Properties

Label 7225.2.a.br.1.1
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 135x^{8} - 400x^{6} + 515x^{4} - 222x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 425)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.85347\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08389 q^{2} -1.85347 q^{3} +2.34261 q^{4} +3.86244 q^{6} +1.37395 q^{7} -0.713960 q^{8} +0.435362 q^{9} +O(q^{10})\) \(q-2.08389 q^{2} -1.85347 q^{3} +2.34261 q^{4} +3.86244 q^{6} +1.37395 q^{7} -0.713960 q^{8} +0.435362 q^{9} -0.544107 q^{11} -4.34196 q^{12} +5.39918 q^{13} -2.86316 q^{14} -3.19740 q^{16} -0.907247 q^{18} +4.86186 q^{19} -2.54658 q^{21} +1.13386 q^{22} +1.78727 q^{23} +1.32330 q^{24} -11.2513 q^{26} +4.75349 q^{27} +3.21863 q^{28} -1.83415 q^{29} -8.11349 q^{31} +8.09096 q^{32} +1.00849 q^{33} +1.01988 q^{36} +5.97072 q^{37} -10.1316 q^{38} -10.0072 q^{39} +3.82217 q^{41} +5.30680 q^{42} -3.66628 q^{43} -1.27463 q^{44} -3.72447 q^{46} +9.07290 q^{47} +5.92630 q^{48} -5.11226 q^{49} +12.6482 q^{52} +10.5471 q^{53} -9.90576 q^{54} -0.980945 q^{56} -9.01133 q^{57} +3.82217 q^{58} +6.52808 q^{59} +15.4659 q^{61} +16.9076 q^{62} +0.598165 q^{63} -10.4659 q^{64} -2.10158 q^{66} +5.68704 q^{67} -3.31265 q^{69} +1.05995 q^{71} -0.310831 q^{72} -14.6825 q^{73} -12.4423 q^{74} +11.3894 q^{76} -0.747575 q^{77} +20.8540 q^{78} -1.24247 q^{79} -10.1165 q^{81} -7.96500 q^{82} +13.5038 q^{83} -5.96564 q^{84} +7.64014 q^{86} +3.39955 q^{87} +0.388470 q^{88} +0.989860 q^{89} +7.41820 q^{91} +4.18687 q^{92} +15.0381 q^{93} -18.9070 q^{94} -14.9964 q^{96} -11.3905 q^{97} +10.6534 q^{98} -0.236883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 4 q^{2} + 12 q^{4} + 12 q^{8} + 4 q^{9} + 12 q^{13} + 4 q^{16} + 4 q^{18} + 12 q^{19} - 8 q^{21} + 12 q^{26} + 48 q^{32} - 4 q^{33} - 20 q^{36} - 12 q^{38} + 56 q^{42} + 16 q^{43} + 36 q^{47} + 16 q^{49} + 64 q^{52} + 48 q^{53} - 32 q^{59} + 44 q^{64} + 40 q^{66} - 20 q^{67} - 72 q^{69} - 92 q^{72} + 36 q^{76} + 24 q^{77} + 8 q^{81} + 52 q^{83} + 36 q^{84} + 84 q^{86} + 48 q^{87} + 24 q^{89} + 60 q^{93} - 8 q^{94} + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08389 −1.47353 −0.736767 0.676146i \(-0.763649\pi\)
−0.736767 + 0.676146i \(0.763649\pi\)
\(3\) −1.85347 −1.07010 −0.535052 0.844819i \(-0.679708\pi\)
−0.535052 + 0.844819i \(0.679708\pi\)
\(4\) 2.34261 1.17130
\(5\) 0 0
\(6\) 3.86244 1.57683
\(7\) 1.37395 0.519304 0.259652 0.965702i \(-0.416392\pi\)
0.259652 + 0.965702i \(0.416392\pi\)
\(8\) −0.713960 −0.252423
\(9\) 0.435362 0.145121
\(10\) 0 0
\(11\) −0.544107 −0.164054 −0.0820272 0.996630i \(-0.526139\pi\)
−0.0820272 + 0.996630i \(0.526139\pi\)
\(12\) −4.34196 −1.25342
\(13\) 5.39918 1.49746 0.748731 0.662874i \(-0.230663\pi\)
0.748731 + 0.662874i \(0.230663\pi\)
\(14\) −2.86316 −0.765213
\(15\) 0 0
\(16\) −3.19740 −0.799351
\(17\) 0 0
\(18\) −0.907247 −0.213840
\(19\) 4.86186 1.11539 0.557694 0.830047i \(-0.311686\pi\)
0.557694 + 0.830047i \(0.311686\pi\)
\(20\) 0 0
\(21\) −2.54658 −0.555709
\(22\) 1.13386 0.241740
\(23\) 1.78727 0.372671 0.186336 0.982486i \(-0.440339\pi\)
0.186336 + 0.982486i \(0.440339\pi\)
\(24\) 1.32330 0.270118
\(25\) 0 0
\(26\) −11.2513 −2.20656
\(27\) 4.75349 0.914809
\(28\) 3.21863 0.608263
\(29\) −1.83415 −0.340593 −0.170297 0.985393i \(-0.554473\pi\)
−0.170297 + 0.985393i \(0.554473\pi\)
\(30\) 0 0
\(31\) −8.11349 −1.45723 −0.728613 0.684926i \(-0.759835\pi\)
−0.728613 + 0.684926i \(0.759835\pi\)
\(32\) 8.09096 1.43029
\(33\) 1.00849 0.175555
\(34\) 0 0
\(35\) 0 0
\(36\) 1.01988 0.169980
\(37\) 5.97072 0.981581 0.490791 0.871278i \(-0.336708\pi\)
0.490791 + 0.871278i \(0.336708\pi\)
\(38\) −10.1316 −1.64356
\(39\) −10.0072 −1.60244
\(40\) 0 0
\(41\) 3.82217 0.596923 0.298462 0.954422i \(-0.403526\pi\)
0.298462 + 0.954422i \(0.403526\pi\)
\(42\) 5.30680 0.818857
\(43\) −3.66628 −0.559103 −0.279551 0.960131i \(-0.590186\pi\)
−0.279551 + 0.960131i \(0.590186\pi\)
\(44\) −1.27463 −0.192158
\(45\) 0 0
\(46\) −3.72447 −0.549144
\(47\) 9.07290 1.32342 0.661709 0.749760i \(-0.269831\pi\)
0.661709 + 0.749760i \(0.269831\pi\)
\(48\) 5.92630 0.855387
\(49\) −5.11226 −0.730323
\(50\) 0 0
\(51\) 0 0
\(52\) 12.6482 1.75398
\(53\) 10.5471 1.44875 0.724376 0.689405i \(-0.242128\pi\)
0.724376 + 0.689405i \(0.242128\pi\)
\(54\) −9.90576 −1.34800
\(55\) 0 0
\(56\) −0.980945 −0.131084
\(57\) −9.01133 −1.19358
\(58\) 3.82217 0.501876
\(59\) 6.52808 0.849884 0.424942 0.905221i \(-0.360295\pi\)
0.424942 + 0.905221i \(0.360295\pi\)
\(60\) 0 0
\(61\) 15.4659 1.98020 0.990101 0.140358i \(-0.0448254\pi\)
0.990101 + 0.140358i \(0.0448254\pi\)
\(62\) 16.9076 2.14727
\(63\) 0.598165 0.0753617
\(64\) −10.4659 −1.30824
\(65\) 0 0
\(66\) −2.10158 −0.258686
