Properties

Label 783.2.u.a.397.2
Level $783$
Weight $2$
Character 783.397
Analytic conductor $6.252$
Analytic rank $0$
Dimension $336$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [783,2,Mod(181,783)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(783, base_ring=CyclotomicField(42))
 
chi = DirichletCharacter(H, H._module([28, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("783.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 783 = 3^{3} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 783.u (of order \(21\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.25228647827\)
Analytic rank: \(0\)
Dimension: \(336\)
Relative dimension: \(28\) over \(\Q(\zeta_{21})\)
Twist minimal: no (minimal twist has level 261)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 397.2
Character \(\chi\) \(=\) 783.397
Dual form 783.2.u.a.712.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.187058 + 2.49612i) q^{2} +(-4.21795 - 0.635753i) q^{4} +(0.730934 + 0.498342i) q^{5} +(-3.13454 + 0.472455i) q^{7} +(1.26192 - 5.52885i) q^{8} +(-1.38065 + 1.73128i) q^{10} +(-3.88874 - 1.19952i) q^{11} +(-0.789571 + 0.732615i) q^{13} +(-0.592963 - 7.91255i) q^{14} +(5.41243 + 1.66951i) q^{16} +5.99968 q^{17} +(-2.35611 + 2.95447i) q^{19} +(-2.76622 - 2.56667i) q^{20} +(3.72155 - 9.48236i) q^{22} +(-0.229754 - 3.06585i) q^{23} +(-1.54079 - 3.92586i) q^{25} +(-1.68100 - 2.10790i) q^{26} +13.5217 q^{28} +(4.05681 - 3.54152i) q^{29} +(-4.60383 - 3.13884i) q^{31} +(-1.03602 + 2.63973i) q^{32} +(-1.12229 + 14.9759i) q^{34} +(-2.52658 - 1.21674i) q^{35} +(2.53992 - 11.1281i) q^{37} +(-6.93398 - 6.43379i) q^{38} +(3.67764 - 3.41235i) q^{40} +(2.13847 + 3.70394i) q^{41} +(-4.83932 + 3.29939i) q^{43} +(15.6399 + 7.53177i) q^{44} +7.69570 q^{46} +(-4.69688 - 1.44880i) q^{47} +(2.91310 - 0.898572i) q^{49} +(10.0876 - 3.11162i) q^{50} +(3.79613 - 2.58816i) q^{52} +(-2.95463 + 1.42288i) q^{53} +(-2.24464 - 2.81469i) q^{55} +(-1.34341 + 17.9266i) q^{56} +(8.08118 + 10.7887i) q^{58} +(1.23521 + 2.13945i) q^{59} +(-4.04854 + 0.610220i) q^{61} +(8.69610 - 10.9046i) q^{62} +(3.81101 + 1.83529i) q^{64} +(-0.942217 + 0.142016i) q^{65} +(-6.60889 + 2.03857i) q^{67} +(-25.3063 - 3.81432i) q^{68} +(3.50974 - 6.07905i) q^{70} +(-2.34734 - 10.2844i) q^{71} +(-8.54599 - 4.11553i) q^{73} +(27.3020 + 8.42155i) q^{74} +(11.8163 - 10.9639i) q^{76} +(12.7561 + 1.92267i) q^{77} +(7.61429 + 7.06503i) q^{79} +(3.12414 + 3.91755i) q^{80} +(-9.64548 + 4.64502i) q^{82} +(3.73059 + 9.50538i) q^{83} +(4.38537 + 2.98990i) q^{85} +(-7.33043 - 12.6967i) q^{86} +(-11.5392 + 19.9865i) q^{88} +(-11.8062 + 5.68557i) q^{89} +(2.12881 - 2.66945i) q^{91} +(-0.980035 + 13.0777i) q^{92} +(4.49495 - 11.4530i) q^{94} +(-3.19450 + 0.985373i) q^{95} +(-2.49026 - 6.34507i) q^{97} +(1.69802 + 7.43952i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 336 q + 5 q^{2} + 21 q^{4} + 9 q^{5} - 5 q^{7} - 2 q^{8} - 28 q^{10} + q^{11} - 5 q^{13} + 9 q^{14} + 21 q^{16} + 60 q^{17} - 20 q^{19} + 15 q^{20} - 13 q^{22} + 32 q^{23} + 15 q^{25} + 4 q^{26} - 72 q^{28}+ \cdots + 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/783\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\)
\(\chi(n)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.187058 + 2.49612i −0.132270 + 1.76502i 0.398182 + 0.917306i \(0.369641\pi\)
−0.530452 + 0.847715i \(0.677978\pi\)
\(3\) 0 0
\(4\) −4.21795 0.635753i −2.10897 0.317877i
\(5\) 0.730934 + 0.498342i 0.326883 + 0.222865i 0.715630 0.698479i \(-0.246140\pi\)
−0.388747 + 0.921345i \(0.627092\pi\)
\(6\) 0 0
\(7\) −3.13454 + 0.472455i −1.18474 + 0.178571i −0.711710 0.702473i \(-0.752079\pi\)
