Properties

Label 729.4.a.a.1.7
Level $729$
Weight $4$
Character 729.1
Self dual yes
Analytic conductor $43.012$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,4,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.0123923942\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 48 x^{10} + 269 x^{9} + 900 x^{8} - 4059 x^{7} - 8325 x^{6} + 23940 x^{5} + \cdots - 3392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.713877\) of defining polynomial
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.286123 q^{2} -7.91813 q^{4} -19.8713 q^{5} -14.8337 q^{7} +4.55455 q^{8} +5.68565 q^{10} +54.2813 q^{11} +79.8034 q^{13} +4.24426 q^{14} +62.0419 q^{16} -37.9070 q^{17} -124.017 q^{19} +157.344 q^{20} -15.5312 q^{22} +101.116 q^{23} +269.869 q^{25} -22.8336 q^{26} +117.455 q^{28} +58.0729 q^{29} -58.6421 q^{31} -54.1880 q^{32} +10.8461 q^{34} +294.764 q^{35} -148.063 q^{37} +35.4842 q^{38} -90.5049 q^{40} +184.306 q^{41} +14.9230 q^{43} -429.807 q^{44} -28.9316 q^{46} -205.825 q^{47} -122.963 q^{49} -77.2158 q^{50} -631.894 q^{52} +285.547 q^{53} -1078.64 q^{55} -67.5607 q^{56} -16.6160 q^{58} -355.222 q^{59} +146.381 q^{61} +16.7789 q^{62} -480.831 q^{64} -1585.80 q^{65} -455.666 q^{67} +300.152 q^{68} -84.3389 q^{70} +127.438 q^{71} +222.372 q^{73} +42.3642 q^{74} +981.983 q^{76} -805.191 q^{77} -117.399 q^{79} -1232.85 q^{80} -52.7343 q^{82} +622.293 q^{83} +753.261 q^{85} -4.26982 q^{86} +247.227 q^{88} +1044.81 q^{89} -1183.78 q^{91} -800.649 q^{92} +58.8912 q^{94} +2464.38 q^{95} -834.977 q^{97} +35.1825 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} + 36 q^{4} - 12 q^{5} - 42 q^{7} - 21 q^{8} - 60 q^{10} - 42 q^{11} - 78 q^{13} + 312 q^{14} + 48 q^{16} + 18 q^{17} - 228 q^{19} + 69 q^{20} - 309 q^{22} + 114 q^{23} - 18 q^{25} - 30 q^{26}+ \cdots - 9567 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.286123 −0.101160 −0.0505800 0.998720i \(-0.516107\pi\)
−0.0505800 + 0.998720i \(0.516107\pi\)
\(3\) 0 0
\(4\) −7.91813 −0.989767
\(5\) −19.8713 −1.77734 −0.888672 0.458544i \(-0.848371\pi\)
−0.888672 + 0.458544i \(0.848371\pi\)
\(6\) 0 0
\(7\) −14.8337 −0.800942 −0.400471 0.916309i \(-0.631154\pi\)
−0.400471 + 0.916309i \(0.631154\pi\)
\(8\) 4.55455 0.201285
\(9\) 0 0
\(10\) 5.68565 0.179796
\(11\) 54.2813 1.48786 0.743929 0.668259i \(-0.232960\pi\)
0.743929 + 0.668259i \(0.232960\pi\)
\(12\) 0 0
\(13\) 79.8034 1.70258 0.851288 0.524699i \(-0.175822\pi\)
0.851288 + 0.524699i \(0.175822\pi\)
\(14\) 4.24426 0.0810232
\(15\) 0 0
\(16\) 62.0419 0.969405
\(17\) −37.9070 −0.540811 −0.270406 0.962746i \(-0.587158\pi\)
−0.270406 + 0.962746i \(0.587158\pi\)
\(18\) 0 0
\(19\) −124.017 −1.49745 −0.748723 0.662883i \(-0.769332\pi\)
−0.748723 + 0.662883i \(0.769332\pi\)
\(20\) 157.344 1.75916
\(21\) 0 0
\(22\) −15.5312 −0.150512
\(23\) 101.116 0.916701 0.458351 0.888772i \(-0.348440\pi\)
0.458351 + 0.888772i \(0.348440\pi\)
\(24\) 0 0
\(25\) 269.869 2.15895
\(26\) −22.8336 −0.172232
\(27\) 0 0
\(28\) 117.455 0.792746
\(29\) 58.0729 0.371858 0.185929 0.982563i \(-0.440471\pi\)
0.185929 + 0.982563i \(0.440471\pi\)
\(30\) 0 0
\(31\) −58.6421 −0.339756 −0.169878 0.985465i \(-0.554337\pi\)
−0.169878 + 0.985465i \(0.554337\pi\)
\(32\) −54.1880 −0.299349
\(33\) 0 0
\(34\) 10.8461 0.0547084
\(35\) 294.764 1.42355
\(36\) 0 0
\(37\) −148.063 −0.657875 −0.328937 0.944352i \(-0.606691\pi\)
−0.328937 + 0.944352i \(0.606691\pi\)
\(38\) 35.4842 0.151481
\(39\) 0 0
\(40\) −90.5049 −0.357752
\(41\) 184.306 0.702044 0.351022 0.936367i \(-0.385834\pi\)
0.351022 + 0.936367i \(0.385834\pi\)
\(42\) 0 0
\(43\) 14.9230 0.0529241 0.0264620 0.999650i \(-0.491576\pi\)
0.0264620 + 0.999650i \(0.491576\pi\)
\(44\) −429.807 −1.47263
\(45\) 0 0
\(46\) −28.9316 −0.0927334
\(47\) −205.825 −0.638779 −0.319389 0.947624i \(-0.603478\pi\)
−0.319389 + 0.947624i \(0.603478\pi\)
\(48\) 0 0
\(49\) −122.963 −0.358491
\(50\) −77.2158 −0.218399
\(51\) 0 0
\(52\) −631.894 −1.68515
\(53\) 285.547 0.740053 0.370027 0.929021i \(-0.379349\pi\)
0.370027 + 0.929021i \(0.379349\pi\)
\(54\) 0 0
\(55\) −1078.64 −2.64444
\(56\) −67.5607 −0.161217
\(57\) 0 0
\(58\) −16.6160 −0.0376171
\(59\) −355.222 −0.783830 −0.391915 0.920001i \(-0.628187\pi\)
−0.391915 + 0.920001i \(0.628187\pi\)
\(60\) 0 0
\(61\) 146.381 0.307249 0.153624 0.988129i \(-0.450905\pi\)
0.153624 + 0.988129i \(0.450905\pi\)
\(62\) 16.7789 0.0343697
\(63\) 0 0
\(64\) −480.831 −0.939123
\(65\) −1585.80 −3.02606
\(66\) 0 0