\(67\) 5.68704 0.694782 0.347391 0.937720i \(-0.387068\pi\)
0.347391 + 0.937720i \(0.387068\pi\)
\(68\) 0 0
\(69\) −3.31265 −0.398797
\(70\) 0 0
\(71\) 1.05995 0.125793 0.0628966 0.998020i \(-0.479966\pi\)
0.0628966 + 0.998020i \(0.479966\pi\)
\(72\) −0.310831 −0.0366317
\(73\) −14.6825 −1.71846 −0.859230 0.511590i \(-0.829057\pi\)
−0.859230 + 0.511590i \(0.829057\pi\)
\(74\) −12.4423 −1.44639
\(75\) 0 0
\(76\) 11.3894 1.30646
\(77\) −0.747575 −0.0851941
\(78\) 20.8540 2.36125
\(79\) −1.24247 −0.139789 −0.0698944 0.997554i \(-0.522266\pi\)
−0.0698944 + 0.997554i \(0.522266\pi\)
\(80\) 0 0
\(81\) −10.1165 −1.12406
\(82\) −7.96500 −0.879587
\(83\) 13.5038 1.48224 0.741119 0.671374i \(-0.234296\pi\)
0.741119 + 0.671374i \(0.234296\pi\)
\(84\) −5.96564 −0.650904
\(85\) 0 0
\(86\) 7.64014 0.823858
\(87\) 3.39955 0.364470
\(88\) 0.388470 0.0414111
\(89\) 0.989860 0.104925 0.0524625 0.998623i \(-0.483293\pi\)
0.0524625 + 0.998623i \(0.483293\pi\)
\(90\) 0 0
\(91\) 7.41820 0.777638
\(92\) 4.18687 0.436511
\(93\) 15.0381 1.55938
\(94\) −18.9070 −1.95010
\(95\) 0 0
\(96\) −14.9964 −1.53056
\(97\) −11.3905 −1.15653 −0.578263 0.815850i \(-0.696269\pi\)
−0.578263 + 0.815850i \(0.696269\pi\)
\(98\) 10.6534 1.07616
\(99\) −0.236883 −0.0238077
\(100\) 0 0
\(101\) 6.02268 0.599279 0.299639 0.954053i \(-0.403134\pi\)
0.299639 + 0.954053i \(0.403134\pi\)
\(102\) 0 0
\(103\) −18.1789 −1.79122 −0.895612 0.444836i \(-0.853262\pi\)
−0.895612 + 0.444836i \(0.853262\pi\)
\(104\) −3.85479 −0.377994
\(105\) 0 0
\(106\) −21.9790 −2.13479
\(107\) 9.58605 0.926719 0.463359 0.886170i \(-0.346644\pi\)
0.463359 + 0.886170i \(0.346644\pi\)
\(108\) 11.1356 1.07152
\(109\) 3.97889 0.381108 0.190554 0.981677i \(-0.438972\pi\)
0.190554 + 0.981677i \(0.438972\pi\)
\(110\) 0 0
\(111\) −11.0666 −1.05039
\(112\) −4.39307 −0.415106
\(113\) −3.55952 −0.334852 −0.167426 0.985885i \(-0.553545\pi\)
−0.167426 + 0.985885i \(0.553545\pi\)
\(114\) 18.7786 1.75878
\(115\) 0 0
\(116\) −4.29670 −0.398938
\(117\) 2.35059 0.217313
\(118\) −13.6038 −1.25233
\(119\) 0 0
\(120\) 0 0
\(121\) −10.7039 −0.973086
\(122\) −32.2292 −2.91790
\(123\) −7.08430 −0.638770
\(124\) −19.0067 −1.70686
\(125\) 0 0
\(126\) −1.24651 −0.111048
\(127\) 7.76925 0.689409 0.344705 0.938711i \(-0.387979\pi\)
0.344705 + 0.938711i \(0.387979\pi\)
\(128\) 5.62787 0.497438
\(129\) 6.79536 0.598298
\(130\) 0 0
\(131\) 20.1951 1.76445 0.882225 0.470828i \(-0.156045\pi\)
0.882225 + 0.470828i \(0.156045\pi\)
\(132\) 2.36249 0.205628
\(133\) 6.67996 0.579226
\(134\) −11.8512 −1.02379
\(135\) 0 0
\(136\) 0 0
\(137\) 16.6892 1.42585 0.712926 0.701239i \(-0.247370\pi\)
0.712926 + 0.701239i \(0.247370\pi\)
\(138\) 6.90321 0.587641
\(139\) 6.19810 0.525716 0.262858 0.964834i \(-0.415335\pi\)
0.262858 + 0.964834i \(0.415335\pi\)
\(140\) 0 0
\(141\) −16.8164 −1.41619
\(142\) −2.20883 −0.185361
\(143\) −2.93773 −0.245665
\(144\) −1.39203 −0.116002
\(145\) 0 0
\(146\) 30.5968 2.53221
\(147\) 9.47544 0.781521
\(148\) 13.9871 1.14973
\(149\) 4.48964 0.367805 0.183903 0.982944i \(-0.441127\pi\)
0.183903 + 0.982944i \(0.441127\pi\)
\(150\) 0 0
\(151\) 6.35198 0.516917 0.258458 0.966022i \(-0.416786\pi\)
0.258458 + 0.966022i \(0.416786\pi\)
\(152\) −3.47117 −0.281549
\(153\) 0 0
\(154\) 1.55787 0.125536
\(155\) 0 0
\(156\) −23.4430 −1.87694
\(157\) 6.37303 0.508624 0.254312 0.967122i \(-0.418151\pi\)
0.254312 + 0.967122i \(0.418151\pi\)
\(158\) 2.58917 0.205984
\(159\) −19.5487 −1.55031
\(160\) 0 0
\(161\) 2.45562 0.193530
\(162\) 21.0818 1.65634
\(163\) 4.18879 0.328091 0.164046 0.986453i \(-0.447546\pi\)
0.164046 + 0.986453i \(0.447546\pi\)
\(164\) 8.95386 0.699179
\(165\) 0 0
\(166\) −28.1405 −2.18413
\(167\) 13.2367 1.02428 0.512142 0.858901i \(-0.328852\pi\)
0.512142 + 0.858901i \(0.328852\pi\)
\(168\) 1.81815 0.140274
\(169\) 16.1511 1.24239
\(170\) 0 0
\(171\) 2.11667 0.161866
\(172\) −8.58867 −0.654880
\(173\) −8.83779 −0.671925 −0.335963 0.941875i \(-0.609062\pi\)
−0.335963 + 0.941875i \(0.609062\pi\)
\(174\) −7.08430 −0.537059
\(175\) 0 0
\(176\) 1.73973 0.131137
\(177\) −12.0996 −0.909463
\(178\) −2.06276 −0.154611
\(179\) −19.2951 −1.44218 −0.721091 0.692841i \(-0.756359\pi\)
−0.721091 + 0.692841i \(0.756359\pi\)
\(180\) 0 0
\(181\) −4.91297 −0.365178 −0.182589 0.983189i \(-0.558448\pi\)
−0.182589 + 0.983189i \(0.558448\pi\)
\(182\) −15.4587 −1.14588
\(183\) −28.6656 −2.11902
\(184\) −1.27604 −0.0940707
\(185\) 0 0
\(186\) −31.3379 −2.29780
\(187\) 0 0
\(188\) 21.2543 1.55013
\(189\) 6.53105 0.475064
\(190\) 0 0
\(191\) −5.60780 −0.405766 −0.202883 0.979203i \(-0.565031\pi\)
−0.202883 + 0.979203i \(0.565031\pi\)
\(192\) 19.3982 1.39995
\(193\) 8.34451 0.600651 0.300326 0.953837i \(-0.402905\pi\)
0.300326 + 0.953837i \(0.402905\pi\)