−0.473033 + 0.881044i \(0.656841\pi\)
\(8\) 1.26192 5.52885i 0.446157 1.95474i
\(9\) 0 0
\(10\) −1.38065 + 1.73128i −0.436599 + 0.547478i
\(11\) −3.88874 1.19952i −1.17250 0.361668i −0.353484 0.935441i \(-0.615003\pi\)
−0.819014 + 0.573773i \(0.805479\pi\)
\(12\) 0 0
\(13\) −0.789571 + 0.732615i −0.218988 + 0.203191i −0.782036 0.623233i \(-0.785819\pi\)
0.563049 + 0.826424i \(0.309628\pi\)
\(14\) −0.592963 7.91255i −0.158476 2.11472i
\(15\) 0 0
\(16\) 5.41243 + 1.66951i 1.35311 + 0.417378i
\(17\) 5.99968 1.45514 0.727569 0.686035i \(-0.240650\pi\)
0.727569 + 0.686035i \(0.240650\pi\)
\(18\) 0 0
\(19\) −2.35611 + 2.95447i −0.540530 + 0.677803i −0.974826 0.222967i \(-0.928426\pi\)
0.434296 + 0.900770i \(0.356997\pi\)
\(20\) −2.76622 2.56667i −0.618545 0.573926i
\(21\) 0 0
\(22\) 3.72155 9.48236i 0.793437 2.02165i
\(23\) −0.229754 3.06585i −0.0479070 0.639274i −0.968542 0.248850i \(-0.919947\pi\)
0.920635 0.390424i \(-0.127672\pi\)
\(24\) 0 0
\(25\) −1.54079 3.92586i −0.308157 0.785172i
\(26\) −1.68100 2.10790i −0.329671 0.413394i
\(27\) 0 0
\(28\) 13.5217 2.55536
\(29\) 4.05681 3.54152i 0.753330 0.657643i
\(30\) 0 0
\(31\) −4.60383 3.13884i −0.826873 0.563753i 0.0742880 0.997237i \(-0.476332\pi\)
−0.901161 + 0.433484i \(0.857284\pi\)
\(32\) −1.03602 + 2.63973i −0.183144 + 0.466644i
\(33\) 0 0
\(34\) −1.12229 + 14.9759i −0.192471 + 2.56835i
\(35\) −2.52658 1.21674i −0.427071 0.205666i
\(36\) 0 0
\(37\) 2.53992 11.1281i 0.417561 1.82945i −0.128502 0.991709i \(-0.541017\pi\)
0.546062 0.837744i \(-0.316126\pi\)
\(38\) −6.93398 6.43379i −1.12484 1.04370i
\(39\) 0 0
\(40\) 3.67764 3.41235i 0.581486 0.539540i
\(41\) 2.13847 + 3.70394i 0.333973 + 0.578458i 0.983287 0.182062i \(-0.0582773\pi\)
−0.649314 + 0.760520i \(0.724944\pi\)
\(42\) 0 0
\(43\) −4.83932 + 3.29939i −0.737989 + 0.503152i −0.873017 0.487689i \(-0.837840\pi\)
0.135028 + 0.990842i \(0.456888\pi\)
\(44\) 15.6399 + 7.53177i 2.35780 + 1.13546i
\(45\) 0 0
\(46\) 7.69570 1.13467
\(47\) −4.69688 1.44880i −0.685110 0.211329i −0.0673904 0.997727i \(-0.521467\pi\)
−0.617720 + 0.786398i \(0.711943\pi\)
\(48\) 0 0
\(49\) 2.91310 0.898572i 0.416157 0.128367i
\(50\) 10.0876 3.11162i 1.42660 0.440049i
\(51\) 0 0
\(52\) 3.79613 2.58816i 0.526429 0.358913i
\(53\) −2.95463 + 1.42288i −0.405850 + 0.195447i −0.625661 0.780095i \(-0.715170\pi\)
0.219810 + 0.975543i \(0.429456\pi\)
\(54\) 0 0
\(55\) −2.24464 2.81469i −0.302667 0.379532i
\(56\) −1.34341 + 17.9266i −0.179521 + 2.39554i
\(57\) 0 0
\(58\) 8.08118 + 10.7887i 1.06111 + 1.41663i
\(59\) 1.23521 + 2.13945i 0.160811 + 0.278532i 0.935160 0.354226i \(-0.115256\pi\)
−0.774349 + 0.632759i \(0.781922\pi\)
\(60\) 0 0
\(61\) −4.04854 + 0.610220i −0.518363 + 0.0781306i −0.403013 0.915194i \(-0.632037\pi\)
−0.115350 + 0.993325i \(0.536799\pi\)
\(62\) 8.69610 10.9046i 1.10441 1.38488i
\(63\) 0 0
\(64\) 3.81101 + 1.83529i 0.476376 + 0.229411i
\(65\) −0.942217 + 0.142016i −0.116868 + 0.0176150i
\(66\) 0 0
\(67\) −6.60889 + 2.03857i −0.807404 + 0.249051i −0.670861 0.741583i \(-0.734075\pi\)
−0.136543 + 0.990634i \(0.543599\pi\)
\(68\) −25.3063 3.81432i −3.06884 0.462554i
\(69\) 0 0
\(70\) 3.50974 6.07905i 0.419494 0.726585i
\(71\) −2.34734 10.2844i −0.278578 1.22053i −0.899592 0.436731i \(-0.856136\pi\)
0.621014 0.783800i \(-0.286721\pi\)
\(72\) 0 0
\(73\) −8.54599 4.11553i −1.00023 0.481686i −0.139215 0.990262i \(-0.544458\pi\)
−0.861017 + 0.508576i \(0.830172\pi\)
\(74\) 27.3020 + 8.42155i 3.17379 + 0.978986i
\(75\) 0 0
\(76\) 11.8163 10.9639i 1.35542 1.25765i
\(77\) 12.7561 + 1.92267i 1.45369 + 0.219109i
\(78\) 0 0