\(67\) −455.666 −0.830873 −0.415436 0.909622i \(-0.636371\pi\)
−0.415436 + 0.909622i \(0.636371\pi\)
\(68\) 300.152 0.535277
\(69\) 0 0
\(70\) −84.3389 −0.144006
\(71\) 127.438 0.213016 0.106508 0.994312i \(-0.466033\pi\)
0.106508 + 0.994312i \(0.466033\pi\)
\(72\) 0 0
\(73\) 222.372 0.356530 0.178265 0.983983i \(-0.442952\pi\)
0.178265 + 0.983983i \(0.442952\pi\)
\(74\) 42.3642 0.0665505
\(75\) 0 0
\(76\) 981.983 1.48212
\(77\) −805.191 −1.19169
\(78\) 0 0
\(79\) −117.399 −0.167196 −0.0835978 0.996500i \(-0.526641\pi\)
−0.0835978 + 0.996500i \(0.526641\pi\)
\(80\) −1232.85 −1.72297
\(81\) 0 0
\(82\) −52.7343 −0.0710187
\(83\) 622.293 0.822958 0.411479 0.911419i \(-0.365012\pi\)
0.411479 + 0.911419i \(0.365012\pi\)
\(84\) 0 0
\(85\) 753.261 0.961208
\(86\) −4.26982 −0.00535379
\(87\) 0 0
\(88\) 247.227 0.299483
\(89\) 1044.81 1.24437 0.622187 0.782868i \(-0.286244\pi\)
0.622187 + 0.782868i \(0.286244\pi\)
\(90\) 0 0
\(91\) −1183.78 −1.36367
\(92\) −800.649 −0.907320
\(93\) 0 0
\(94\) 58.8912 0.0646188
\(95\) 2464.38 2.66147
\(96\) 0 0
\(97\) −834.977 −0.874011 −0.437005 0.899459i \(-0.643961\pi\)
−0.437005 + 0.899459i \(0.643961\pi\)
\(98\) 35.1825 0.0362650
\(99\) 0 0
\(100\) −2136.86 −2.13686
\(101\) 1552.74 1.52973 0.764867 0.644188i \(-0.222804\pi\)
0.764867 + 0.644188i \(0.222804\pi\)
\(102\) 0 0
\(103\) −1279.19 −1.22371 −0.611856 0.790969i \(-0.709577\pi\)
−0.611856 + 0.790969i \(0.709577\pi\)
\(104\) 363.469 0.342702
\(105\) 0 0
\(106\) −81.7016 −0.0748637
\(107\) 1090.37 0.985140 0.492570 0.870273i \(-0.336058\pi\)
0.492570 + 0.870273i \(0.336058\pi\)
\(108\) 0 0
\(109\) −822.350 −0.722632 −0.361316 0.932444i \(-0.617672\pi\)
−0.361316 + 0.932444i \(0.617672\pi\)
\(110\) 308.625 0.267511
\(111\) 0 0
\(112\) −920.308 −0.776437
\(113\) −1192.71 −0.992930 −0.496465 0.868057i \(-0.665369\pi\)
−0.496465 + 0.868057i \(0.665369\pi\)
\(114\) 0 0
\(115\) −2009.31 −1.62929
\(116\) −459.829 −0.368052
\(117\) 0 0
\(118\) 101.637 0.0792922
\(119\) 562.299 0.433159
\(120\) 0 0
\(121\) 1615.46 1.21372
\(122\) −41.8830 −0.0310813
\(123\) 0 0
\(124\) 464.336 0.336279
\(125\) −2878.73 −2.05985
\(126\) 0 0
\(127\) −1701.92 −1.18914 −0.594571 0.804043i \(-0.702678\pi\)
−0.594571 + 0.804043i \(0.702678\pi\)
\(128\) 571.081 0.394351
\(129\) 0 0
\(130\) 453.734 0.306116
\(131\) −609.473 −0.406488 −0.203244 0.979128i \(-0.565148\pi\)
−0.203244 + 0.979128i \(0.565148\pi\)
\(132\) 0 0
\(133\) 1839.63 1.19937
\(134\) 130.377 0.0840510
\(135\) 0 0
\(136\) −172.649 −0.108857
\(137\) 2947.05 1.83784 0.918918 0.394449i \(-0.129065\pi\)
0.918918 + 0.394449i \(0.129065\pi\)
\(138\) 0 0
\(139\) −840.966 −0.513164 −0.256582 0.966522i \(-0.582596\pi\)
−0.256582 + 0.966522i \(0.582596\pi\)
\(140\) −2333.98 −1.40898
\(141\) 0 0
\(142\) −36.4630 −0.0215486
\(143\) 4331.84 2.53319
\(144\) 0 0
\(145\) −1153.98 −0.660919
\(146\) −63.6259 −0.0360665
\(147\) 0 0
\(148\) 1172.38 0.651142
\(149\) −2130.41 −1.17134 −0.585670 0.810549i \(-0.699169\pi\)
−0.585670 + 0.810549i \(0.699169\pi\)
\(150\) 0 0
\(151\) 2378.26 1.28172 0.640861 0.767657i \(-0.278577\pi\)
0.640861 + 0.767657i \(0.278577\pi\)
\(152\) −564.842 −0.301413
\(153\) 0 0
\(154\) 230.384 0.120551
\(155\) 1165.29 0.603863
\(156\) 0 0
\(157\) −1850.68 −0.940766 −0.470383 0.882462i \(-0.655884\pi\)
−0.470383 + 0.882462i \(0.655884\pi\)
\(158\) 33.5907 0.0169135
\(159\) 0 0
\(160\) 1076.79 0.532047
\(161\) −1499.92 −0.734225
\(162\) 0 0
\(163\) −968.412 −0.465349 −0.232675 0.972555i \(-0.574748\pi\)
−0.232675 + 0.972555i \(0.574748\pi\)
\(164\) −1459.36 −0.694860
\(165\) 0 0
\(166\) −178.053 −0.0832504
\(167\) 1750.09 0.810937 0.405468 0.914109i \(-0.367108\pi\)
0.405468 + 0.914109i \(0.367108\pi\)
\(168\) 0 0
\(169\) 4171.59 1.89876
\(170\) −215.526 −0.0972357
\(171\) 0 0
\(172\) −118.162 −0.0523825
\(173\) −2051.85 −0.901732 −0.450866 0.892592i \(-0.648885\pi\)
−0.450866 + 0.892592i \(0.648885\pi\)
\(174\) 0 0
\(175\) −4003.14 −1.72920
\(176\) 3367.72 1.44234
\(177\) 0 0
\(178\) −298.944 −0.125881
\(179\) −710.848 −0.296823 −0.148411 0.988926i \(-0.547416\pi\)
−0.148411 + 0.988926i \(0.547416\pi\)
\(180\) 0 0
\(181\) −2195.53 −0.901615 −0.450807 0.892621i \(-0.648864\pi\)
−0.450807 + 0.892621i \(0.648864\pi\)
\(182\) 338.706 0.137948
\(183\) 0 0
\(184\) 460.538 0.184518
\(185\) 2942.20 1.16927
\(186\) 0 0
\(187\) −2057.64 −0.804650
\(188\) 1629.75 0.632242
\(189\) 0 0
\(190\) −705.117 −0.269235
\(191\) −4883.06 −1.84987 −0.924936 0.380123i \(-0.875882\pi\)