\(194\) 23.7365 1.70418
\(195\) 0 0
\(196\) −11.9760 −0.855431
\(197\) −6.07466 −0.432802 −0.216401 0.976305i \(-0.569432\pi\)
−0.216401 + 0.976305i \(0.569432\pi\)
\(198\) 0.493639 0.0350814
\(199\) −9.49603 −0.673156 −0.336578 0.941656i \(-0.609270\pi\)
−0.336578 + 0.941656i \(0.609270\pi\)
\(200\) 0 0
\(201\) −10.5408 −0.743489
\(202\) −12.5506 −0.883058
\(203\) −2.52003 −0.176872
\(204\) 0 0
\(205\) 0 0
\(206\) 37.8829 2.63943
\(207\) 0.778108 0.0540822
\(208\) −17.2633 −1.19700
\(209\) −2.64537 −0.182984
\(210\) 0 0
\(211\) −20.5067 −1.41174 −0.705870 0.708341i \(-0.749444\pi\)
−0.705870 + 0.708341i \(0.749444\pi\)
\(212\) 24.7077 1.69693
\(213\) −1.96459 −0.134612
\(214\) −19.9763 −1.36555
\(215\) 0 0
\(216\) −3.39380 −0.230919
\(217\) −11.1475 −0.756744
\(218\) −8.29157 −0.561576
\(219\) 27.2137 1.83893
\(220\) 0 0
\(221\) 0 0
\(222\) 23.0616 1.54779
\(223\) 6.64902 0.445252 0.222626 0.974904i \(-0.428537\pi\)
0.222626 + 0.974904i \(0.428537\pi\)
\(224\) 11.1166 0.742757
\(225\) 0 0
\(226\) 7.41766 0.493415
\(227\) −10.5120 −0.697708 −0.348854 0.937177i \(-0.613429\pi\)
−0.348854 + 0.937177i \(0.613429\pi\)
\(228\) −21.1100 −1.39805
\(229\) −15.3731 −1.01589 −0.507943 0.861391i \(-0.669594\pi\)
−0.507943 + 0.861391i \(0.669594\pi\)
\(230\) 0 0
\(231\) 1.38561 0.0911665
\(232\) 1.30951 0.0859735
\(233\) −21.0320 −1.37785 −0.688927 0.724831i \(-0.741918\pi\)
−0.688927 + 0.724831i \(0.741918\pi\)
\(234\) −4.89839 −0.320218
\(235\) 0 0
\(236\) 15.2927 0.995472
\(237\) 2.30288 0.149588
\(238\) 0 0
\(239\) −9.10195 −0.588756 −0.294378 0.955689i \(-0.595113\pi\)
−0.294378 + 0.955689i \(0.595113\pi\)
\(240\) 0 0
\(241\) −12.7279 −0.819878 −0.409939 0.912113i \(-0.634450\pi\)
−0.409939 + 0.912113i \(0.634450\pi\)
\(242\) 22.3059 1.43388
\(243\) 4.49028 0.288052
\(244\) 36.2305 2.31942
\(245\) 0 0
\(246\) 14.7629 0.941249
\(247\) 26.2501 1.67025
\(248\) 5.79270 0.367837
\(249\) −25.0290 −1.58615
\(250\) 0 0
\(251\) 10.1470 0.640475 0.320238 0.947337i \(-0.396237\pi\)
0.320238 + 0.947337i \(0.396237\pi\)
\(252\) 1.40127 0.0882715
\(253\) −0.972465 −0.0611383
\(254\) −16.1903 −1.01587
\(255\) 0 0
\(256\) 9.20390 0.575244
\(257\) 19.0187 1.18635 0.593176 0.805073i \(-0.297874\pi\)
0.593176 + 0.805073i \(0.297874\pi\)
\(258\) −14.1608 −0.881612
\(259\) 8.20348 0.509739
\(260\) 0 0
\(261\) −0.798519 −0.0494271
\(262\) −42.0843 −2.59998
\(263\) −12.6346 −0.779086 −0.389543 0.921008i \(-0.627367\pi\)
−0.389543 + 0.921008i \(0.627367\pi\)
\(264\) −0.720019 −0.0443141
\(265\) 0 0
\(266\) −13.9203 −0.853509
\(267\) −1.83468 −0.112281
\(268\) 13.3225 0.813802
\(269\) −27.9224 −1.70246 −0.851229 0.524794i \(-0.824142\pi\)
−0.851229 + 0.524794i \(0.824142\pi\)
\(270\) 0 0
\(271\) −7.78171 −0.472705 −0.236353 0.971667i \(-0.575952\pi\)
−0.236353 + 0.971667i \(0.575952\pi\)
\(272\) 0 0
\(273\) −13.7494 −0.832153
\(274\) −34.7784 −2.10104
\(275\) 0 0
\(276\) −7.76025 −0.467112
\(277\) 30.9745 1.86107 0.930537 0.366197i \(-0.119340\pi\)
0.930537 + 0.366197i \(0.119340\pi\)
\(278\) −12.9162 −0.774661
\(279\) −3.53230 −0.211473
\(280\) 0 0
\(281\) −2.25506 −0.134525 −0.0672627 0.997735i \(-0.521427\pi\)
−0.0672627 + 0.997735i \(0.521427\pi\)
\(282\) 35.0435 2.08681
\(283\) −26.3006 −1.56341 −0.781704 0.623650i \(-0.785649\pi\)
−0.781704 + 0.623650i \(0.785649\pi\)
\(284\) 2.48305 0.147342
\(285\) 0 0
\(286\) 6.12191 0.361996
\(287\) 5.25148 0.309985
\(288\) 3.52249 0.207565
\(289\) 0 0
\(290\) 0 0
\(291\) 21.1119 1.23760
\(292\) −34.3954 −2.01284
\(293\) 8.22869 0.480725 0.240363 0.970683i \(-0.422734\pi\)
0.240363 + 0.970683i \(0.422734\pi\)
\(294\) −19.7458 −1.15160
\(295\) 0 0
\(296\) −4.26286 −0.247773
\(297\) −2.58640 −0.150078
\(298\) −9.35592 −0.541974
\(299\) 9.64978 0.558061
\(300\) 0 0
\(301\) −5.03729 −0.290345
\(302\) −13.2368 −0.761695
\(303\) −11.1629 −0.641290
\(304\) −15.5453 −0.891586
\(305\) 0 0
\(306\) 0 0
\(307\) 0.620204 0.0353969 0.0176985 0.999843i \(-0.494366\pi\)
0.0176985 + 0.999843i \(0.494366\pi\)
\(308\) −1.75128 −0.0997882
\(309\) 33.6942 1.91679
\(310\) 0 0
\(311\) −23.0834 −1.30894 −0.654469 0.756089i \(-0.727108\pi\)
−0.654469 + 0.756089i \(0.727108\pi\)
\(312\) 7.14476 0.404492
\(313\) −7.34806 −0.415337 −0.207668 0.978199i \(-0.566588\pi\)
−0.207668 + 0.978199i \(0.566588\pi\)
\(314\) −13.2807 −0.749474
\(315\) 0 0
\(316\) −2.91062 −0.163735
\(317\) −26.0638 −1.46389 −0.731946 0.681363i \(-0.761387\pi\)
−0.731946 + 0.681363i \(0.761387\pi\)
\(318\) 40.7374 2.28444
\(319\) 0.997974 0.0558758
\(320\) 0 0
\(321\) −17.7675 −0.991685
\(322\) −5.11724 −0.285173
\(323\) 0 0
\(324\) −23.6991 −1.31662
\(325\) 0 0
\(326\) −8.72899 −0.483454
\(327\) −7.37476 −0.407825
\(328\) −2.72888 −0.150677