\(79\) 7.61429 + 7.06503i 0.856674 + 0.794878i 0.980313 0.197450i \(-0.0632659\pi\)
−0.123639 + 0.992327i \(0.539456\pi\)
\(80\) 3.12414 + 3.91755i 0.349289 + 0.437995i
\(81\) 0 0
\(82\) −9.64548 + 4.64502i −1.06517 + 0.512956i
\(83\) 3.73059 + 9.50538i 0.409485 + 1.04335i 0.975703 + 0.219096i \(0.0703107\pi\)
−0.566218 + 0.824255i \(0.691594\pi\)
\(84\) 0 0
\(85\) 4.38537 + 2.98990i 0.475660 + 0.324300i
\(86\) −7.33043 12.6967i −0.790461 1.36912i
\(87\) 0 0
\(88\) −11.5392 + 19.9865i −1.23009 + 2.13057i
\(89\) −11.8062 + 5.68557i −1.25146 + 0.602669i −0.937902 0.346901i \(-0.887234\pi\)
−0.313554 + 0.949570i \(0.601520\pi\)
\(90\) 0 0
\(91\) 2.12881 2.66945i 0.223160 0.279834i
\(92\) −0.980035 + 13.0777i −0.102176 + 1.36344i
\(93\) 0 0
\(94\) 4.49495 11.4530i 0.463619 1.18128i
\(95\) −3.19450 + 0.985373i −0.327749 + 0.101097i
\(96\) 0 0
\(97\) −2.49026 6.34507i −0.252847 0.644244i 0.746940 0.664892i \(-0.231522\pi\)
−0.999787 + 0.0206477i \(0.993427\pi\)
\(98\) 1.69802 + 7.43952i 0.171526 + 0.751505i
\(99\) 0 0
\(100\) 4.00308 + 17.5386i 0.400308 + 1.75386i
\(101\) −9.98856 + 6.81009i −0.993899 + 0.677629i −0.946988 0.321270i \(-0.895890\pi\)
−0.0469115 + 0.998899i \(0.514938\pi\)
\(102\) 0 0
\(103\) −13.6037 + 12.6224i −1.34041 + 1.24372i −0.394658 + 0.918828i \(0.629137\pi\)
−0.945752 + 0.324890i \(0.894673\pi\)
\(104\) 3.05414 + 5.28992i 0.299483 + 0.518720i
\(105\) 0 0
\(106\) −2.99898 7.64127i −0.291287 0.742186i
\(107\) −2.91384 + 12.7663i −0.281691 + 1.23417i 0.613933 + 0.789358i \(0.289586\pi\)
−0.895624 + 0.444811i \(0.853271\pi\)
\(108\) 0 0
\(109\) −3.52478 4.41994i −0.337613 0.423353i 0.583824 0.811880i \(-0.301556\pi\)
−0.921438 + 0.388527i \(0.872984\pi\)
\(110\) 7.44567 5.07637i 0.709916 0.484013i
\(111\) 0 0
\(112\) −17.7542 2.67602i −1.67762 0.252860i
\(113\) 0.877706 2.23636i 0.0825677 0.210379i −0.883628 0.468190i \(-0.844906\pi\)
0.966195 + 0.257811i \(0.0830013\pi\)
\(114\) 0 0
\(115\) 1.35991 2.35543i 0.126812 0.219645i
\(116\) −19.3629 + 12.3588i −1.79780 + 1.14749i
\(117\) 0 0
\(118\) −5.57137 + 2.68303i −0.512886 + 0.246993i
\(119\) −18.8062 + 2.83458i −1.72396 + 0.259846i
\(120\) 0 0
\(121\) 4.59480 + 3.13268i 0.417709 + 0.284789i
\(122\) −0.765867 10.2198i −0.0693383 0.925255i
\(123\) 0 0
\(124\) 17.4232 + 16.1664i 1.56465 + 1.45178i
\(125\) 1.81448 7.94974i 0.162292 0.711046i
\(126\) 0 0
\(127\) −0.808610 3.54275i −0.0717525 0.314368i 0.926297 0.376794i \(-0.122974\pi\)
−0.998050 + 0.0624257i \(0.980116\pi\)
\(128\) −8.12973 + 14.0811i −0.718573 + 1.24461i
\(129\) 0 0
\(130\) −0.178240 2.37845i −0.0156327 0.208604i
\(131\) 0.651429 + 8.69272i 0.0569156 + 0.759486i 0.950526 + 0.310644i \(0.100545\pi\)
−0.893611 + 0.448843i \(0.851836\pi\)
\(132\) 0 0
\(133\) 5.98947 10.3741i 0.519353 0.899546i
\(134\) −3.85227 16.8779i −0.332785 1.45803i
\(135\) 0 0
\(136\) 7.57114 33.1713i 0.649220 2.84442i
\(137\) −9.12378 8.46563i −0.779498 0.723268i 0.186321 0.982489i \(-0.440344\pi\)
−0.965818 + 0.259221i \(0.916534\pi\)
\(138\) 0 0
\(139\) −1.45591 19.4278i −0.123489 1.64784i −0.623499 0.781824i \(-0.714289\pi\)
0.500010 0.866020i \(-0.333330\pi\)
\(140\) 9.88345 + 6.73842i 0.835304 + 0.569500i
\(141\) 0 0
\(142\) 26.1101 3.93546i 2.19111 0.330257i
\(143\) 3.94922 1.90184i 0.330250 0.159040i
\(144\) 0 0
\(145\) 4.73014 0.566936i 0.392817 0.0470814i
\(146\) 11.8714 20.5619i 0.982488 1.70172i
\(147\) 0 0
\(148\) −17.7880 + 45.3231i −1.46216 + 3.72554i
\(149\) 6.34835 + 0.956859i 0.520077 + 0.0783890i 0.403835 0.914832i \(-0.367677\pi\)
0.116242 + 0.993221i \(0.462915\pi\)
\(150\) 0 0
\(151\) 1.35513 0.923912i 0.110279 0.0751869i −0.506925 0.861990i \(-0.669218\pi\)