−0.924936 + 0.380123i \(0.875882\pi\)
\(192\) 0 0
\(193\) 1101.21 0.410710 0.205355 0.978688i \(-0.434165\pi\)
0.205355 + 0.978688i \(0.434165\pi\)
\(194\) 238.906 0.0884149
\(195\) 0 0
\(196\) 973.634 0.354823
\(197\) −2146.89 −0.776445 −0.388222 0.921566i \(-0.626911\pi\)
−0.388222 + 0.921566i \(0.626911\pi\)
\(198\) 0 0
\(199\) −1058.00 −0.376882 −0.188441 0.982085i \(-0.560343\pi\)
−0.188441 + 0.982085i \(0.560343\pi\)
\(200\) 1229.13 0.434564
\(201\) 0 0
\(202\) −444.275 −0.154748
\(203\) −861.434 −0.297836
\(204\) 0 0
\(205\) −3662.41 −1.24777
\(206\) 366.006 0.123791
\(207\) 0 0
\(208\) 4951.16 1.65049
\(209\) −6731.81 −2.22799
\(210\) 0 0
\(211\) 5103.67 1.66517 0.832586 0.553896i \(-0.186859\pi\)
0.832586 + 0.553896i \(0.186859\pi\)
\(212\) −2261.00 −0.732480
\(213\) 0 0
\(214\) −311.980 −0.0996566
\(215\) −296.539 −0.0940643
\(216\) 0 0
\(217\) 869.877 0.272125
\(218\) 235.294 0.0731013
\(219\) 0 0
\(220\) 8540.83 2.61737
\(221\) −3025.11 −0.920772
\(222\) 0 0
\(223\) −2636.41 −0.791691 −0.395846 0.918317i \(-0.629548\pi\)
−0.395846 + 0.918317i \(0.629548\pi\)
\(224\) 803.807 0.239762
\(225\) 0 0
\(226\) 341.264 0.100445
\(227\) −2580.54 −0.754523 −0.377261 0.926107i \(-0.623134\pi\)
−0.377261 + 0.926107i \(0.623134\pi\)
\(228\) 0 0
\(229\) −1364.19 −0.393659 −0.196830 0.980438i \(-0.563065\pi\)
−0.196830 + 0.980438i \(0.563065\pi\)
\(230\) 574.909 0.164819
\(231\) 0 0
\(232\) 264.496 0.0748492
\(233\) 599.263 0.168494 0.0842468 0.996445i \(-0.473152\pi\)
0.0842468 + 0.996445i \(0.473152\pi\)
\(234\) 0 0
\(235\) 4090.00 1.13533
\(236\) 2812.69 0.775809
\(237\) 0 0
\(238\) −160.887 −0.0438183
\(239\) −847.081 −0.229260 −0.114630 0.993408i \(-0.536568\pi\)
−0.114630 + 0.993408i \(0.536568\pi\)
\(240\) 0 0
\(241\) −7191.07 −1.92206 −0.961032 0.276437i \(-0.910846\pi\)
−0.961032 + 0.276437i \(0.910846\pi\)
\(242\) −462.222 −0.122780
\(243\) 0 0
\(244\) −1159.06 −0.304105
\(245\) 2443.43 0.637163
\(246\) 0 0
\(247\) −9896.98 −2.54951
\(248\) −267.088 −0.0683876
\(249\) 0 0
\(250\) 823.673 0.208375
\(251\) −7344.97 −1.84705 −0.923527 0.383533i \(-0.874707\pi\)
−0.923527 + 0.383533i \(0.874707\pi\)
\(252\) 0 0
\(253\) 5488.71 1.36392
\(254\) 486.960 0.120294
\(255\) 0 0
\(256\) 3683.25 0.899230
\(257\) −5427.99 −1.31747 −0.658733 0.752376i \(-0.728907\pi\)
−0.658733 + 0.752376i \(0.728907\pi\)
\(258\) 0 0
\(259\) 2196.31 0.526920
\(260\) 12556.6 2.99510
\(261\) 0 0
\(262\) 174.384 0.0411203
\(263\) −589.088 −0.138117 −0.0690584 0.997613i \(-0.521999\pi\)
−0.0690584 + 0.997613i \(0.521999\pi\)
\(264\) 0 0
\(265\) −5674.18 −1.31533
\(266\) −526.360 −0.121328
\(267\) 0 0
\(268\) 3608.03 0.822370
\(269\) −936.001 −0.212152 −0.106076 0.994358i \(-0.533829\pi\)
−0.106076 + 0.994358i \(0.533829\pi\)
\(270\) 0 0
\(271\) 4218.71 0.945639 0.472820 0.881159i \(-0.343236\pi\)
0.472820 + 0.881159i \(0.343236\pi\)
\(272\) −2351.82 −0.524265
\(273\) 0 0
\(274\) −843.220 −0.185915
\(275\) 14648.8 3.21221
\(276\) 0 0
\(277\) −1968.60 −0.427009 −0.213504 0.976942i \(-0.568488\pi\)
−0.213504 + 0.976942i \(0.568488\pi\)
\(278\) 240.620 0.0519116
\(279\) 0 0
\(280\) 1342.52 0.286539
\(281\) 6529.79 1.38625 0.693123 0.720820i \(-0.256234\pi\)
0.693123 + 0.720820i \(0.256234\pi\)
\(282\) 0 0
\(283\) 3078.28 0.646589 0.323295 0.946298i \(-0.395210\pi\)
0.323295 + 0.946298i \(0.395210\pi\)
\(284\) −1009.07 −0.210836
\(285\) 0 0
\(286\) −1239.44 −0.256257
\(287\) −2733.94 −0.562297
\(288\) 0 0
\(289\) −3476.06 −0.707523
\(290\) 330.182 0.0668585
\(291\) 0 0
\(292\) −1760.77 −0.352881
\(293\) −6491.20 −1.29427 −0.647133 0.762377i \(-0.724032\pi\)
−0.647133 + 0.762377i \(0.724032\pi\)
\(294\) 0 0
\(295\) 7058.73 1.39314
\(296\) −674.359 −0.132420
\(297\) 0 0
\(298\) 609.559 0.118493
\(299\) 8069.40 1.56075
\(300\) 0 0
\(301\) −221.363 −0.0423891
\(302\) −680.476 −0.129659
\(303\) 0 0
\(304\) −7694.25 −1.45163
\(305\) −2908.78 −0.546087
\(306\) 0 0
\(307\) 3557.55 0.661369 0.330685 0.943741i \(-0.392720\pi\)
0.330685 + 0.943741i \(0.392720\pi\)
\(308\) 6375.61 1.17949
\(309\) 0 0
\(310\) −333.418 −0.0610867
\(311\) −5026.06 −0.916404 −0.458202 0.888848i \(-0.651506\pi\)
−0.458202 + 0.888848i \(0.651506\pi\)
\(312\) 0 0
\(313\) −478.201 −0.0863564 −0.0431782 0.999067i \(-0.513748\pi\)
−0.0431782 + 0.999067i \(0.513748\pi\)
\(314\) 529.522 0.0951678
\(315\) 0 0
\(316\) 929.584 0.165485
\(317\) −2179.60 −0.386178 −0.193089 0.981181i \(-0.561851\pi\)
−0.193089 + 0.981181i \(0.561851\pi\)
\(318\) 0 0