\(329\) 12.4657 0.687257
\(330\) 0 0
\(331\) −0.0195086 −0.00107229 −0.000536145 1.00000i \(-0.500171\pi\)
−0.000536145 1.00000i \(0.500171\pi\)
\(332\) 31.6342 1.73615
\(333\) 2.59942 0.142448
\(334\) −27.5838 −1.50932
\(335\) 0 0
\(336\) 8.14244 0.444206
\(337\) −26.3708 −1.43651 −0.718255 0.695780i \(-0.755059\pi\)
−0.718255 + 0.695780i \(0.755059\pi\)
\(338\) −33.6572 −1.83071
\(339\) 6.59748 0.358326
\(340\) 0 0
\(341\) 4.41461 0.239064
\(342\) −4.41091 −0.238515
\(343\) −16.6416 −0.898564
\(344\) 2.61758 0.141130
\(345\) 0 0
\(346\) 18.4170 0.990105
\(347\) 9.44465 0.507015 0.253508 0.967333i \(-0.418416\pi\)
0.253508 + 0.967333i \(0.418416\pi\)
\(348\) 7.96382 0.426905
\(349\) −13.9171 −0.744964 −0.372482 0.928039i \(-0.621493\pi\)
−0.372482 + 0.928039i \(0.621493\pi\)
\(350\) 0 0
\(351\) 25.6649 1.36989
\(352\) −4.40235 −0.234646
\(353\) −13.3125 −0.708554 −0.354277 0.935140i \(-0.615273\pi\)
−0.354277 + 0.935140i \(0.615273\pi\)
\(354\) 25.2143 1.34013
\(355\) 0 0
\(356\) 2.31886 0.122899
\(357\) 0 0
\(358\) 40.2088 2.12510
\(359\) 34.6894 1.83084 0.915419 0.402502i \(-0.131859\pi\)
0.915419 + 0.402502i \(0.131859\pi\)
\(360\) 0 0
\(361\) 4.63771 0.244090
\(362\) 10.2381 0.538102
\(363\) 19.8395 1.04130
\(364\) 17.3779 0.910851
\(365\) 0 0
\(366\) 59.7360 3.12245
\(367\) −1.63489 −0.0853406 −0.0426703 0.999089i \(-0.513587\pi\)
−0.0426703 + 0.999089i \(0.513587\pi\)
\(368\) −5.71462 −0.297895
\(369\) 1.66403 0.0866259
\(370\) 0 0
\(371\) 14.4912 0.752344
\(372\) 35.2285 1.82651
\(373\) −26.2859 −1.36103 −0.680515 0.732734i \(-0.738244\pi\)
−0.680515 + 0.732734i \(0.738244\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.47769 −0.334061
\(377\) −9.90291 −0.510026
\(378\) −13.6100 −0.700024
\(379\) 29.1973 1.49976 0.749881 0.661572i \(-0.230111\pi\)
0.749881 + 0.661572i \(0.230111\pi\)
\(380\) 0 0
\(381\) −14.4001 −0.737739
\(382\) 11.6860 0.597910
\(383\) −7.23455 −0.369668 −0.184834 0.982770i \(-0.559175\pi\)
−0.184834 + 0.982770i \(0.559175\pi\)
\(384\) −10.4311 −0.532310
\(385\) 0 0
\(386\) −17.3891 −0.885080
\(387\) −1.59616 −0.0811373
\(388\) −26.6834 −1.35464
\(389\) −16.1985 −0.821295 −0.410648 0.911794i \(-0.634697\pi\)
−0.410648 + 0.911794i \(0.634697\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.64995 0.184350
\(393\) −37.4310 −1.88814
\(394\) 12.6589 0.637748
\(395\) 0 0
\(396\) −0.554925 −0.0278860
\(397\) 29.2578 1.46841 0.734205 0.678928i \(-0.237555\pi\)
0.734205 + 0.678928i \(0.237555\pi\)
\(398\) 19.7887 0.991918
\(399\) −12.3811 −0.619831
\(400\) 0 0
\(401\) 21.0113 1.04926 0.524628 0.851332i \(-0.324204\pi\)
0.524628 + 0.851332i \(0.324204\pi\)
\(402\) 21.9658 1.09556
\(403\) −43.8062 −2.18214
\(404\) 14.1088 0.701938
\(405\) 0 0
\(406\) 5.25148 0.260626
\(407\) −3.24871 −0.161033
\(408\) 0 0
\(409\) 17.5170 0.866161 0.433080 0.901355i \(-0.357427\pi\)
0.433080 + 0.901355i \(0.357427\pi\)
\(410\) 0 0
\(411\) −30.9329 −1.52581
\(412\) −42.5861 −2.09807
\(413\) 8.96925 0.441348
\(414\) −1.62149 −0.0796921
\(415\) 0 0
\(416\) 43.6845 2.14181
\(417\) −11.4880 −0.562571
\(418\) 5.51267 0.269634
\(419\) 28.8319 1.40853 0.704264 0.709938i \(-0.251277\pi\)
0.704264 + 0.709938i \(0.251277\pi\)
\(420\) 0 0
\(421\) 25.5578 1.24561 0.622806 0.782376i \(-0.285992\pi\)
0.622806 + 0.782376i \(0.285992\pi\)
\(422\) 42.7338 2.08025
\(423\) 3.94999 0.192055
\(424\) −7.53019 −0.365698
\(425\) 0 0
\(426\) 4.09400 0.198355
\(427\) 21.2493 1.02833
\(428\) 22.4564 1.08547
\(429\) 5.44500 0.262887
\(430\) 0 0
\(431\) −22.7806 −1.09730 −0.548651 0.836051i \(-0.684859\pi\)
−0.548651 + 0.836051i \(0.684859\pi\)
\(432\) −15.1988 −0.731253
\(433\) 33.5441 1.61203 0.806014 0.591896i \(-0.201621\pi\)
0.806014 + 0.591896i \(0.201621\pi\)
\(434\) 23.2303 1.11509
\(435\) 0 0
\(436\) 9.32098 0.446394
\(437\) 8.68945 0.415673
\(438\) −56.7103 −2.70973
\(439\) −3.90135 −0.186201 −0.0931005 0.995657i \(-0.529678\pi\)
−0.0931005 + 0.995657i \(0.529678\pi\)
\(440\) 0 0
\(441\) −2.22568 −0.105985
\(442\) 0 0
\(443\) 21.1747 1.00604 0.503020 0.864275i \(-0.332222\pi\)
0.503020 + 0.864275i \(0.332222\pi\)
\(444\) −25.9247 −1.23033
\(445\) 0 0
\(446\) −13.8559 −0.656094
\(447\) −8.32142 −0.393590
\(448\) −14.3796 −0.679373
\(449\) −38.6511 −1.82406 −0.912029 0.410125i \(-0.865485\pi\)
−0.912029 + 0.410125i \(0.865485\pi\)
\(450\) 0 0
\(451\) −2.07967 −0.0979279
\(452\) −8.33857 −0.392213
\(453\) −11.7732 −0.553154
\(454\) 21.9059 1.02810
\(455\) 0 0
\(456\) 6.43373 0.301287
\(457\) −17.9273 −0.838605 −0.419303 0.907847i \(-0.637725\pi\)
−0.419303 + 0.907847i \(0.637725\pi\)
\(458\) 32.0360 1.49694
\(459\) 0 0
\(460\) 0 0
\(461\) −33.2184 −1.54713 −0.773567 0.633715i \(-0.781529\pi\)
−0.773567 + 0.633715i \(0.781529\pi\)