0.617204 + 0.786803i \(0.288265\pi\)
\(152\) 13.3616 + 16.7549i 1.08377 + 1.35900i
\(153\) 0 0
\(154\) −7.18535 + 31.4811i −0.579012 + 2.53682i
\(155\) −1.80088 4.58857i −0.144650 0.368563i
\(156\) 0 0
\(157\) 6.60828 + 11.4459i 0.527398 + 0.913481i 0.999490 + 0.0319312i \(0.0101657\pi\)
−0.472092 + 0.881549i \(0.656501\pi\)
\(158\) −19.0594 + 17.6846i −1.51629 + 1.40691i
\(159\) 0 0
\(160\) −2.07275 + 1.41318i −0.163865 + 0.111722i
\(161\) 2.16865 + 9.50148i 0.170914 + 0.748821i
\(162\) 0 0
\(163\) −4.13036 18.0963i −0.323515 1.41741i −0.831250 0.555899i \(-0.812374\pi\)
0.507735 0.861513i \(-0.330483\pi\)
\(164\) −6.66516 16.9825i −0.520461 1.32611i
\(165\) 0 0
\(166\) −24.4244 + 7.53392i −1.89570 + 0.584746i
\(167\) 1.34700 3.43211i 0.104234 0.265585i −0.869236 0.494397i \(-0.835389\pi\)
0.973471 + 0.228812i \(0.0734842\pi\)
\(168\) 0 0
\(169\) −0.884793 + 11.8067i −0.0680610 + 0.908211i
\(170\) −8.28345 + 10.3871i −0.635311 + 0.796655i
\(171\) 0 0
\(172\) 22.5096 10.8400i 1.71634 0.826545i
\(173\) 9.19208 15.9212i 0.698861 1.21046i −0.270000 0.962860i \(-0.587024\pi\)
0.968862 0.247603i \(-0.0796428\pi\)
\(174\) 0 0
\(175\) 6.68444 + 11.5778i 0.505297 + 0.875199i
\(176\) −19.0449 12.9846i −1.43556 0.978751i
\(177\) 0 0
\(178\) −11.9834 30.5332i −0.898194 2.28856i
\(179\) 5.72547 2.75724i 0.427942 0.206086i −0.207499 0.978235i \(-0.566532\pi\)
0.635441 + 0.772149i \(0.280818\pi\)
\(180\) 0 0
\(181\) 0.610028 + 0.764951i 0.0453430 + 0.0568583i 0.803986 0.594648i \(-0.202709\pi\)
−0.758643 + 0.651507i \(0.774137\pi\)
\(182\) 6.26504 + 5.81311i 0.464396 + 0.430896i
\(183\) 0 0
\(184\) −17.2406 2.59860i −1.27099 0.191571i
\(185\) 7.40213 6.86818i 0.544216 0.504958i
\(186\) 0 0
\(187\) −23.3312 7.19672i −1.70615 0.526276i
\(188\) 18.8901 + 9.09700i 1.37770 + 0.663467i
\(189\) 0 0
\(190\) −1.86205 8.15817i −0.135087 0.591856i
\(191\) 7.67720 13.2973i 0.555503 0.962159i −0.442361 0.896837i \(-0.645859\pi\)
0.997864 0.0653223i \(-0.0208076\pi\)
\(192\) 0 0
\(193\) −21.1364 3.18580i −1.52143 0.229319i −0.665496 0.746401i \(-0.731780\pi\)
−0.855936 + 0.517082i \(0.827018\pi\)
\(194\) 16.3039 5.02907i 1.17055 0.361066i
\(195\) 0 0
\(196\) −12.8586 + 1.93812i −0.918469 + 0.138437i
\(197\) 2.63806 + 1.27042i 0.187954 + 0.0905140i 0.525494 0.850797i \(-0.323880\pi\)
−0.337540 + 0.941311i \(0.609595\pi\)
\(198\) 0 0
\(199\) −10.4646 + 13.1221i −0.741813 + 0.930204i −0.999349 0.0360642i \(-0.988518\pi\)
0.257536 + 0.966269i \(0.417089\pi\)
\(200\) −23.6498 + 3.56464i −1.67230 + 0.252058i
\(201\) 0 0
\(202\) −15.1303 26.2065i −1.06457 1.84388i
\(203\) −11.0430 + 13.0177i −0.775067 + 0.913661i
\(204\) 0 0
\(205\) −0.282749 + 3.77302i −0.0197480 + 0.263519i
\(206\) −28.9622 36.3175i −2.01789 2.53036i
\(207\) 0 0
\(208\) −5.49661 + 2.64703i −0.381121 + 0.183538i
\(209\) 12.7062 8.66297i 0.878909 0.599230i
\(210\) 0 0
\(211\) 20.7853 6.41142i 1.43092 0.441380i 0.520072 0.854122i \(-0.325905\pi\)
0.910848 + 0.412742i \(0.135429\pi\)
\(212\) 13.3671 4.12320i 0.918055 0.283183i
\(213\) 0 0
\(214\) −31.3212 9.66132i −2.14108 0.660434i
\(215\) −5.18145 −0.353372
\(216\) 0 0
\(217\) 15.9139 + 7.66371i 1.08030 + 0.520246i
\(218\) 11.6920 7.97149i 0.791884 0.539897i
\(219\) 0 0
\(220\) 7.67832 + 13.2992i 0.517672 + 0.896634i
\(221\) −4.73718 + 4.39546i −0.318657 + 0.295671i
\(222\) 0 0
\(223\) 15.1181 + 14.0275i 1.01238 + 0.939352i 0.998165 0.0605468i \(-0.0192844\pi\)
0.0142155 + 0.999899i \(0.495475\pi\)
\(224\) 2.00028 8.76382i 0.133650 0.585557i
\(225\) 0 0
\(226\) 5.41803 + 2.60919i 0.360402 + 0.173561i
\(227\) 2.04778 27.3257i 0.135916 1.81367i −0.346850 0.937921i \(-0.612749\pi\)