\(319\) 3152.28 0.553271
\(320\) 9554.74 1.66914
\(321\) 0 0
\(322\) 429.162 0.0742741
\(323\) 4701.11 0.809835
\(324\) 0 0
\(325\) 21536.5 3.67578
\(326\) 277.085 0.0470747
\(327\) 0 0
\(328\) 839.432 0.141311
\(329\) 3053.13 0.511625
\(330\) 0 0
\(331\) −1471.99 −0.244435 −0.122217 0.992503i \(-0.539000\pi\)
−0.122217 + 0.992503i \(0.539000\pi\)
\(332\) −4927.40 −0.814537
\(333\) 0 0
\(334\) −500.743 −0.0820343
\(335\) 9054.68 1.47675
\(336\) 0 0
\(337\) −5385.97 −0.870601 −0.435301 0.900285i \(-0.643358\pi\)
−0.435301 + 0.900285i \(0.643358\pi\)
\(338\) −1193.59 −0.192079
\(339\) 0 0
\(340\) −5964.42 −0.951371
\(341\) −3183.17 −0.505508
\(342\) 0 0
\(343\) 6911.93 1.08807
\(344\) 67.9675 0.0106528
\(345\) 0 0
\(346\) 587.084 0.0912191
\(347\) 10340.9 1.59979 0.799896 0.600139i \(-0.204888\pi\)
0.799896 + 0.600139i \(0.204888\pi\)
\(348\) 0 0
\(349\) 542.711 0.0832397 0.0416198 0.999134i \(-0.486748\pi\)
0.0416198 + 0.999134i \(0.486748\pi\)
\(350\) 1145.39 0.174925
\(351\) 0 0
\(352\) −2941.40 −0.445390
\(353\) −2542.45 −0.383346 −0.191673 0.981459i \(-0.561391\pi\)
−0.191673 + 0.981459i \(0.561391\pi\)
\(354\) 0 0
\(355\) −2532.36 −0.378602
\(356\) −8272.92 −1.23164
\(357\) 0 0
\(358\) 203.390 0.0300266
\(359\) −2307.58 −0.339246 −0.169623 0.985509i \(-0.554255\pi\)
−0.169623 + 0.985509i \(0.554255\pi\)
\(360\) 0 0
\(361\) 8521.22 1.24234
\(362\) 628.192 0.0912072
\(363\) 0 0
\(364\) 9373.30 1.34971
\(365\) −4418.82 −0.633676
\(366\) 0 0
\(367\) 11695.0 1.66342 0.831709 0.555212i \(-0.187363\pi\)
0.831709 + 0.555212i \(0.187363\pi\)
\(368\) 6273.42 0.888654
\(369\) 0 0
\(370\) −841.832 −0.118283
\(371\) −4235.70 −0.592740
\(372\) 0 0
\(373\) −7607.91 −1.05609 −0.528047 0.849215i \(-0.677075\pi\)
−0.528047 + 0.849215i \(0.677075\pi\)
\(374\) 588.739 0.0813984
\(375\) 0 0
\(376\) −937.439 −0.128576
\(377\) 4634.42 0.633116
\(378\) 0 0
\(379\) −8796.91 −1.19226 −0.596131 0.802887i \(-0.703296\pi\)
−0.596131 + 0.802887i \(0.703296\pi\)
\(380\) −19513.3 −2.63424
\(381\) 0 0
\(382\) 1397.16 0.187133
\(383\) 9599.82 1.28075 0.640376 0.768062i \(-0.278779\pi\)
0.640376 + 0.768062i \(0.278779\pi\)
\(384\) 0 0
\(385\) 16000.2 2.11804
\(386\) −315.083 −0.0415474
\(387\) 0 0
\(388\) 6611.46 0.865067
\(389\) 6559.78 0.854997 0.427499 0.904016i \(-0.359395\pi\)
0.427499 + 0.904016i \(0.359395\pi\)
\(390\) 0 0
\(391\) −3833.00 −0.495762
\(392\) −560.039 −0.0721588
\(393\) 0 0
\(394\) 614.276 0.0785451
\(395\) 2332.88 0.297164
\(396\) 0 0
\(397\) 13432.5 1.69813 0.849066 0.528287i \(-0.177166\pi\)
0.849066 + 0.528287i \(0.177166\pi\)
\(398\) 302.718 0.0381253
\(399\) 0 0
\(400\) 16743.2 2.09290
\(401\) −9473.43 −1.17975 −0.589876 0.807494i \(-0.700823\pi\)
−0.589876 + 0.807494i \(0.700823\pi\)
\(402\) 0 0
\(403\) −4679.84 −0.578460
\(404\) −12294.8 −1.51408
\(405\) 0 0
\(406\) 246.476 0.0301291
\(407\) −8037.04 −0.978824
\(408\) 0 0
\(409\) 2910.41 0.351859 0.175930 0.984403i \(-0.443707\pi\)
0.175930 + 0.984403i \(0.443707\pi\)
\(410\) 1047.90 0.126225
\(411\) 0 0
\(412\) 10128.8 1.21119
\(413\) 5269.24 0.627802
\(414\) 0 0
\(415\) −12365.8 −1.46268
\(416\) −4324.39 −0.509665
\(417\) 0 0
\(418\) 1926.13 0.225383
\(419\) −9867.43 −1.15049 −0.575245 0.817981i \(-0.695093\pi\)
−0.575245 + 0.817981i \(0.695093\pi\)
\(420\) 0 0
\(421\) 6365.62 0.736915 0.368457 0.929645i \(-0.379886\pi\)
0.368457 + 0.929645i \(0.379886\pi\)
\(422\) −1460.28 −0.168449
\(423\) 0 0
\(424\) 1300.54 0.148961
\(425\) −10229.9 −1.16759
\(426\) 0 0
\(427\) −2171.37 −0.246088
\(428\) −8633.69 −0.975058
\(429\) 0 0
\(430\) 84.8469 0.00951553
\(431\) 359.313 0.0401566 0.0200783 0.999798i \(-0.493608\pi\)
0.0200783 + 0.999798i \(0.493608\pi\)
\(432\) 0 0
\(433\) −12657.1 −1.40476 −0.702380 0.711803i \(-0.747879\pi\)
−0.702380 + 0.711803i \(0.747879\pi\)
\(434\) −248.892 −0.0275281
\(435\) 0 0
\(436\) 6511.48 0.715237
\(437\) −12540.1 −1.37271
\(438\) 0 0
\(439\) −7447.02 −0.809629 −0.404814 0.914399i \(-0.632664\pi\)
−0.404814 + 0.914399i \(0.632664\pi\)
\(440\) −4912.73 −0.532284
\(441\) 0 0
\(442\) 865.554 0.0931452
\(443\) −11678.0 −1.25246 −0.626231 0.779638i \(-0.715403\pi\)
−0.626231 + 0.779638i \(0.715403\pi\)
\(444\) 0 0
\(445\) −20761.7 −2.21168
\(446\) 754.339 0.0800874
\(447\) 0 0
\(448\) 7132.48 0.752183
\(449\) 8059.04 0.847059 0.423530 0.905882i \(-0.360791\pi\)
0.423530 + 0.905882i \(0.360791\pi\)
\(450\) 0 0
\(451\) 10004.4 1.04454
\(452\) 9444.07 0.982769
\(453\) 0 0
\(454\) 738.354 0.0763274