\(462\) −2.88746 −0.134337
\(463\) 25.4598 1.18322 0.591609 0.806225i \(-0.298493\pi\)
0.591609 + 0.806225i \(0.298493\pi\)
\(464\) 5.86452 0.272254
\(465\) 0 0
\(466\) 43.8285 2.03032
\(467\) 6.31549 0.292246 0.146123 0.989266i \(-0.453320\pi\)
0.146123 + 0.989266i \(0.453320\pi\)
\(468\) 5.50652 0.254539
\(469\) 7.81371 0.360803
\(470\) 0 0
\(471\) −11.8122 −0.544280
\(472\) −4.66078 −0.214530
\(473\) 1.99485 0.0917233
\(474\) −4.79896 −0.220424
\(475\) 0 0
\(476\) 0 0
\(477\) 4.59179 0.210244
\(478\) 18.9675 0.867553
\(479\) 28.6007 1.30680 0.653399 0.757013i \(-0.273342\pi\)
0.653399 + 0.757013i \(0.273342\pi\)
\(480\) 0 0
\(481\) 32.2370 1.46988
\(482\) 26.5236 1.20812
\(483\) −4.55142 −0.207097
\(484\) −25.0752 −1.13978
\(485\) 0 0
\(486\) −9.35726 −0.424454
\(487\) 5.12923 0.232428 0.116214 0.993224i \(-0.462924\pi\)
0.116214 + 0.993224i \(0.462924\pi\)
\(488\) −11.0420 −0.499848
\(489\) −7.76381 −0.351091
\(490\) 0 0
\(491\) 29.5051 1.33155 0.665773 0.746155i \(-0.268102\pi\)
0.665773 + 0.746155i \(0.268102\pi\)
\(492\) −16.5957 −0.748194
\(493\) 0 0
\(494\) −54.7023 −2.46117
\(495\) 0 0
\(496\) 25.9421 1.16483
\(497\) 1.45632 0.0653249
\(498\) 52.1577 2.33724
\(499\) −3.83354 −0.171613 −0.0858064 0.996312i \(-0.527347\pi\)
−0.0858064 + 0.996312i \(0.527347\pi\)
\(500\) 0 0
\(501\) −24.5338 −1.09609
\(502\) −21.1453 −0.943762
\(503\) −28.6376 −1.27689 −0.638445 0.769668i \(-0.720422\pi\)
−0.638445 + 0.769668i \(0.720422\pi\)
\(504\) −0.427066 −0.0190230
\(505\) 0 0
\(506\) 2.02651 0.0900894
\(507\) −29.9356 −1.32949
\(508\) 18.2003 0.807508
\(509\) 23.6043 1.04624 0.523122 0.852258i \(-0.324767\pi\)
0.523122 + 0.852258i \(0.324767\pi\)
\(510\) 0 0
\(511\) −20.1731 −0.892403
\(512\) −30.4357 −1.34508
\(513\) 23.1108 1.02037
\(514\) −39.6329 −1.74813
\(515\) 0 0
\(516\) 15.9189 0.700789
\(517\) −4.93663 −0.217113
\(518\) −17.0952 −0.751118
\(519\) 16.3806 0.719029
\(520\) 0 0
\(521\) 17.4651 0.765162 0.382581 0.923922i \(-0.375035\pi\)
0.382581 + 0.923922i \(0.375035\pi\)
\(522\) 1.66403 0.0728325
\(523\) 16.1755 0.707304 0.353652 0.935377i \(-0.384940\pi\)
0.353652 + 0.935377i \(0.384940\pi\)
\(524\) 47.3091 2.06671
\(525\) 0 0
\(526\) 26.3293 1.14801
\(527\) 0 0
\(528\) −3.22454 −0.140330
\(529\) −19.8057 −0.861116
\(530\) 0 0
\(531\) 2.84208 0.123336
\(532\) 15.6485 0.678449
\(533\) 20.6366 0.893870
\(534\) 3.82327 0.165449
\(535\) 0 0
\(536\) −4.06032 −0.175379
\(537\) 35.7629 1.54328
\(538\) 58.1873 2.50863
\(539\) 2.78162 0.119813
\(540\) 0 0
\(541\) 8.97397 0.385821 0.192911 0.981216i \(-0.438207\pi\)
0.192911 + 0.981216i \(0.438207\pi\)
\(542\) 16.2163 0.696548
\(543\) 9.10605 0.390778
\(544\) 0 0
\(545\) 0 0
\(546\) 28.6523 1.22621
\(547\) 44.0020 1.88139 0.940694 0.339256i \(-0.110175\pi\)
0.940694 + 0.339256i \(0.110175\pi\)
\(548\) 39.0962 1.67011
\(549\) 6.73325 0.287368
\(550\) 0 0
\(551\) −8.91739 −0.379894
\(552\) 2.36510 0.100665
\(553\) −1.70709 −0.0725929
\(554\) −64.5474 −2.74236
\(555\) 0 0
\(556\) 14.5197 0.615774
\(557\) 37.7611 1.59999 0.799995 0.600007i \(-0.204835\pi\)
0.799995 + 0.600007i \(0.204835\pi\)
\(558\) 7.36094 0.311613
\(559\) −19.7949 −0.837236
\(560\) 0 0
\(561\) 0 0
\(562\) 4.69929 0.198228
\(563\) −32.4625 −1.36813 −0.684065 0.729421i \(-0.739789\pi\)
−0.684065 + 0.729421i \(0.739789\pi\)
\(564\) −39.3942 −1.65879
\(565\) 0 0
\(566\) 54.8076 2.30374
\(567\) −13.8996 −0.583729
\(568\) −0.756763 −0.0317531
\(569\) −11.3302 −0.474986 −0.237493 0.971389i \(-0.576326\pi\)
−0.237493 + 0.971389i \(0.576326\pi\)
\(570\) 0 0
\(571\) 11.4874 0.480732 0.240366 0.970682i \(-0.422733\pi\)
0.240366 + 0.970682i \(0.422733\pi\)
\(572\) −6.88195 −0.287749
\(573\) 10.3939 0.434211
\(574\) −10.9435 −0.456773
\(575\) 0 0
\(576\) −4.55645 −0.189852
\(577\) −0.378762 −0.0157681 −0.00788404 0.999969i \(-0.502510\pi\)
−0.00788404 + 0.999969i \(0.502510\pi\)
\(578\) 0 0
\(579\) −15.4663 −0.642759
\(580\) 0 0
\(581\) 18.5536 0.769732
\(582\) −43.9950 −1.82365
\(583\) −5.73874 −0.237674
\(584\) 10.4827 0.433778
\(585\) 0 0
\(586\) −17.1477 −0.708366
\(587\) −11.6262 −0.479863 −0.239931 0.970790i \(-0.577125\pi\)
−0.239931 + 0.970790i \(0.577125\pi\)
\(588\) 22.1972 0.915399
\(589\) −39.4467 −1.62537
\(590\) 0 0
\(591\) 11.2592 0.463142
\(592\) −19.0908 −0.784627
\(593\) 24.0394 0.987181 0.493590 0.869695i \(-0.335684\pi\)
0.493590 + 0.869695i \(0.335684\pi\)
\(594\) 5.38979 0.221146
\(595\) 0 0
\(596\) 10.5175 0.430812
\(597\) 17.6006 0.720346
\(598\) −20.1091 −0.822322
\(599\) 41.0811 1.67853 0.839263 0.543725i \(-0.182987\pi\)
0.839263 + 0.543725i \(0.182987\pi\)
\(600\) 0 0
\(601\) −24.4701 −0.998157 −0.499079 0.866557i \(-0.666328\pi\)
−0.499079 + 0.866557i \(0.666328\pi\)
\(602\) 10.4972 0.427833