0.482766 0.875750i \(-0.339632\pi\)
\(228\) 0 0
\(229\) −2.89065 + 7.36526i −0.191020 + 0.486710i −0.994011 0.109281i \(-0.965145\pi\)
0.802991 + 0.595991i \(0.203240\pi\)
\(230\) 5.62505 + 3.83509i 0.370905 + 0.252878i
\(231\) 0 0
\(232\) −14.4611 26.8986i −0.949419 1.76598i
\(233\) 0.137282 0.00899364 0.00449682 0.999990i \(-0.498569\pi\)
0.00449682 + 0.999990i \(0.498569\pi\)
\(234\) 0 0
\(235\) −2.71111 3.39963i −0.176853 0.221767i
\(236\) −3.84989 9.80936i −0.250607 0.638535i
\(237\) 0 0
\(238\) −3.55759 47.4728i −0.230605 3.07720i
\(239\) 6.83054 17.4039i 0.441831 1.12577i −0.520495 0.853865i \(-0.674252\pi\)
0.962325 0.271901i \(-0.0876524\pi\)
\(240\) 0 0
\(241\) −14.3976 13.3590i −0.927429 0.860529i 0.0630751 0.998009i \(-0.479909\pi\)
−0.990505 + 0.137480i \(0.956100\pi\)
\(242\) −8.67903 + 10.8832i −0.557909 + 0.699596i
\(243\) 0 0
\(244\) 17.4645 1.11805
\(245\) 2.57708 + 0.794924i 0.164644 + 0.0507858i
\(246\) 0 0
\(247\) −0.304172 4.05889i −0.0193540 0.258261i
\(248\) −23.1639 + 21.4929i −1.47091 + 1.36480i
\(249\) 0 0
\(250\) 19.5041 + 6.01621i 1.23355 + 0.380498i
\(251\) −6.72717 + 8.43561i −0.424615 + 0.532451i −0.947416 0.320004i \(-0.896316\pi\)
0.522801 + 0.852455i \(0.324887\pi\)
\(252\) 0 0
\(253\) −2.78409 + 12.1979i −0.175034 + 0.766874i
\(254\) 8.99437 1.35568i 0.564357 0.0850632i
\(255\) 0 0
\(256\) −26.6375 18.1612i −1.66485 1.13507i
\(257\) −27.3546 4.12305i −1.70633 0.257189i −0.777820 0.628487i \(-0.783675\pi\)
−0.928514 + 0.371298i \(0.878913\pi\)
\(258\) 0 0
\(259\) −2.70394 + 36.0815i −0.168015 + 2.24200i
\(260\) 4.06451 0.252070
\(261\) 0 0
\(262\) −21.8199 −1.34804
\(263\) −1.81231 + 24.1836i −0.111752 + 1.49122i 0.606301 + 0.795236i \(0.292653\pi\)
−0.718052 + 0.695989i \(0.754966\pi\)
\(264\) 0 0
\(265\) −2.86872 0.432390i −0.176224 0.0265615i
\(266\) 24.7745 + 16.8910i 1.51902 + 1.03565i
\(267\) 0 0
\(268\) 29.1720 4.39697i 1.78196 0.268587i
\(269\) −3.73894 + 16.3814i −0.227967 + 0.998791i 0.723327 + 0.690506i \(0.242612\pi\)
−0.951294 + 0.308285i \(0.900245\pi\)
\(270\) 0 0
\(271\) −0.616154 + 0.772632i −0.0374287 + 0.0469341i −0.800194 0.599742i \(-0.795270\pi\)
0.762765 + 0.646676i \(0.223841\pi\)
\(272\) 32.4729 + 10.0166i 1.96896 + 0.607343i
\(273\) 0 0
\(274\) 22.8379 21.1905i 1.37969 1.28016i
\(275\) 1.28258 + 17.1148i 0.0773424 + 1.03206i
\(276\) 0 0
\(277\) 5.76285 + 1.77760i 0.346256 + 0.106806i 0.463005 0.886356i \(-0.346771\pi\)
−0.116749 + 0.993161i \(0.537247\pi\)
\(278\) 48.7664 2.92481
\(279\) 0 0
\(280\) −9.91551 + 12.4337i −0.592565 + 0.743053i
\(281\) 2.69477 + 2.50038i 0.160757 + 0.149160i 0.756450 0.654052i \(-0.226932\pi\)
−0.595693 + 0.803212i \(0.703123\pi\)
\(282\) 0 0
\(283\) −2.00570 + 5.11045i −0.119227 + 0.303785i −0.978011 0.208552i \(-0.933125\pi\)
0.858785 + 0.512337i \(0.171220\pi\)
\(284\) 3.36264 + 44.8713i 0.199536 + 2.66262i
\(285\) 0 0
\(286\) 4.00849 + 10.2135i 0.237027 + 0.603935i
\(287\) −8.45306 10.5998i −0.498968 0.625686i
\(288\) 0 0
\(289\) 18.9962 1.11742
\(290\) 0.530326 + 11.9130i 0.0311418 + 0.699558i
\(291\) 0 0
\(292\) 33.4301 + 22.7922i 1.95635 + 1.33381i
\(293\) −10.0571 + 25.6250i −0.587541 + 1.49703i 0.259629 + 0.965708i \(0.416400\pi\)
−0.847170 + 0.531322i \(0.821696\pi\)
\(294\) 0 0
\(295\) −0.163320 + 2.17935i −0.00950885 + 0.126887i
\(296\) −58.3205 28.0857i −3.38981 1.63245i
\(297\) 0 0
\(298\) −3.57594 + 15.6672i −0.207149 + 0.907578i
\(299\) 2.42750 + 2.25239i 0.140386 + 0.130259i
\(300\) 0 0
\(301\) 13.6102 12.6284i 0.784479 0.727890i
\(302\) 2.05270 + 3.55539i 0.118120 + 0.204590i
\(303\) 0 0
