23348.7i −0.599120 1.03771i −0.992951 0.118524i \(-0.962184\pi\)
0.393831 0.919183i \(-0.371149\pi\)
\(798\) 615.365 + 970.044i 0.0272979 + 0.0430316i
\(799\) 953.051 + 550.244i 0.0421984 + 0.0243632i
\(800\) −7482.56 19704.5i −0.330686 0.870823i
\(801\) −14814.9 + 3820.92i −0.653508 + 0.168546i
\(802\) −17016.8 + 14359.3i −0.749232 + 0.632226i
\(803\) −9256.18 5344.06i −0.406779 0.234854i
\(804\) 2282.53 + 10254.7i 0.100122 + 0.449821i
\(805\) 1621.29 936.052i 0.0709850 0.0409832i
\(806\) 13134.6 36400.5i 0.574003 1.59076i
\(807\) 20662.8 + 16009.8i 0.901320 + 0.698355i
\(808\) 275.916 + 33194.9i 0.0120132 + 1.44529i
\(809\) 33739.1i 1.46626i 0.680090 + 0.733129i \(0.261941\pi\)
−0.680090 + 0.733129i \(0.738059\pi\)
\(810\) 5636.05 + 2154.14i 0.244482 + 0.0934431i
\(811\) −9809.12 −0.424716 −0.212358 0.977192i \(-0.568114\pi\)
−0.212358 + 0.977192i \(0.568114\pi\)
\(812\) −620.425 + 747.769i −0.0268136 + 0.0323172i
\(813\) 4193.07 5411.71i 0.180882 0.233453i
\(814\) 4335.66 12015.6i 0.186689 0.517379i
\(815\) 2812.74 + 4871.82i 0.120891 + 0.209389i
\(816\) 55.1373 + 1101.37i 0.00236543 + 0.0472495i
\(817\) 2639.44 4571.65i 0.113026 0.195767i
\(818\) 623.705 + 739.135i 0.0266593 + 0.0315932i
\(819\) 1507.05 + 5843.32i 0.0642987 + 0.249307i
\(820\) −7593.00 1295.51i −0.323365 0.0551722i
\(821\) 9274.38 16063.7i 0.394248 0.682858i −0.598756 0.800931i \(-0.704338\pi\)
0.993005 + 0.118073i \(0.0376716\pi\)
\(822\) 19866.7 + 31317.3i 0.842983 + 1.32885i
\(823\) −1262.62 + 728.972i −0.0534775 + 0.0308753i −0.526500 0.850175i \(-0.676496\pi\)
0.473023 + 0.881050i \(0.343163\pi\)
\(824\) −12940.7 + 22850.5i −0.547101 + 0.966063i
\(825\) −9444.53 1288.53i −0.398565 0.0543769i
\(826\) 2178.41 390.339i 0.0917634 0.0164426i
\(827\) 42187.5i 1.77388i −0.461881 0.886942i \(-0.652825\pi\)
0.461881 0.886942i \(-0.347175\pi\)
\(828\) 11361.5 24122.1i 0.476861 1.01244i
\(829\) 22370.3i 0.937218i 0.883406 + 0.468609i \(0.155245\pi\)
−0.883406 + 0.468609i \(0.844755\pi\)
\(830\) 1445.30 + 8065.94i 0.0604422 + 0.337317i
\(831\) −5962.27 14587.5i −0.248892 0.608948i
\(832\) 367.033 + 22077.0i 0.0152940 + 0.919930i
\(833\) 907.873 524.161i 0.0377622 0.0218020i
\(834\) 1149.58 + 27545.9i 0.0477297 + 1.14369i
\(835\) −3836.89 + 6645.68i −0.159019 + 0.275429i
\(836\) 1873.81 + 319.707i 0.0775202 + 0.0132264i
\(837\) −5187.60 44206.5i −0.214229 1.82557i
\(838\) 2881.32 2431.35i 0.118775 0.100226i
\(839\) 24035.3 41630.3i 0.989023 1.71304i 0.366548 0.930399i \(-0.380540\pi\)