\(603\) 2.47592 0.100827
\(604\) 14.8802 0.605467
\(605\) 0 0
\(606\) 23.2622 0.944963
\(607\) −1.37352 −0.0557496 −0.0278748 0.999611i \(-0.508874\pi\)
−0.0278748 + 0.999611i \(0.508874\pi\)
\(608\) 39.3371 1.59533
\(609\) 4.67081 0.189271
\(610\) 0 0
\(611\) 48.9862 1.98177
\(612\) 0 0
\(613\) 1.94295 0.0784750 0.0392375 0.999230i \(-0.487507\pi\)
0.0392375 + 0.999230i \(0.487507\pi\)
\(614\) −1.29244 −0.0521586
\(615\) 0 0
\(616\) 0.533739 0.0215049
\(617\) −2.30548 −0.0928151 −0.0464075 0.998923i \(-0.514777\pi\)
−0.0464075 + 0.998923i \(0.514777\pi\)
\(618\) −70.2150 −2.82446
\(619\) −27.6078 −1.10965 −0.554826 0.831966i \(-0.687215\pi\)
−0.554826 + 0.831966i \(0.687215\pi\)
\(620\) 0 0
\(621\) 8.49576 0.340923
\(622\) 48.1033 1.92877
\(623\) 1.36002 0.0544880
\(624\) 31.9971 1.28091
\(625\) 0 0
\(626\) 15.3126 0.612013
\(627\) 4.90313 0.195812
\(628\) 14.9295 0.595753
\(629\) 0 0
\(630\) 0 0
\(631\) −10.0851 −0.401480 −0.200740 0.979645i \(-0.564335\pi\)
−0.200740 + 0.979645i \(0.564335\pi\)
\(632\) 0.887073 0.0352859
\(633\) 38.0086 1.51071
\(634\) 54.3142 2.15709
\(635\) 0 0
\(636\) −45.7950 −1.81589
\(637\) −27.6020 −1.09363
\(638\) −2.07967 −0.0823350
\(639\) 0.461463 0.0182552
\(640\) 0 0
\(641\) −3.68916 −0.145713 −0.0728565 0.997342i \(-0.523212\pi\)
−0.0728565 + 0.997342i \(0.523212\pi\)
\(642\) 37.0255 1.46128
\(643\) −10.1461 −0.400123 −0.200061 0.979783i \(-0.564114\pi\)
−0.200061 + 0.979783i \(0.564114\pi\)
\(644\) 5.75255 0.226682
\(645\) 0 0
\(646\) 0 0
\(647\) 40.6109 1.59658 0.798290 0.602273i \(-0.205738\pi\)
0.798290 + 0.602273i \(0.205738\pi\)
\(648\) 7.22280 0.283739
\(649\) −3.55197 −0.139427
\(650\) 0 0
\(651\) 20.6616 0.809794
\(652\) 9.81269 0.384295
\(653\) 6.04491 0.236555 0.118278 0.992981i \(-0.462263\pi\)
0.118278 + 0.992981i \(0.462263\pi\)
\(654\) 15.3682 0.600944
\(655\) 0 0
\(656\) −12.2210 −0.477151
\(657\) −6.39221 −0.249384
\(658\) −25.9772 −1.01270
\(659\) 32.7193 1.27456 0.637281 0.770631i \(-0.280059\pi\)
0.637281 + 0.770631i \(0.280059\pi\)
\(660\) 0 0
\(661\) 0.0904199 0.00351693 0.00175846 0.999998i \(-0.499440\pi\)
0.00175846 + 0.999998i \(0.499440\pi\)
\(662\) 0.0406539 0.00158006
\(663\) 0 0
\(664\) −9.64118 −0.374151
\(665\) 0 0
\(666\) −5.41692 −0.209901
\(667\) −3.27812 −0.126929
\(668\) 31.0083 1.19975
\(669\) −12.3238 −0.476465
\(670\) 0 0
\(671\) −8.41508 −0.324861
\(672\) −20.6043 −0.794827
\(673\) 11.5667 0.445862 0.222931 0.974834i \(-0.428437\pi\)
0.222931 + 0.974834i \(0.428437\pi\)
\(674\) 54.9540 2.11675
\(675\) 0 0
\(676\) 37.8357 1.45522
\(677\) 27.5593 1.05919 0.529595 0.848251i \(-0.322344\pi\)
0.529595 + 0.848251i \(0.322344\pi\)
\(678\) −13.7484 −0.528005
\(679\) −15.6499 −0.600589
\(680\) 0 0
\(681\) 19.4838 0.746619
\(682\) −9.19956 −0.352269
\(683\) 0.203722 0.00779522 0.00389761 0.999992i \(-0.498759\pi\)
0.00389761 + 0.999992i \(0.498759\pi\)
\(684\) 4.95853 0.189594
\(685\) 0 0
\(686\) 34.6794 1.32407
\(687\) 28.4937 1.08710
\(688\) 11.7226 0.446919
\(689\) 56.9455 2.16945
\(690\) 0 0
\(691\) 25.7909 0.981131 0.490565 0.871404i \(-0.336790\pi\)
0.490565 + 0.871404i \(0.336790\pi\)
\(692\) −20.7035 −0.787029
\(693\) −0.325466 −0.0123634
\(694\) −19.6816 −0.747105
\(695\) 0 0
\(696\) −2.42714 −0.0920005
\(697\) 0 0
\(698\) 29.0017 1.09773
\(699\) 38.9823 1.47445
\(700\) 0 0
\(701\) 18.4768 0.697859 0.348930 0.937149i \(-0.386545\pi\)
0.348930 + 0.937149i \(0.386545\pi\)
\(702\) −53.4829 −2.01858
\(703\) 29.0288 1.09484
\(704\) 5.69456 0.214622
\(705\) 0 0
\(706\) 27.7419 1.04408
\(707\) 8.27485 0.311208
\(708\) −28.3447 −1.06526
\(709\) 0.684389 0.0257028 0.0128514 0.999917i \(-0.495909\pi\)
0.0128514 + 0.999917i \(0.495909\pi\)
\(710\) 0 0
\(711\) −0.540924 −0.0202862
\(712\) −0.706720 −0.0264855
\(713\) −14.5010 −0.543066
\(714\) 0 0
\(715\) 0 0
\(716\) −45.2008 −1.68923
\(717\) 16.8702 0.630030
\(718\) −72.2890 −2.69780
\(719\) −36.2469 −1.35178 −0.675891 0.737002i \(-0.736241\pi\)
−0.675891 + 0.737002i \(0.736241\pi\)
\(720\) 0 0
\(721\) −24.9769 −0.930190
\(722\) −9.66449 −0.359675
\(723\) 23.5909 0.877353
\(724\) −11.5092 −0.427734
\(725\) 0 0
\(726\) −41.3433 −1.53440
\(727\) −22.3302 −0.828182 −0.414091 0.910235i \(-0.635900\pi\)
−0.414091 + 0.910235i \(0.635900\pi\)
\(728\) −5.29629 −0.196294
\(729\) 22.0270 0.815816
\(730\) 0 0
\(731\) 0 0
\(732\) −67.1522 −2.48202
\(733\) 17.9985 0.664790 0.332395 0.943140i \(-0.392143\pi\)
0.332395 + 0.943140i \(0.392143\pi\)
\(734\) 3.40694 0.125752
\(735\) 0 0
\(736\) 14.4607 0.533029
\(737\) −3.09436 −0.113982
\(738\) −3.46766 −0.127646
\(739\) −8.18227 −0.300990 −0.150495 0.988611i \(-0.548087\pi\)
−0.150495 + 0.988611i \(0.548087\pi\)
\(740\) 0 0
\(741\) −48.6538 −1.78734
\(742\) −30.1980 −1.10860