\(304\) −17.6848 + 12.0573i −1.01430 + 0.691535i
\(305\) −3.26331 1.57153i −0.186857 0.0899855i
\(306\) 0 0
\(307\) −8.42970 −0.481108 −0.240554 0.970636i \(-0.577329\pi\)
−0.240554 + 0.970636i \(0.577329\pi\)
\(308\) −52.5822 16.2195i −2.99615 0.924190i
\(309\) 0 0
\(310\) 11.7905 3.63688i 0.669654 0.206561i
\(311\) 24.9091 7.68345i 1.41247 0.435689i 0.507678 0.861547i \(-0.330504\pi\)
0.904790 + 0.425859i \(0.140028\pi\)
\(312\) 0 0
\(313\) 2.73544 1.86499i 0.154616 0.105416i −0.483541 0.875322i \(-0.660649\pi\)
0.638157 + 0.769906i \(0.279697\pi\)
\(314\) −29.8064 + 14.3540i −1.68207 + 0.810043i
\(315\) 0 0
\(316\) −27.6250 34.6407i −1.55403 1.94869i
\(317\) −1.77512 + 23.6873i −0.0997005 + 1.33041i 0.693061 + 0.720879i \(0.256262\pi\)
−0.792761 + 0.609532i \(0.791357\pi\)
\(318\) 0 0
\(319\) −20.0239 + 8.90581i −1.12113 + 0.498630i
\(320\) 1.87100 + 3.24066i 0.104592 + 0.181158i
\(321\) 0 0
\(322\) −24.1225 + 3.63588i −1.34429 + 0.202619i
\(323\) −14.1359 + 17.7259i −0.786545 + 0.986296i
\(324\) 0 0
\(325\) 4.09270 + 1.97094i 0.227022 + 0.109328i
\(326\) 45.9431 6.92481i 2.54455 0.383530i
\(327\) 0 0
\(328\) 23.1771 7.14919i 1.27974 0.394748i
\(329\) 15.4070 + 2.32224i 0.849418 + 0.128029i
\(330\) 0 0
\(331\) 10.4506 18.1009i 0.574415 0.994916i −0.421690 0.906740i \(-0.638563\pi\)
0.996105 0.0881761i \(-0.0281038\pi\)
\(332\) −9.69234 42.4649i −0.531936 2.33057i
\(333\) 0 0
\(334\) 8.31498 + 4.00428i 0.454975 + 0.219105i
\(335\) −5.84657 1.80343i −0.319432 0.0985317i
\(336\) 0 0
\(337\) −6.18563 + 5.73942i −0.336953 + 0.312646i −0.830442 0.557106i \(-0.811912\pi\)
0.493489 + 0.869752i \(0.335721\pi\)
\(338\) −29.3055 4.41709i −1.59401 0.240258i
\(339\) 0 0
\(340\) −16.5964 15.3992i −0.900067 0.835140i
\(341\) 14.1380 + 17.7285i 0.765616 + 0.960052i
\(342\) 0 0
\(343\) 11.2855 5.43479i 0.609357 0.293451i
\(344\) 12.1350 + 30.9194i 0.654274 + 1.66706i
\(345\) 0 0
\(346\) 38.0216 + 25.9227i 2.04405 + 1.39361i
\(347\) −1.60263 2.77583i −0.0860334 0.149014i 0.819798 0.572653i \(-0.194086\pi\)
−0.905831 + 0.423639i \(0.860753\pi\)
\(348\) 0 0
\(349\) −2.78553 + 4.82468i −0.149106 + 0.258259i −0.930897 0.365281i \(-0.880973\pi\)
0.781791 + 0.623540i \(0.214306\pi\)
\(350\) −30.1499 + 14.5194i −1.61158 + 0.776096i
\(351\) 0 0
\(352\) 7.19521 9.02251i 0.383506 0.480901i
\(353\) 0.789451 10.5345i 0.0420183 0.560695i −0.935976 0.352063i \(-0.885480\pi\)
0.977994 0.208631i \(-0.0669008\pi\)
\(354\) 0 0
\(355\) 3.40939 8.68698i 0.180951 0.461057i
\(356\) 53.4126 16.4756i 2.83086 0.873205i
\(357\) 0 0
\(358\) 5.81140 + 14.8072i 0.307142 + 0.782586i
\(359\) 3.72680 + 16.3282i 0.196693 + 0.861769i 0.972888 + 0.231276i \(0.0742900\pi\)
−0.776195 + 0.630493i \(0.782853\pi\)
\(360\) 0 0
\(361\) 1.05026 + 4.60147i 0.0552767 + 0.242183i
\(362\) −2.02352 + 1.37961i −0.106354 + 0.0725107i
\(363\) 0 0
\(364\) −10.6763 + 9.90618i −0.559592 + 0.519225i
\(365\) −4.19561 7.26701i −0.219608 0.380372i
\(366\) 0 0
\(367\) 12.7261 + 32.4256i 0.664297 + 1.69260i 0.719835 + 0.694145i \(0.244218\pi\)
−0.0555376 + 0.998457i \(0.517687\pi\)
\(368\) 3.87495 16.9773i 0.201996 0.885002i
\(369\) 0 0
\(370\) 15.7591 + 19.7613i 0.819279 + 1.02734i
\(371\) 8.58917 5.85599i 0.445927 0.304028i
\(372\) 0 0
\(373\) 0.450470 + 0.0678974i 0.0233244 + 0.00351559i 0.160694 0.987004i \(-0.448627\pi\)
−0.137370 + 0.990520i \(0.543865\pi\)
\(374\) 22.3281 56.8912i 1.15456 2.94177i
\(375\) 0 0
\(376\) −13.9373 + 24.1401i −0.718760 + 1.24493i
\(377\) −0.608570 + 5.76836i −0.0313429 + 0.297085i
\(378\) 0 0
\(379\) 2.09017 1.00658i 0.107365 0.0517043i −0.379430 0.925220i \(-0.623880\pi\)
0.486795 + 0.873516i \(0.338166\pi\)