\(455\) 23523.2 2.42370
\(456\) 0 0
\(457\) 5873.13 0.601167 0.300583 0.953756i \(-0.402819\pi\)
0.300583 + 0.953756i \(0.402819\pi\)
\(458\) 390.326 0.0398226
\(459\) 0 0
\(460\) 15909.9 1.61262
\(461\) 7559.60 0.763743 0.381872 0.924215i \(-0.375280\pi\)
0.381872 + 0.924215i \(0.375280\pi\)
\(462\) 0 0
\(463\) 3621.75 0.363536 0.181768 0.983341i \(-0.441818\pi\)
0.181768 + 0.983341i \(0.441818\pi\)
\(464\) 3602.95 0.360480
\(465\) 0 0
\(466\) −171.463 −0.0170448
\(467\) −3757.19 −0.372296 −0.186148 0.982522i \(-0.559600\pi\)
−0.186148 + 0.982522i \(0.559600\pi\)
\(468\) 0 0
\(469\) 6759.20 0.665481
\(470\) −1170.25 −0.114850
\(471\) 0 0
\(472\) −1617.88 −0.157773
\(473\) 810.040 0.0787435
\(474\) 0 0
\(475\) −33468.3 −3.23291
\(476\) −4452.36 −0.428726
\(477\) 0 0
\(478\) 242.370 0.0231919
\(479\) −13501.9 −1.28793 −0.643963 0.765056i \(-0.722711\pi\)
−0.643963 + 0.765056i \(0.722711\pi\)
\(480\) 0 0
\(481\) −11815.9 −1.12008
\(482\) 2057.53 0.194436
\(483\) 0 0
\(484\) −12791.5 −1.20130
\(485\) 16592.1 1.55342
\(486\) 0 0
\(487\) −4509.25 −0.419577 −0.209788 0.977747i \(-0.567277\pi\)
−0.209788 + 0.977747i \(0.567277\pi\)
\(488\) 666.700 0.0618444
\(489\) 0 0
\(490\) −699.122 −0.0644553
\(491\) 7420.57 0.682048 0.341024 0.940055i \(-0.389226\pi\)
0.341024 + 0.940055i \(0.389226\pi\)
\(492\) 0 0
\(493\) −2201.37 −0.201105
\(494\) 2831.76 0.257909
\(495\) 0 0
\(496\) −3638.27 −0.329361
\(497\) −1890.37 −0.170613
\(498\) 0 0
\(499\) 15944.4 1.43040 0.715199 0.698921i \(-0.246336\pi\)
0.715199 + 0.698921i \(0.246336\pi\)
\(500\) 22794.2 2.03878
\(501\) 0 0
\(502\) 2101.57 0.186848
\(503\) −16600.5 −1.47153 −0.735763 0.677239i \(-0.763176\pi\)
−0.735763 + 0.677239i \(0.763176\pi\)
\(504\) 0 0
\(505\) −30854.9 −2.71886
\(506\) −1570.45 −0.137974
\(507\) 0 0
\(508\) 13476.0 1.17697
\(509\) −22099.1 −1.92441 −0.962205 0.272325i \(-0.912207\pi\)
−0.962205 + 0.272325i \(0.912207\pi\)
\(510\) 0 0
\(511\) −3298.59 −0.285560
\(512\) −5622.51 −0.485317
\(513\) 0 0
\(514\) 1553.08 0.133275
\(515\) 25419.2 2.17496
\(516\) 0 0
\(517\) −11172.4 −0.950412
\(518\) −628.416 −0.0533031
\(519\) 0 0
\(520\) −7222.60 −0.609100
\(521\) 17315.3 1.45604 0.728021 0.685554i \(-0.240440\pi\)
0.728021 + 0.685554i \(0.240440\pi\)
\(522\) 0 0
\(523\) −11120.5 −0.929764 −0.464882 0.885373i \(-0.653903\pi\)
−0.464882 + 0.885373i \(0.653903\pi\)
\(524\) 4825.89 0.402328
\(525\) 0 0
\(526\) 168.552 0.0139719
\(527\) 2222.94 0.183744
\(528\) 0 0
\(529\) −1942.57 −0.159659
\(530\) 1623.52 0.133059
\(531\) 0 0
\(532\) −14566.4 −1.18709
\(533\) 14708.3 1.19528
\(534\) 0 0
\(535\) −21667.1 −1.75093
\(536\) −2075.35 −0.167242
\(537\) 0 0
\(538\) 267.812 0.0214613
\(539\) −6674.57 −0.533384
\(540\) 0 0
\(541\) −4291.69 −0.341061 −0.170531 0.985352i \(-0.554548\pi\)
−0.170531 + 0.985352i \(0.554548\pi\)
\(542\) −1207.07 −0.0956608
\(543\) 0 0
\(544\) 2054.10 0.161892
\(545\) 16341.2 1.28436
\(546\) 0 0
\(547\) −18965.2 −1.48244 −0.741219 0.671263i \(-0.765752\pi\)
−0.741219 + 0.671263i \(0.765752\pi\)
\(548\) −23335.1 −1.81903
\(549\) 0 0
\(550\) −4191.38 −0.324947
\(551\) −7202.03 −0.556836
\(552\) 0 0
\(553\) 1741.46 0.133914
\(554\) 563.261 0.0431962
\(555\) 0 0
\(556\) 6658.88 0.507913
\(557\) 10083.3 0.767044 0.383522 0.923532i \(-0.374711\pi\)
0.383522 + 0.923532i \(0.374711\pi\)
\(558\) 0 0
\(559\) 1190.91 0.0901073
\(560\) 18287.7 1.38000
\(561\) 0 0
\(562\) −1868.33 −0.140232
\(563\) −21595.9 −1.61662 −0.808311 0.588756i \(-0.799618\pi\)
−0.808311 + 0.588756i \(0.799618\pi\)
\(564\) 0 0
\(565\) 23700.8 1.76478
\(566\) −880.768 −0.0654089
\(567\) 0 0
\(568\) 580.423 0.0428768
\(569\) 15711.4 1.15757 0.578783 0.815481i \(-0.303528\pi\)
0.578783 + 0.815481i \(0.303528\pi\)
\(570\) 0 0
\(571\) −21001.2 −1.53918 −0.769591 0.638537i \(-0.779540\pi\)
−0.769591 + 0.638537i \(0.779540\pi\)
\(572\) −34300.1 −2.50727
\(573\) 0 0
\(574\) 782.243 0.0568819
\(575\) 27288.0 1.97911
\(576\) 0 0
\(577\) 6914.65 0.498892 0.249446 0.968389i \(-0.419751\pi\)
0.249446 + 0.968389i \(0.419751\pi\)
\(578\) 994.583 0.0715730
\(579\) 0 0
\(580\) 9137.40 0.654155
\(581\) −9230.88 −0.659142
\(582\) 0 0
\(583\) 15499.8 1.10109
\(584\) 1012.80 0.0717640
\(585\) 0 0
\(586\) 1857.28 0.130928
\(587\) 24755.6 1.74067 0.870335 0.492461i \(-0.163903\pi\)
0.870335 + 0.492461i \(0.163903\pi\)
\(588\) 0 0
\(589\) 7272.62 0.508766
\(590\) −2019.67 −0.140929
\(591\) 0 0
\(592\) −9186.09 −0.637747
\(593\) −14262.7 −0.987687 −0.493844 0.869551i \(-0.664409\pi\)