0.622476 0.782639i \(-0.286127\pi\)
\(840\) −226.347 + 1768.68i −0.00929727 + 0.0726493i
\(841\) 11919.9 + 20645.9i 0.488741 + 0.846524i
\(842\) −16765.8 6049.69i −0.686207 0.247608i
\(843\) −4808.08 11763.7i −0.196440 0.480619i
\(844\) −7403.63 6142.79i −0.301947 0.250526i
\(845\) 986.816 0.0401745
\(846\) 25232.6 + 2375.97i 1.02543 + 0.0965573i
\(847\) 5611.69i 0.227650i
\(848\) 25314.3 21723.8i 1.02511 0.879714i
\(849\) −5941.72 + 43550.9i −0.240188 + 1.76050i
\(850\) 1027.24 + 370.666i 0.0414519 + 0.0149573i
\(851\) 30645.5 17693.2i 1.23445 0.712708i
\(852\) 42958.3 + 13504.7i 1.72738 + 0.543034i
\(853\) −14708.0 8491.65i −0.590377 0.340854i 0.174870 0.984592i \(-0.444050\pi\)
−0.765246 + 0.643737i \(0.777383\pi\)
\(854\) −7095.93 8409.17i −0.284330 0.336951i
\(855\) −850.458 + 834.635i −0.0340176 + 0.0333847i
\(856\) −14277.4 24261.2i −0.570082 0.968727i
\(857\) 22340.4 + 12898.3i 0.890473 + 0.514115i 0.874097 0.485751i \(-0.161454\pi\)
0.0163755 + 0.999866i \(0.494787\pi\)
\(858\) 8848.33 + 4627.81i 0.352071 + 0.184139i
\(859\) −9914.38 17172.2i −0.393800 0.682082i 0.599147 0.800639i \(-0.295506\pi\)
−0.992947 + 0.118557i \(0.962173\pi\)
\(860\) 7684.07 2845.09i 0.304680 0.112810i
\(861\) −7004.40 5427.10i −0.277246 0.214814i
\(862\) 4987.22 893.636i 0.197060 0.0353102i
\(863\) 42561.4 1.67880 0.839401 0.543513i \(-0.182906\pi\)
0.839401 + 0.543513i \(0.182906\pi\)
\(864\) 11721.5 + 22529.5i 0.461543 + 0.887118i
\(865\) 8110.22 0.318793
\(866\) 22127.3 3964.88i 0.868263 0.155580i
\(867\) 20134.9 + 15600.8i 0.788717 + 0.611109i
\(868\) 12335.4 4567.28i 0.482363 0.178599i
\(869\) −887.753 1537.63i −0.0346547 0.0600237i
\(870\) −893.091 467.100i −0.0348030 0.0182025i
\(871\) −9438.71 5449.44i −0.367185 0.211995i
\(872\) −6540.70 11114.5i −0.254009 0.431632i
\(873\) 3843.75 + 1068.71i 0.149016 + 0.0414323i
\(874\) 3395.98 + 4024.47i 0.131431 + 0.155755i
\(875\) 3171.00 + 1830.78i 0.122513 + 0.0707331i
\(876\) 26902.7 + 8457.37i 1.03762 + 0.326197i
\(877\) −13338.6 + 7701.03i −0.513582 + 0.296517i −0.734305 0.678820i \(-0.762492\pi\)
0.220723 + 0.975337i \(0.429158\pi\)
\(878\) 30926.3 + 11159.3i 1.18874 + 0.428939i
\(879\) 308.177 2258.83i 0.0118254 0.0866764i
\(880\) 1921.51 + 2239.09i 0.0736068 + 0.0857725i
\(881\) 408.896i 0.0156368i 0.999969 + 0.00781842i \(0.00248871\pi\)
−0.999969 + 0.00781842i \(0.997511\pi\)
\(882\) 13978.4 19684.6i 0.533647 0.751490i
\(883\) 24945.2 0.950704 0.475352 0.879796i \(-0.342321\pi\)
0.475352 + 0.879796i \(0.342321\pi\)