\(743\) −11.8933 −0.436324 −0.218162 0.975913i \(-0.570006\pi\)
−0.218162 + 0.975913i \(0.570006\pi\)
\(744\) −10.7366 −0.393624
\(745\) 0 0
\(746\) 54.7769 2.00553
\(747\) 5.87905 0.215103
\(748\) 0 0
\(749\) 13.1708 0.481249
\(750\) 0 0
\(751\) 41.5954 1.51784 0.758919 0.651185i \(-0.225728\pi\)
0.758919 + 0.651185i \(0.225728\pi\)
\(752\) −29.0097 −1.05788
\(753\) −18.8073 −0.685375
\(754\) 20.6366 0.751541
\(755\) 0 0
\(756\) 15.2997 0.556445
\(757\) 4.10700 0.149272 0.0746358 0.997211i \(-0.476221\pi\)
0.0746358 + 0.997211i \(0.476221\pi\)
\(758\) −60.8440 −2.20995
\(759\) 1.80244 0.0654243
\(760\) 0 0
\(761\) 11.1702 0.404920 0.202460 0.979291i \(-0.435106\pi\)
0.202460 + 0.979291i \(0.435106\pi\)
\(762\) 30.0082 1.08708
\(763\) 5.46679 0.197911
\(764\) −13.1369 −0.475275
\(765\) 0 0
\(766\) 15.0760 0.544719
\(767\) 35.2463 1.27267
\(768\) −17.0592 −0.615570
\(769\) 43.1786 1.55706 0.778530 0.627607i \(-0.215966\pi\)
0.778530 + 0.627607i \(0.215966\pi\)
\(770\) 0 0
\(771\) −35.2506 −1.26952
\(772\) 19.5479 0.703545
\(773\) −22.0379 −0.792648 −0.396324 0.918111i \(-0.629714\pi\)
−0.396324 + 0.918111i \(0.629714\pi\)
\(774\) 3.32622 0.119559
\(775\) 0 0
\(776\) 8.13233 0.291934
\(777\) −15.2049 −0.545474
\(778\) 33.7559 1.21021
\(779\) 18.5829 0.665801
\(780\) 0 0
\(781\) −0.576727 −0.0206369
\(782\) 0 0
\(783\) −8.71862 −0.311578
\(784\) 16.3460 0.583784
\(785\) 0 0
\(786\) 78.0021 2.78224
\(787\) −21.1016 −0.752190 −0.376095 0.926581i \(-0.622733\pi\)
−0.376095 + 0.926581i \(0.622733\pi\)
\(788\) −14.2306 −0.506942
\(789\) 23.4180 0.833702
\(790\) 0 0
\(791\) −4.89060 −0.173890
\(792\) 0.169125 0.00600960
\(793\) 83.5030 2.96528
\(794\) −60.9702 −2.16375
\(795\) 0 0
\(796\) −22.2455 −0.788470
\(797\) 36.8066 1.30376 0.651878 0.758324i \(-0.273981\pi\)
0.651878 + 0.758324i \(0.273981\pi\)
\(798\) 25.8009 0.913343
\(799\) 0 0
\(800\) 0 0
\(801\) 0.430947 0.0152268
\(802\) −43.7854 −1.54612
\(803\) 7.98886 0.281921
\(804\) −24.6929 −0.870852
\(805\) 0 0
\(806\) 91.2874 3.21546
\(807\) 51.7534 1.82181
\(808\) −4.29995 −0.151272
\(809\) 21.6608 0.761555 0.380777 0.924667i \(-0.375656\pi\)
0.380777 + 0.924667i \(0.375656\pi\)
\(810\) 0 0
\(811\) −32.0893 −1.12681 −0.563404 0.826181i \(-0.690509\pi\)
−0.563404 + 0.826181i \(0.690509\pi\)
\(812\) −5.90345 −0.207170
\(813\) 14.4232 0.505843
\(814\) 6.76997 0.237287
\(815\) 0 0
\(816\) 0 0
\(817\) −17.8250 −0.623617
\(818\) −36.5036 −1.27632
\(819\) 3.22960 0.112851
\(820\) 0 0
\(821\) 5.09618 0.177858 0.0889290 0.996038i \(-0.471656\pi\)
0.0889290 + 0.996038i \(0.471656\pi\)
\(822\) 64.4609 2.24833
\(823\) 33.5174 1.16834 0.584171 0.811630i \(-0.301420\pi\)
0.584171 + 0.811630i \(0.301420\pi\)
\(824\) 12.9790 0.452146
\(825\) 0 0
\(826\) −18.6910 −0.650342
\(827\) 4.17906 0.145320 0.0726600 0.997357i \(-0.476851\pi\)
0.0726600 + 0.997357i \(0.476851\pi\)
\(828\) 1.82280 0.0633468
\(829\) 0.834781 0.0289931 0.0144966 0.999895i \(-0.495385\pi\)
0.0144966 + 0.999895i \(0.495385\pi\)
\(830\) 0 0
\(831\) −57.4103 −1.99154
\(832\) −56.5072 −1.95903
\(833\) 0 0
\(834\) 23.9398 0.828967
\(835\) 0 0
\(836\) −6.19707 −0.214330
\(837\) −38.5674 −1.33308
\(838\) −60.0825 −2.07552
\(839\) −19.1352 −0.660622 −0.330311 0.943872i \(-0.607154\pi\)
−0.330311 + 0.943872i \(0.607154\pi\)
\(840\) 0 0
\(841\) −25.6359 −0.883996
\(842\) −53.2598 −1.83545
\(843\) 4.17968 0.143956
\(844\) −48.0392 −1.65358
\(845\) 0 0
\(846\) −8.23136 −0.283000
\(847\) −14.7067 −0.505328
\(848\) −33.7233 −1.15806
\(849\) 48.7474 1.67301
\(850\) 0 0
\(851\) 10.6713 0.365807
\(852\) −4.60227 −0.157671
\(853\) 2.89987 0.0992896 0.0496448 0.998767i \(-0.484191\pi\)
0.0496448 + 0.998767i \(0.484191\pi\)
\(854\) −44.2813 −1.51528
\(855\) 0 0
\(856\) −6.84405 −0.233925
\(857\) −27.8801 −0.952366 −0.476183 0.879346i \(-0.657980\pi\)
−0.476183 + 0.879346i \(0.657980\pi\)
\(858\) −11.3468 −0.387373
\(859\) −2.48841 −0.0849034 −0.0424517 0.999099i \(-0.513517\pi\)
−0.0424517 + 0.999099i \(0.513517\pi\)
\(860\) 0 0
\(861\) −9.73347 −0.331716
\(862\) 47.4723 1.61691
\(863\) 26.8323 0.913381 0.456690 0.889626i \(-0.349035\pi\)
0.456690 + 0.889626i \(0.349035\pi\)
\(864\) 38.4603 1.30845
\(865\) 0 0
\(866\) −69.9024 −2.37538
\(867\) 0 0
\(868\) −26.1143 −0.886377
\(869\) 0.676036 0.0229330
\(870\) 0 0
\(871\) 30.7053 1.04041
\(872\) −2.84076 −0.0962004
\(873\) −4.95897 −0.167836
\(874\) −18.1079 −0.612508
\(875\) 0 0
\(876\) 63.7510 2.15395
\(877\) 33.4680 1.13013 0.565067 0.825045i \(-0.308850\pi\)
0.565067 + 0.825045i \(0.308850\pi\)
\(878\) 8.12999 0.274374
\(879\) −15.2517 −0.514426
\(880\) 0 0
\(881\) 18.8647 0.635568 0.317784 0.948163i \(-0.397061\pi\)
0.317784 + 0.948163i \(0.397061\pi\)
\(882\) 4.63808 0.156172