−0.493844 + 0.869551i \(0.664409\pi\)
\(594\) 0 0
\(595\) −11173.6 −0.769872
\(596\) 16868.8 1.15935
\(597\) 0 0
\(598\) −2308.84 −0.157886
\(599\) −15252.8 −1.04042 −0.520209 0.854039i \(-0.674146\pi\)
−0.520209 + 0.854039i \(0.674146\pi\)
\(600\) 0 0
\(601\) −7861.99 −0.533606 −0.266803 0.963751i \(-0.585967\pi\)
−0.266803 + 0.963751i \(0.585967\pi\)
\(602\) 63.3370 0.00428808
\(603\) 0 0
\(604\) −18831.4 −1.26861
\(605\) −32101.4 −2.15720
\(606\) 0 0
\(607\) 13227.1 0.884469 0.442234 0.896900i \(-0.354186\pi\)
0.442234 + 0.896900i \(0.354186\pi\)
\(608\) 6720.24 0.448259
\(609\) 0 0
\(610\) 832.271 0.0552421
\(611\) −16425.5 −1.08757
\(612\) 0 0
\(613\) −20704.9 −1.36422 −0.682108 0.731251i \(-0.738937\pi\)
−0.682108 + 0.731251i \(0.738937\pi\)
\(614\) −1017.90 −0.0669041
\(615\) 0 0
\(616\) −3667.28 −0.239869
\(617\) 13026.6 0.849971 0.424985 0.905200i \(-0.360279\pi\)
0.424985 + 0.905200i \(0.360279\pi\)
\(618\) 0 0
\(619\) 4744.99 0.308105 0.154053 0.988063i \(-0.450767\pi\)
0.154053 + 0.988063i \(0.450767\pi\)
\(620\) −9226.96 −0.597683
\(621\) 0 0
\(622\) 1438.07 0.0927034
\(623\) −15498.3 −0.996672
\(624\) 0 0
\(625\) 23470.6 1.50212
\(626\) 136.825 0.00873580
\(627\) 0 0
\(628\) 14653.9 0.931139
\(629\) 5612.61 0.355786
\(630\) 0 0
\(631\) 9445.90 0.595936 0.297968 0.954576i \(-0.403691\pi\)
0.297968 + 0.954576i \(0.403691\pi\)
\(632\) −534.701 −0.0336539
\(633\) 0 0
\(634\) 623.634 0.0390657
\(635\) 33819.4 2.11352
\(636\) 0 0
\(637\) −9812.83 −0.610359
\(638\) −901.940 −0.0559689
\(639\) 0 0
\(640\) −11348.1 −0.700897
\(641\) −14692.1 −0.905310 −0.452655 0.891686i \(-0.649523\pi\)
−0.452655 + 0.891686i \(0.649523\pi\)
\(642\) 0 0
\(643\) 19527.3 1.19764 0.598821 0.800883i \(-0.295636\pi\)
0.598821 + 0.800883i \(0.295636\pi\)
\(644\) 11876.6 0.726711
\(645\) 0 0
\(646\) −1345.10 −0.0819229
\(647\) 19872.0 1.20750 0.603748 0.797176i \(-0.293673\pi\)
0.603748 + 0.797176i \(0.293673\pi\)
\(648\) 0 0
\(649\) −19281.9 −1.16623
\(650\) −6162.09 −0.371841
\(651\) 0 0
\(652\) 7668.02 0.460587
\(653\) −6068.53 −0.363675 −0.181838 0.983329i \(-0.558205\pi\)
−0.181838 + 0.983329i \(0.558205\pi\)
\(654\) 0 0
\(655\) 12111.0 0.722469
\(656\) 11434.7 0.680565
\(657\) 0 0
\(658\) −873.573 −0.0517559
\(659\) 7023.26 0.415155 0.207578 0.978219i \(-0.433442\pi\)
0.207578 + 0.978219i \(0.433442\pi\)
\(660\) 0 0
\(661\) −1565.22 −0.0921028 −0.0460514 0.998939i \(-0.514664\pi\)
−0.0460514 + 0.998939i \(0.514664\pi\)
\(662\) 421.171 0.0247270
\(663\) 0 0
\(664\) 2834.27 0.165649
\(665\) −36555.8 −2.13169
\(666\) 0 0
\(667\) 5872.09 0.340882
\(668\) −13857.5 −0.802638
\(669\) 0 0
\(670\) −2590.76 −0.149388
\(671\) 7945.76 0.457143
\(672\) 0 0
\(673\) −25203.3 −1.44356 −0.721779 0.692124i \(-0.756675\pi\)
−0.721779 + 0.692124i \(0.756675\pi\)
\(674\) 1541.05 0.0880700
\(675\) 0 0
\(676\) −33031.2 −1.87933
\(677\) −13481.9 −0.765363 −0.382682 0.923880i \(-0.624999\pi\)
−0.382682 + 0.923880i \(0.624999\pi\)
\(678\) 0 0
\(679\) 12385.8 0.700032
\(680\) 3430.77 0.193476
\(681\) 0 0
\(682\) 910.780 0.0511372
\(683\) 28771.7 1.61189 0.805944 0.591992i \(-0.201658\pi\)
0.805944 + 0.591992i \(0.201658\pi\)
\(684\) 0 0
\(685\) −58561.7 −3.26647
\(686\) −1977.66 −0.110069
\(687\) 0 0
\(688\) 925.851 0.0513049
\(689\) 22787.6 1.26000
\(690\) 0 0
\(691\) −18579.9 −1.02288 −0.511442 0.859318i \(-0.670888\pi\)
−0.511442 + 0.859318i \(0.670888\pi\)
\(692\) 16246.9 0.892504
\(693\) 0 0
\(694\) −2958.77 −0.161835
\(695\) 16711.1 0.912069
\(696\) 0 0
\(697\) −6986.49 −0.379673
\(698\) −155.282 −0.00842052
\(699\) 0 0
\(700\) 31697.4 1.71150
\(701\) 25470.7 1.37234 0.686172 0.727439i \(-0.259290\pi\)
0.686172 + 0.727439i \(0.259290\pi\)
\(702\) 0 0
\(703\) 18362.3 0.985131
\(704\) −26100.1 −1.39728
\(705\) 0 0
\(706\) 727.456 0.0387793
\(707\) −23032.8 −1.22523
\(708\) 0 0
\(709\) 29079.5 1.54035 0.770173 0.637835i \(-0.220170\pi\)
0.770173 + 0.637835i \(0.220170\pi\)
\(710\) 724.568 0.0382993
\(711\) 0 0
\(712\) 4758.63 0.250473
\(713\) −5929.65 −0.311454
\(714\) 0 0
\(715\) −86079.3 −4.50235
\(716\) 5628.59 0.293785
\(717\) 0 0
\(718\) 660.252 0.0343181
\(719\) −26982.8 −1.39956 −0.699782 0.714356i \(-0.746720\pi\)
−0.699782 + 0.714356i \(0.746720\pi\)
\(720\) 0 0
\(721\) 18975.1 0.980123
\(722\) −2438.12 −0.125675
\(723\) 0 0
\(724\) 17384.5 0.892388
\(725\) 15672.1 0.802822
\(726\) 0 0
\(727\) −14435.2 −0.736412 −0.368206 0.929744i \(-0.620028\pi\)