\(884\) −880.433 730.495i −0.0334979 0.0277932i
\(885\) 868.527 + 2124.97i 0.0329890 + 0.0807121i
\(886\) 39235.0 + 14157.4i 1.48773 + 0.536824i
\(887\) −5014.93 8686.11i −0.189836 0.328806i 0.755359 0.655311i \(-0.227462\pi\)
−0.945196 + 0.326505i \(0.894129\pi\)
\(888\) −4278.39 + 33431.5i −0.161682 + 1.26339i
\(889\) −3303.37 + 5721.61i −0.124625 + 0.215857i
\(890\) 3584.40 3024.63i 0.134999 0.113917i
\(891\) 11483.2 + 215.675i 0.431764 + 0.00810929i
\(892\) −10342.6 1764.64i −0.388223 0.0662382i
\(893\) −2502.62 + 4334.66i −0.0937815 + 0.162434i
\(894\) −1223.97 29328.5i −0.0457894 1.09720i
\(895\) −5343.12 + 3084.85i −0.199554 + 0.115213i
\(896\) −5654.72 + 4934.87i −0.210838 + 0.183998i
\(897\) 10465.6 + 25605.6i 0.389562 + 0.953117i
\(898\) −4197.22 23423.9i −0.155972 0.870454i
\(899\) 7434.91i 0.275827i
\(900\) 25063.0 2095.56i 0.928258 0.0776134i
\(901\) 1728.34i 0.0639062i
\(902\) −14432.4 + 2586.07i −0.532756 + 0.0954620i
\(903\) 9339.33 + 1274.18i 0.344179 + 0.0469569i
\(904\) −10618.6 + 18750.1i −0.390673 + 0.689844i
\(905\) 1477.92 853.278i 0.0542848 0.0313413i
\(906\) −321.489 506.787i −0.0117889 0.0185837i
\(907\) 3767.44 6525.40i 0.137923 0.238889i −0.788788 0.614666i \(-0.789291\pi\)
0.926710 + 0.375777i \(0.122624\pi\)
\(908\) −22716.8 3875.91i −0.830267 0.141659i
\(909\) −38163.3 10610.9i −1.39251 0.387173i
\(910\) −1192.98 1413.76i −0.0434581 0.0515009i
\(911\) −11159.9 + 19329.6i −0.405867 + 0.702983i −0.994422 0.105475i \(-0.966364\pi\)
0.588555 + 0.808457i \(0.299697\pi\)
\(912\) −5009.24 + 250.775i −0.181878 + 0.00910526i
\(913\) 7799.08 + 13508.4i 0.282708 + 0.489664i
\(914\) −17396.8 + 48212.4i −0.629577 + 1.74477i
\(915\) 6990.38 9022.02i 0.252563 0.325966i
\(916\) 22756.9 27427.8i 0.820861 0.989346i
\(917\) 2815.62 0.101396
\(918\) −1281.35 299.317i −0.0460685 0.0107614i
\(919\) 40992.7i 1.47141i 0.677303 + 0.735704i \(0.263149\pi\)
−0.677303 + 0.735704i \(0.736851\pi\)
\(920\) 67.9368 + 8173.34i 0.00243458 + 0.292899i
\(921\) −32347.3 25063.1i −1.15731 0.896698i
\(922\) 15936.5 44165.4i 0.569240 1.57756i
\(923\) −40457.6 + 23358.2i −1.44277 + 0.832985i
\(924\) 737.438 + 3313.09i 0.0262553 + 0.117958i
\(925\) 28906.1 + 16688.9i 1.02749 + 0.593220i
\(926\) −22481.1 + 18970.3i −0.797812 + 0.673220i
\(927\) −21948.2 22364.3i −0.777641 0.792383i
\(928\) −1506.00 3965.88i −0.0532724 0.140287i
\(929\) −20199.6 11662.2i −0.713376 0.411868i 0.0989336 0.995094i \(-0.468457\pi\)
−0.812310 + 0.583226i \(0.801790\pi\)
\(930\) 7308.87 + 11521.5i 0.257707 + 0.406241i