\(883\) −2.82469 −0.0950584 −0.0475292 0.998870i \(-0.515135\pi\)
−0.0475292 + 0.998870i \(0.515135\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −44.1258 −1.48243
\(887\) −0.901891 −0.0302825 −0.0151413 0.999885i \(-0.504820\pi\)
−0.0151413 + 0.999885i \(0.504820\pi\)
\(888\) 7.90109 0.265143
\(889\) 10.6746 0.358013
\(890\) 0 0
\(891\) 5.50448 0.184407
\(892\) 15.5761 0.521525
\(893\) 44.1112 1.47613
\(894\) 17.3409 0.579968
\(895\) 0 0
\(896\) 7.73241 0.258322
\(897\) −17.8856 −0.597183
\(898\) 80.5448 2.68781
\(899\) 14.8814 0.496322
\(900\) 0 0
\(901\) 0 0
\(902\) 4.33381 0.144300
\(903\) 9.33648 0.310699
\(904\) 2.54135 0.0845242
\(905\) 0 0
\(906\) 24.5341 0.815092
\(907\) 20.9250 0.694803 0.347402 0.937716i \(-0.387064\pi\)
0.347402 + 0.937716i \(0.387064\pi\)
\(908\) −24.6256 −0.817228
\(909\) 2.62204 0.0869676
\(910\) 0 0
\(911\) −56.6734 −1.87767 −0.938836 0.344364i \(-0.888095\pi\)
−0.938836 + 0.344364i \(0.888095\pi\)
\(912\) 28.8128 0.954089
\(913\) −7.34752 −0.243168
\(914\) 37.3586 1.23571
\(915\) 0 0
\(916\) −36.0132 −1.18991
\(917\) 27.7470 0.916286
\(918\) 0 0
\(919\) 28.1639 0.929040 0.464520 0.885563i \(-0.346227\pi\)
0.464520 + 0.885563i \(0.346227\pi\)
\(920\) 0 0
\(921\) −1.14953 −0.0378783
\(922\) 69.2235 2.27976
\(923\) 5.72287 0.188371
\(924\) 3.24594 0.106784
\(925\) 0 0
\(926\) −53.0555 −1.74351
\(927\) −7.91441 −0.259943
\(928\) −14.8400 −0.487149
\(929\) 26.8322 0.880336 0.440168 0.897916i \(-0.354919\pi\)
0.440168 + 0.897916i \(0.354919\pi\)
\(930\) 0 0
\(931\) −24.8551 −0.814594
\(932\) −49.2698 −1.61389
\(933\) 42.7844 1.40070
\(934\) −13.1608 −0.430635
\(935\) 0 0
\(936\) −1.67823 −0.0548546
\(937\) −19.9363 −0.651291 −0.325645 0.945492i \(-0.605582\pi\)
−0.325645 + 0.945492i \(0.605582\pi\)
\(938\) −16.2829 −0.531656
\(939\) 13.6194 0.444453
\(940\) 0 0
\(941\) −2.38853 −0.0778638 −0.0389319 0.999242i \(-0.512396\pi\)
−0.0389319 + 0.999242i \(0.512396\pi\)
\(942\) 24.6155 0.802015
\(943\) 6.83125 0.222456
\(944\) −20.8729 −0.679355
\(945\) 0 0
\(946\) −4.15705 −0.135157
\(947\) 58.0237 1.88552 0.942758 0.333476i \(-0.108222\pi\)
0.942758 + 0.333476i \(0.108222\pi\)
\(948\) 5.39475 0.175213
\(949\) −79.2735 −2.57333
\(950\) 0 0
\(951\) 48.3086 1.56651
\(952\) 0 0
\(953\) −10.4939 −0.339930 −0.169965 0.985450i \(-0.554365\pi\)
−0.169965 + 0.985450i \(0.554365\pi\)
\(954\) −9.56881 −0.309802
\(955\) 0 0
\(956\) −21.3223 −0.689613
\(957\) −1.84972 −0.0597929
\(958\) −59.6008 −1.92561
\(959\) 22.9301 0.740451
\(960\) 0 0
\(961\) 34.8287 1.12351
\(962\) −67.1784 −2.16592
\(963\) 4.17340 0.134486
\(964\) −29.8165 −0.960326
\(965\) 0 0
\(966\) 9.48467 0.305164
\(967\) −10.5850 −0.340391 −0.170195 0.985410i \(-0.554440\pi\)
−0.170195 + 0.985410i \(0.554440\pi\)
\(968\) 7.64219 0.245629
\(969\) 0 0
\(970\) 0 0
\(971\) 9.38889 0.301304 0.150652 0.988587i \(-0.451863\pi\)
0.150652 + 0.988587i \(0.451863\pi\)
\(972\) 10.5190 0.337396
\(973\) 8.51588 0.273007
\(974\) −10.6888 −0.342490
\(975\) 0 0
\(976\) −49.4506 −1.58288
\(977\) −20.1085 −0.643329 −0.321664 0.946854i \(-0.604242\pi\)
−0.321664 + 0.946854i \(0.604242\pi\)
\(978\) 16.1789 0.517345
\(979\) −0.538590 −0.0172134
\(980\) 0 0
\(981\) 1.73225 0.0553066
\(982\) −61.4854 −1.96208
\(983\) −14.7205 −0.469511 −0.234755 0.972055i \(-0.575429\pi\)
−0.234755 + 0.972055i \(0.575429\pi\)
\(984\) 5.05790 0.161240
\(985\) 0 0
\(986\) 0 0
\(987\) −23.1049 −0.735436
\(988\) 61.4936 1.95637
\(989\) −6.55263 −0.208362
\(990\) 0 0
\(991\) 30.1230 0.956890 0.478445 0.878118i \(-0.341201\pi\)
0.478445 + 0.878118i \(0.341201\pi\)
\(992\) −65.6459 −2.08426
\(993\) 0.0361587 0.00114746
\(994\) −3.03482 −0.0962586
\(995\) 0 0
\(996\) −58.6331 −1.85786
\(997\) −47.1540 −1.49338 −0.746691 0.665171i \(-0.768359\pi\)
−0.746691 + 0.665171i \(0.768359\pi\)
\(998\) 7.98868 0.252877
\(999\) 28.3818 0.897959
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.br.1.1 12
5.4 even 2 7225.2.a.bm.1.12 12
17.2 even 8 425.2.e.e.276.1 yes 12
17.9 even 8 425.2.e.e.251.6 yes 12
17.16 even 2 inner 7225.2.a.br.1.2 12
85.2 odd 8 425.2.j.a.174.6 12
85.9 even 8 425.2.e.c.251.1 12
85.19 even 8 425.2.e.c.276.6 yes 12
85.43 odd 8 425.2.j.a.149.6 12
85.53 odd 8 425.2.j.d.174.1 12
85.77 odd 8 425.2.j.d.149.1 12
85.84 even 2 7225.2.a.bm.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.1 12 85.9 even 8
425.2.e.c.276.6 yes 12 85.19 even 8
425.2.e.e.251.6 yes 12 17.9 even 8
425.2.e.e.276.1 yes 12 17.2 even 8
425.2.j.a.149.6 12 85.43 odd 8
425.2.j.a.174.6 12 85.2 odd 8
425.2.j.d.149.1 12 85.77 odd 8
425.2.j.d.174.1 12 85.53 odd 8
7225.2.a.bm.1.11 12 85.84 even 2
7225.2.a.bm.1.12 12 5.4 even 2
7225.2.a.br.1.1 12 1.1 even 1 trivial
7225.2.a.br.1.2 12 17.16 even 2 inner