\(380\) 14.1007 2.12534i 0.723350 0.109027i
\(381\) 0 0
\(382\) 31.7555 + 21.6506i 1.62475 + 1.10774i
\(383\) 1.00028 + 13.3479i 0.0511121 + 0.682044i 0.962636 + 0.270797i \(0.0872873\pi\)
−0.911524 + 0.411246i \(0.865094\pi\)
\(384\) 0 0
\(385\) 8.36572 + 7.76225i 0.426356 + 0.395601i
\(386\) 11.9059 52.1630i 0.605993 2.65503i
\(387\) 0 0
\(388\) 6.46987 + 28.3463i 0.328458 + 1.43907i
\(389\) 16.0062 27.7235i 0.811544 1.40564i −0.100239 0.994963i \(-0.531961\pi\)
0.911783 0.410672i \(-0.134706\pi\)
\(390\) 0 0
\(391\) −1.37845 18.3941i −0.0697112 0.930232i
\(392\) −1.29196 17.2400i −0.0652538 0.870752i
\(393\) 0 0
\(394\) −3.66460 + 6.34727i −0.184620 + 0.319771i
\(395\) 2.04474 + 8.95859i 0.102882 + 0.450755i
\(396\) 0 0
\(397\) −3.06938 + 13.4479i −0.154048 + 0.674928i 0.837636 + 0.546229i \(0.183937\pi\)
−0.991684 + 0.128699i \(0.958920\pi\)
\(398\) −30.7969 28.5754i −1.54371 1.43235i
\(399\) 0 0
\(400\) −1.78512 23.8208i −0.0892561 1.19104i
\(401\) −10.6382 7.25301i −0.531247 0.362198i 0.267792 0.963477i \(-0.413706\pi\)
−0.799040 + 0.601278i \(0.794658\pi\)
\(402\) 0 0
\(403\) 5.93462 0.894500i 0.295624 0.0445582i
\(404\) 46.4607 22.3743i 2.31151 1.11316i
\(405\) 0 0
\(406\) −30.4279 29.9997i −1.51011 1.48886i
\(407\) −23.2255 + 40.2277i −1.15124 + 1.99401i
\(408\) 0 0
\(409\) −2.48140 + 6.32251i −0.122697 + 0.312628i −0.979004 0.203839i \(-0.934658\pi\)
0.856307 + 0.516467i \(0.172753\pi\)
\(410\) −9.36501 1.41155i −0.462505 0.0697114i
\(411\) 0 0
\(412\) 65.4043 44.5919i 3.22224 2.19688i
\(413\) −4.88261 6.12260i −0.240257 0.301273i
\(414\) 0 0
\(415\) −2.01012 + 8.80691i −0.0986729 + 0.432314i
\(416\) −1.11590 2.84326i −0.0547114 0.139402i
\(417\) 0 0
\(418\) 19.2470 + 33.3367i 0.941401 + 1.63055i
\(419\) 0.221291 0.205328i 0.0108108 0.0100309i −0.674749 0.738047i \(-0.735748\pi\)
0.685560 + 0.728016i \(0.259558\pi\)
\(420\) 0 0
\(421\) 8.62075 5.87753i 0.420150 0.286453i −0.334733 0.942313i \(-0.608646\pi\)
0.754883 + 0.655860i \(0.227694\pi\)
\(422\) 12.1156 + 53.0819i 0.589778 + 2.58398i
\(423\) 0 0
\(424\) 4.13835 + 18.1313i 0.200976 + 0.880533i
\(425\) −9.24423 23.5539i −0.448411 1.14253i
\(426\) 0 0
\(427\) 12.4020 3.82551i 0.600175 0.185129i
\(428\) 20.4066 51.9953i 0.986392 2.51329i
\(429\) 0 0
\(430\) 0.969231 12.9335i 0.0467405 0.623708i
\(431\) 10.1298 12.7023i 0.487934 0.611850i −0.475526 0.879702i \(-0.657742\pi\)
0.963460 + 0.267852i \(0.0863137\pi\)
\(432\) 0 0
\(433\) 18.6301 8.97180i 0.895307 0.431157i 0.0711152 0.997468i \(-0.477344\pi\)
0.824192 + 0.566311i \(0.191630\pi\)
\(434\) −22.1063 + 38.2893i −1.06114 + 1.83794i
\(435\) 0 0
\(436\) 12.0574 + 20.8840i 0.577443 + 1.00016i
\(437\) 9.59930 + 6.54469i 0.459197 + 0.313075i
\(438\) 0 0
\(439\) −3.95578 10.0792i −0.188799 0.481052i 0.804863 0.593461i \(-0.202239\pi\)
−0.993662 + 0.112408i \(0.964144\pi\)
\(440\) −18.3945 + 8.85834i −0.876925 + 0.422305i
\(441\) 0 0
\(442\) −10.0855 12.6468i −0.479716 0.601545i
\(443\) −9.89605 9.18219i −0.470175 0.436259i 0.409159 0.912463i \(-0.365822\pi\)
−0.879335 + 0.476204i \(0.842012\pi\)
\(444\) 0 0
\(445\) −11.4629 1.72776i −0.543394 0.0819035i
\(446\) −37.8423 + 35.1125i −1.79188 + 1.66263i
\(447\) 0 0
\(448\) −12.8128 3.95224i −0.605350 0.186726i
\(449\) 17.8781 + 8.60963i 0.843718 + 0.406313i 0.805242 0.592946i \(-0.202035\pi\)
0.0384763 + 0.999260i \(0.487750\pi\)
\(450\) 0 0
\(451\) −3.87301 16.9688i −0.182373 0.799028i
\(452\) −5.12389 + 8.87484i −0.241008 + 0.417437i
\(453\) 0 0
\(454\) 67.8251 + 10.2230i 3.18319 + 0.479788i
\(455\) 2.88632 0.890311i 0.135313 0.0417384i
\(456\) 0 0