\(931\) 2383.99 + 4129.18i 0.0839226 + 0.145358i
\(932\) −3016.27 8146.39i −0.106010 0.286313i
\(933\) −748.697 + 5487.70i −0.0262714 + 0.192561i
\(934\) −2457.58 13715.3i −0.0860969 0.480491i
\(935\) −152.875 −0.00534712
\(936\) −25441.7 6846.49i −0.888449 0.239086i
\(937\) −29355.3 −1.02348 −0.511738 0.859142i \(-0.670998\pi\)
−0.511738 + 0.859142i \(0.670998\pi\)
\(938\) −653.412 3646.58i −0.0227448 0.126935i
\(939\) −47659.4 + 19479.5i −1.65634 + 0.676986i
\(940\) −7285.74 + 2697.61i −0.252803 + 0.0936024i
\(941\) −1391.16 2409.56i −0.0481939 0.0834743i 0.840922 0.541156i \(-0.182013\pi\)
−0.889116 + 0.457682i \(0.848680\pi\)
\(942\) 19839.2 827.951i 0.686194 0.0286371i
\(943\) −35175.8 20308.7i −1.21472 0.701319i
\(944\) −3203.92 + 9115.79i −0.110465 + 0.314294i
\(945\) −1954.06 841.833i −0.0672651 0.0289787i
\(946\) 11920.3 10058.7i 0.409685 0.345705i
\(947\) 15438.1 + 8913.16i 0.529746 + 0.305849i 0.740913 0.671601i \(-0.234393\pi\)
−0.211167 + 0.977450i \(0.567726\pi\)
\(948\) 3167.86 + 3451.25i 0.108531 + 0.118240i
\(949\) −25336.7 + 14628.1i −0.866663 + 0.500368i
\(950\) −1685.86 + 4672.10i −0.0575753 + 0.159561i
\(951\) 338.082 138.182i 0.0115279 0.00471174i
\(952\) −3.23214 388.852i −0.000110036 0.0132382i
\(953\) 21508.9i 0.731104i −0.930791 0.365552i \(-0.880880\pi\)
0.930791 0.365552i \(-0.119120\pi\)
\(954\) 16582.7 + 36185.1i 0.562771 + 1.22802i
\(955\) 3644.13 0.123478
\(956\) −19918.2 16526.1i −0.673849 0.559093i
\(957\) −1900.88 259.340i −0.0642076 0.00875995i
\(958\) 1793.83 4971.31i 0.0604968 0.167657i
\(959\) −6539.10 11326.1i −0.220186 0.381374i
\(960\) −6232.40 4665.24i −0.209531 0.156844i
\(961\) 35430.4 61367.2i 1.18930 2.05992i
\(962\) −22549.6 26722.9i −0.755747 0.895614i
\(963\) 32526.0 8388.78i 1.08841 0.280711i
\(964\) 1924.73 11280.9i 0.0643064 0.376900i
\(965\) −3851.37 + 6670.76i −0.128477 + 0.222528i
\(966\) −4357.66 + 8331.80i −0.145140 + 0.277507i
\(967\) 8410.42 4855.76i 0.279691 0.161479i −0.353593 0.935399i \(-0.615040\pi\)
0.633283 + 0.773920i \(0.281707\pi\)
\(968\) −21319.3 12073.6i −0.707881 0.400887i
\(969\) 159.163 205.421i 0.00527662 0.00681019i
\(970\) −1203.80 + 215.703i −0.0398470 + 0.00714000i
\(971\) 1908.56i 0.0630777i −0.999503 0.0315389i \(-0.989959\pi\)
0.999503 0.0315389i \(-0.0100408\pi\)
\(972\) −29698.5 + 6027.38i −0.980020 + 0.198898i
\(973\) 9722.06i 0.320324i
\(974\) −1640.87 9157.41i −0.0539804 0.301255i
\(975\) −15980.6 + 20625.2i −0.524913 + 0.677471i