−0.368206 + 0.929744i \(0.620028\pi\)
\(728\) −5391.57 −0.274485
\(729\) 0 0
\(730\) 1264.33 0.0641026
\(731\) −565.686 −0.0286219
\(732\) 0 0
\(733\) −21774.7 −1.09723 −0.548614 0.836076i \(-0.684844\pi\)
−0.548614 + 0.836076i \(0.684844\pi\)
\(734\) −3346.21 −0.168271
\(735\) 0 0
\(736\) −5479.27 −0.274414
\(737\) −24734.2 −1.23622
\(738\) 0 0
\(739\) 10454.1 0.520381 0.260190 0.965557i \(-0.416215\pi\)
0.260190 + 0.965557i \(0.416215\pi\)
\(740\) −23296.7 −1.15730
\(741\) 0 0
\(742\) 1211.93 0.0599615
\(743\) −34626.3 −1.70971 −0.854857 0.518864i \(-0.826355\pi\)
−0.854857 + 0.518864i \(0.826355\pi\)
\(744\) 0 0
\(745\) 42334.0 2.08187
\(746\) 2176.80 0.106834
\(747\) 0 0
\(748\) 16292.7 0.796416
\(749\) −16174.2 −0.789040
\(750\) 0 0
\(751\) −15080.3 −0.732741 −0.366370 0.930469i \(-0.619400\pi\)
−0.366370 + 0.930469i \(0.619400\pi\)
\(752\) −12769.8 −0.619235
\(753\) 0 0
\(754\) −1326.02 −0.0640459
\(755\) −47259.1 −2.27806
\(756\) 0 0
\(757\) −27825.5 −1.33598 −0.667988 0.744172i \(-0.732844\pi\)
−0.667988 + 0.744172i \(0.732844\pi\)
\(758\) 2517.00 0.120609
\(759\) 0 0
\(760\) 11224.1 0.535714
\(761\) 2545.70 0.121264 0.0606319 0.998160i \(-0.480688\pi\)
0.0606319 + 0.998160i \(0.480688\pi\)
\(762\) 0 0
\(763\) 12198.5 0.578786
\(764\) 38664.7 1.83094
\(765\) 0 0
\(766\) −2746.73 −0.129561
\(767\) −28347.9 −1.33453
\(768\) 0 0
\(769\) 40890.4 1.91749 0.958743 0.284274i \(-0.0917526\pi\)
0.958743 + 0.284274i \(0.0917526\pi\)
\(770\) −4578.03 −0.214261
\(771\) 0 0
\(772\) −8719.55 −0.406507
\(773\) −10738.2 −0.499647 −0.249824 0.968291i \(-0.580373\pi\)
−0.249824 + 0.968291i \(0.580373\pi\)
\(774\) 0 0
\(775\) −15825.7 −0.733516
\(776\) −3802.94 −0.175925
\(777\) 0 0
\(778\) −1876.91 −0.0864914
\(779\) −22857.1 −1.05127
\(780\) 0 0
\(781\) 6917.51 0.316937
\(782\) 1096.71 0.0501513
\(783\) 0 0
\(784\) −7628.83 −0.347523
\(785\) 36775.4 1.67206
\(786\) 0 0
\(787\) −12825.1 −0.580896 −0.290448 0.956891i \(-0.593804\pi\)
−0.290448 + 0.956891i \(0.593804\pi\)
\(788\) 16999.4 0.768499
\(789\) 0 0
\(790\) −667.491 −0.0300611
\(791\) 17692.3 0.795280
\(792\) 0 0
\(793\) 11681.7 0.523114
\(794\) −3843.35 −0.171783
\(795\) 0 0
\(796\) 8377.36 0.373025
\(797\) 13258.6 0.589263 0.294632 0.955611i \(-0.404803\pi\)
0.294632 + 0.955611i \(0.404803\pi\)
\(798\) 0 0
\(799\) 7802.19 0.345459
\(800\) −14623.7 −0.646281
\(801\) 0 0
\(802\) 2710.57 0.119344
\(803\) 12070.7 0.530466
\(804\) 0 0
\(805\) 29805.4 1.30497
\(806\) 1339.01 0.0585170
\(807\) 0 0
\(808\) 7072.02 0.307912
\(809\) 11138.9 0.484083 0.242041 0.970266i \(-0.422183\pi\)
0.242041 + 0.970266i \(0.422183\pi\)
\(810\) 0 0
\(811\) 6032.83 0.261210 0.130605 0.991434i \(-0.458308\pi\)
0.130605 + 0.991434i \(0.458308\pi\)
\(812\) 6820.95 0.294789
\(813\) 0 0
\(814\) 2299.59 0.0990178
\(815\) 19243.6 0.827085
\(816\) 0 0
\(817\) −1850.71 −0.0792509
\(818\) −832.736 −0.0355940
\(819\) 0 0
\(820\) 28999.4 1.23500
\(821\) 26084.1 1.10882 0.554411 0.832243i \(-0.312944\pi\)
0.554411 + 0.832243i \(0.312944\pi\)
\(822\) 0 0
\(823\) 33968.7 1.43873 0.719365 0.694633i \(-0.244433\pi\)
0.719365 + 0.694633i \(0.244433\pi\)
\(824\) −5826.14 −0.246314
\(825\) 0 0
\(826\) −1507.65 −0.0635084
\(827\) 43501.0 1.82911 0.914557 0.404458i \(-0.132540\pi\)
0.914557 + 0.404458i \(0.132540\pi\)
\(828\) 0 0
\(829\) −10989.9 −0.460430 −0.230215 0.973140i \(-0.573943\pi\)
−0.230215 + 0.973140i \(0.573943\pi\)
\(830\) 3538.14 0.147965
\(831\) 0 0
\(832\) −38371.9 −1.59893
\(833\) 4661.14 0.193876
\(834\) 0 0
\(835\) −34776.7 −1.44131
\(836\) 53303.4 2.20519
\(837\) 0 0
\(838\) 2823.30 0.116384
\(839\) −5324.22 −0.219085 −0.109543 0.993982i \(-0.534939\pi\)
−0.109543 + 0.993982i \(0.534939\pi\)
\(840\) 0 0
\(841\) −21016.5 −0.861722
\(842\) −1821.35 −0.0745462
\(843\) 0 0
\(844\) −40411.6 −1.64813
\(845\) −82894.9 −3.37476
\(846\) 0 0
\(847\) −23963.2 −0.972121
\(848\) 17715.9 0.717411
\(849\) 0 0
\(850\) 2927.02 0.118113
\(851\) −14971.5 −0.603074
\(852\) 0 0
\(853\) 18452.7 0.740689 0.370345 0.928894i \(-0.379240\pi\)
0.370345 + 0.928894i \(0.379240\pi\)
\(854\) 621.279 0.0248943
\(855\) 0 0
\(856\) 4966.14 0.198293
\(857\) 10741.0 0.428128 0.214064 0.976820i \(-0.431330\pi\)
0.214064 + 0.976820i \(0.431330\pi\)
\(858\) 0 0
\(859\) −10081.0 −0.400418 −0.200209 0.979753i \(-0.564162\pi\)
−0.200209 + 0.979753i \(0.564162\pi\)
\(860\) 2348.04 0.0931017
\(861\) 0 0
\(862\) −102.808 −0.00406224
\(863\) −42095.0 −1.66041 −0.830203 0.557461i \(-0.811776\pi\)