\(976\) 47214.1 8865.71i 1.54845 0.290763i
\(977\) −40899.7 + 23613.4i −1.33930 + 0.773245i −0.986704 0.162531i \(-0.948034\pi\)
−0.352596 + 0.935776i \(0.614701\pi\)
\(978\) −25036.3 13094.3i −0.818580 0.428130i
\(979\) 4463.77 7731.47i 0.145723 0.252399i
\(980\) −1244.74 + 7295.41i −0.0405731 + 0.237799i
\(981\) 14900.7 3843.04i 0.484956 0.125075i
\(982\) −2969.03 + 2505.37i −0.0964824 + 0.0814149i
\(983\) −11777.7 + 20399.5i −0.382146 + 0.661895i −0.991369 0.131103i \(-0.958148\pi\)
0.609223 + 0.792999i \(0.291481\pi\)
\(984\) 35688.0 14933.9i 1.15619 0.483817i
\(985\) 1771.75 + 3068.76i 0.0573123 + 0.0992678i
\(986\) 206.751 + 74.6030i 0.00667777 + 0.00240958i
\(987\) −8855.20 1208.13i −0.285577 0.0389617i
\(988\) 3322.44 4004.38i 0.106985 0.128944i
\(989\) 43207.3 1.38919
\(990\) −3200.63 + 1466.77i −0.102750 + 0.0470878i
\(991\) 31768.2i 1.01831i 0.860673 + 0.509157i \(0.170043\pi\)
−0.860673 + 0.509157i \(0.829957\pi\)
\(992\) −9188.12 + 56689.8i −0.294076 + 1.81442i
\(993\) 45062.4 18418.1i 1.44009 0.588600i
\(994\) −14936.8 5389.73i −0.476626 0.171984i
\(995\) −5108.24 + 2949.24i −0.162756 + 0.0939672i
\(996\) −27830.3 30319.9i −0.885378 0.964581i
\(997\) 3600.15 + 2078.55i 0.114361 + 0.0660263i 0.556089 0.831122i \(-0.312301\pi\)
−0.441729 + 0.897149i \(0.645635\pi\)
\(998\) −3374.68 3999.23i −0.107038 0.126847i
\(999\) −36935.5 15912.3i −1.16976 0.503946i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.4.l.b.11.30 yes 64
3.2 odd 2 216.4.l.b.35.3 64
4.3 odd 2 288.4.p.b.47.7 64
8.3 odd 2 inner 72.4.l.b.11.20 64
8.5 even 2 288.4.p.b.47.8 64
9.4 even 3 216.4.l.b.179.13 64
9.5 odd 6 inner 72.4.l.b.59.20 yes 64
12.11 even 2 864.4.p.b.143.18 64
24.5 odd 2 864.4.p.b.143.15 64
24.11 even 2 216.4.l.b.35.13 64
36.23 even 6 288.4.p.b.239.8 64
36.31 odd 6 864.4.p.b.719.15 64
72.5 odd 6 288.4.p.b.239.7 64
72.13 even 6 864.4.p.b.719.18 64
72.59 even 6 inner 72.4.l.b.59.30 yes 64
72.67 odd 6 216.4.l.b.179.3 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.4.l.b.11.20 64 8.3 odd 2 inner
72.4.l.b.11.30 yes 64 1.1 even 1 trivial
72.4.l.b.59.20 yes 64 9.5 odd 6 inner
72.4.l.b.59.30 yes 64 72.59 even 6 inner
216.4.l.b.35.3 64 3.2 odd 2
216.4.l.b.35.13 64 24.11 even 2
216.4.l.b.179.3 64 72.67 odd 6
216.4.l.b.179.13 64 9.4 even 3
288.4.p.b.47.7 64 4.3 odd 2
288.4.p.b.47.8 64 8.5 even 2
288.4.p.b.239.7 64 72.5 odd 6
288.4.p.b.239.8 64 36.23 even 6
864.4.p.b.143.15 64 24.5 odd 2
864.4.p.b.143.18 64 12.11 even 2
864.4.p.b.719.15 64 36.31 odd 6
864.4.p.b.719.18 64 72.13 even 6