−0.830203 + 0.557461i \(0.811776\pi\)
\(864\) 0 0
\(865\) 40773.0 1.60269
\(866\) 3621.49 0.142105
\(867\) 0 0
\(868\) −6887.80 −0.269340
\(869\) −6372.59 −0.248763
\(870\) 0 0
\(871\) −36363.7 −1.41462
\(872\) −3745.43 −0.145455
\(873\) 0 0
\(874\) 3588.01 0.138863
\(875\) 42702.2 1.64982
\(876\) 0 0
\(877\) −12114.2 −0.466439 −0.233219 0.972424i \(-0.574926\pi\)
−0.233219 + 0.972424i \(0.574926\pi\)
\(878\) 2130.77 0.0819020
\(879\) 0 0
\(880\) −66921.0 −2.56353
\(881\) 17436.1 0.666784 0.333392 0.942788i \(-0.391807\pi\)
0.333392 + 0.942788i \(0.391807\pi\)
\(882\) 0 0
\(883\) −38565.8 −1.46981 −0.734906 0.678169i \(-0.762774\pi\)
−0.734906 + 0.678169i \(0.762774\pi\)
\(884\) 23953.2 0.911350
\(885\) 0 0
\(886\) 3341.36 0.126699
\(887\) −4279.09 −0.161982 −0.0809908 0.996715i \(-0.525808\pi\)
−0.0809908 + 0.996715i \(0.525808\pi\)
\(888\) 0 0
\(889\) 25245.7 0.952435
\(890\) 5940.40 0.223733
\(891\) 0 0
\(892\) 20875.5 0.783590
\(893\) 25525.8 0.956536
\(894\) 0 0
\(895\) 14125.5 0.527556
\(896\) −8471.23 −0.315852
\(897\) 0 0
\(898\) −2305.88 −0.0856884
\(899\) −3405.52 −0.126341
\(900\) 0 0
\(901\) −10824.2 −0.400229
\(902\) −2862.49 −0.105666
\(903\) 0 0
\(904\) −5432.28 −0.199862
\(905\) 43628.0 1.60248
\(906\) 0 0
\(907\) −19205.2 −0.703084 −0.351542 0.936172i \(-0.614343\pi\)
−0.351542 + 0.936172i \(0.614343\pi\)
\(908\) 20433.1 0.746801
\(909\) 0 0
\(910\) −6730.54 −0.245181
\(911\) −21719.8 −0.789912 −0.394956 0.918700i \(-0.629240\pi\)
−0.394956 + 0.918700i \(0.629240\pi\)
\(912\) 0 0
\(913\) 33778.9 1.22445
\(914\) −1680.44 −0.0608140
\(915\) 0 0
\(916\) 10801.8 0.389631
\(917\) 9040.71 0.325573
\(918\) 0 0
\(919\) 40905.4 1.46828 0.734138 0.679000i \(-0.237586\pi\)
0.734138 + 0.679000i \(0.237586\pi\)
\(920\) −9151.48 −0.327952
\(921\) 0 0
\(922\) −2162.98 −0.0772602
\(923\) 10170.0 0.362675
\(924\) 0 0
\(925\) −39957.5 −1.42032
\(926\) −1036.27 −0.0367752
\(927\) 0 0
\(928\) −3146.86 −0.111315
\(929\) 34352.8 1.21322 0.606609 0.795001i \(-0.292529\pi\)
0.606609 + 0.795001i \(0.292529\pi\)
\(930\) 0 0
\(931\) 15249.5 0.536821
\(932\) −4745.04 −0.166769
\(933\) 0 0
\(934\) 1075.02 0.0376614
\(935\) 40888.0 1.43014
\(936\) 0 0
\(937\) 33701.3 1.17500 0.587499 0.809225i \(-0.300113\pi\)
0.587499 + 0.809225i \(0.300113\pi\)
\(938\) −1933.96 −0.0673200
\(939\) 0 0
\(940\) −32385.2 −1.12371
\(941\) −9211.42 −0.319111 −0.159556 0.987189i \(-0.551006\pi\)
−0.159556 + 0.987189i \(0.551006\pi\)
\(942\) 0 0
\(943\) 18636.3 0.643565
\(944\) −22038.6 −0.759848
\(945\) 0 0
\(946\) −231.771 −0.00796569
\(947\) 6883.72 0.236210 0.118105 0.993001i \(-0.462318\pi\)
0.118105 + 0.993001i \(0.462318\pi\)
\(948\) 0 0
\(949\) 17746.1 0.607019
\(950\) 9576.08 0.327041
\(951\) 0 0
\(952\) 2561.02 0.0871882
\(953\) 3172.75 0.107844 0.0539221 0.998545i \(-0.482828\pi\)
0.0539221 + 0.998545i \(0.482828\pi\)
\(954\) 0 0
\(955\) 97032.7 3.28786
\(956\) 6707.30 0.226914
\(957\) 0 0
\(958\) 3863.21 0.130287
\(959\) −43715.5 −1.47200
\(960\) 0 0
\(961\) −26352.1 −0.884566
\(962\) 3380.81 0.113307
\(963\) 0 0
\(964\) 56939.8 1.90239
\(965\) −21882.5 −0.729973
\(966\) 0 0
\(967\) 15198.6 0.505434 0.252717 0.967540i \(-0.418676\pi\)
0.252717 + 0.967540i \(0.418676\pi\)
\(968\) 7357.71 0.244304
\(969\) 0 0
\(970\) −4747.38 −0.157144
\(971\) −24507.1 −0.809958 −0.404979 0.914326i \(-0.632721\pi\)
−0.404979 + 0.914326i \(0.632721\pi\)
\(972\) 0 0
\(973\) 12474.6 0.411015
\(974\) 1290.20 0.0424443
\(975\) 0 0
\(976\) 9081.76 0.297848
\(977\) 43402.1 1.42124 0.710622 0.703574i \(-0.248414\pi\)
0.710622 + 0.703574i \(0.248414\pi\)
\(978\) 0 0
\(979\) 56713.5 1.85145
\(980\) −19347.4 −0.630642
\(981\) 0 0
\(982\) −2123.20 −0.0689959
\(983\) −28088.6 −0.911382 −0.455691 0.890138i \(-0.650608\pi\)
−0.455691 + 0.890138i \(0.650608\pi\)
\(984\) 0 0
\(985\) 42661.5 1.38001
\(986\) 629.863 0.0203437
\(987\) 0 0
\(988\) 78365.6 2.52342
\(989\) 1508.95 0.0485156
\(990\) 0 0
\(991\) −40776.3 −1.30706 −0.653532 0.756899i \(-0.726714\pi\)
−0.653532 + 0.756899i \(0.726714\pi\)
\(992\) 3177.70 0.101706
\(993\) 0 0
\(994\) 540.880 0.0172592
\(995\) 21023.8 0.669848
\(996\) 0 0
\(997\) −4797.45 −0.152394 −0.0761970 0.997093i \(-0.524278\pi\)
−0.0761970 + 0.997093i \(0.524278\pi\)
\(998\) −4562.06 −0.144699
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.4.a.a.1.7 12
3.2 odd 2 729.4.a.b.1.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.4.a.a.1.7 12 1.1 even 1 trivial
729.4.a.b.1.6 yes 12 3.2 odd 2