\(457\) −3.45918 + 0.521388i −0.161814 + 0.0243895i −0.229449 0.973321i \(-0.573693\pi\)
0.0676357 + 0.997710i \(0.478454\pi\)
\(458\) −17.8438 8.59313i −0.833787 0.401531i
\(459\) 0 0
\(460\) −7.23349 + 9.07051i −0.337263 + 0.422915i
\(461\) 2.98783 0.450343i 0.139157 0.0209746i −0.0790943 0.996867i \(-0.525203\pi\)
0.218251 + 0.975893i \(0.429965\pi\)
\(462\) 0 0
\(463\) −17.5448 30.3885i −0.815377 1.41227i −0.909057 0.416672i \(-0.863196\pi\)
0.0936794 0.995602i \(-0.470137\pi\)
\(464\) 27.8698 12.3953i 1.29382 0.575438i
\(465\) 0 0
\(466\) −0.0256797 + 0.342672i −0.00118959 + 0.0158740i
\(467\) −0.619173 0.776418i −0.0286519 0.0359284i 0.767299 0.641289i \(-0.221600\pi\)
−0.795951 + 0.605361i \(0.793029\pi\)
\(468\) 0 0
\(469\) 19.7527 9.51239i 0.912094 0.439241i
\(470\) 8.99300 6.13132i 0.414816 0.282817i
\(471\) 0 0
\(472\) 13.3874 4.12947i 0.616206 0.190074i
\(473\) 22.7765 7.02562i 1.04726 0.323038i
\(474\) 0 0
\(475\) 15.2291 + 4.69756i 0.698760 + 0.215539i
\(476\) 81.1258 3.71839
\(477\) 0 0
\(478\) 42.1645 + 20.3054i 1.92856 + 0.928745i
\(479\) −0.343405 + 0.234130i −0.0156906 + 0.0106977i −0.571140 0.820853i \(-0.693499\pi\)
0.555449 + 0.831550i \(0.312546\pi\)
\(480\) 0 0
\(481\) 6.14719 + 10.6472i 0.280288 + 0.485472i
\(482\) 36.0388 33.4391i 1.64152 1.52311i
\(483\) 0 0
\(484\) −17.3890 16.1346i −0.790409 0.733393i
\(485\) 1.34180 5.87882i 0.0609282 0.266944i
\(486\) 0 0
\(487\) −6.26437 3.01676i −0.283866 0.136702i 0.286533 0.958070i \(-0.407497\pi\)
−0.570399 + 0.821368i \(0.693211\pi\)
\(488\) −1.73514 + 23.1538i −0.0785460 + 1.04812i
\(489\) 0 0
\(490\) −2.46629 + 6.28399i −0.111415 + 0.283882i
\(491\) 0.610617 + 0.416312i 0.0275568 + 0.0187879i 0.577020 0.816730i \(-0.304215\pi\)
−0.549463 + 0.835518i \(0.685168\pi\)
\(492\) 0 0
\(493\) 24.3395 21.2480i 1.09620 0.956961i
\(494\) 10.1884 0.458396
\(495\) 0 0
\(496\) −19.6776 24.6749i −0.883550 1.10794i
\(497\) 12.2167 + 31.1277i 0.547996 + 1.39627i
\(498\) 0 0
\(499\) 0.421807 + 5.62863i 0.0188827 + 0.251972i 0.998655 + 0.0518546i \(0.0165133\pi\)
−0.979772 + 0.200117i \(0.935868\pi\)
\(500\) −12.7074 + 32.3780i −0.568294 + 1.44799i
\(501\) 0 0
\(502\) −19.7979 18.3698i −0.883623 0.819882i
\(503\) 8.14676 10.2157i 0.363246 0.455496i −0.566302 0.824198i \(-0.691626\pi\)
0.929548 + 0.368702i \(0.120198\pi\)
\(504\) 0 0
\(505\) −10.6947 −0.475909
\(506\) −29.9265 9.23112i −1.33040 0.410373i
\(507\) 0 0
\(508\) 1.15836 + 15.4572i 0.0513938 + 0.685802i
\(509\) −1.78841 + 1.65940i −0.0792699 + 0.0735517i −0.718813 0.695204i \(-0.755314\pi\)
0.639543 + 0.768755i \(0.279124\pi\)
\(510\) 0 0
\(511\) 28.7321 + 8.86269i 1.27103 + 0.392062i
\(512\) 30.0399 37.6689i 1.32759 1.66474i
\(513\) 0 0
\(514\) 15.4085 67.5091i 0.679640 2.97770i
\(515\) −16.2336 + 2.44683i −0.715340 + 0.107820i
\(516\) 0 0
\(517\) 16.5271 + 11.2680i 0.726860 + 0.495565i
\(518\) −89.5580 13.4987i −3.93495 0.593098i
\(519\) 0 0
\(520\) −0.403819 + 5.38859i −0.0177086 + 0.236305i
\(521\) −26.6176 −1.16614 −0.583070 0.812422i \(-0.698149\pi\)
−0.583070 + 0.812422i \(0.698149\pi\)
\(522\) 0 0
\(523\) −26.3711 −1.15313 −0.576564 0.817052i \(-0.695607\pi\)
−0.576564 + 0.817052i \(0.695607\pi\)
\(524\) 2.77873 37.0796i 0.121389 1.61983i
\(525\) 0 0
\(526\) −60.0261 9.04747i −2.61726 0.394489i
\(527\) −27.6216 18.8321i −1.20321 0.820337i
\(528\) 0 0
\(529\) 13.3965 2.01919i 0.582454 0.0877909i
\(530\) 1.61591 7.07978i 0.0701908 0.307526i
\(531\) 0 0
\(532\) −31.8586 + 39.9494i −1.38125 + 1.73203i
\(533\) −4.40204 1.35785i −0.190673 0.0588149i
\(534\) 0 0
\(535\) −8.49183 + 7.87927i −0.367134 + 0.340650i
\(536\) 2.93104 + 39.1121i 0.126602 + 1.68938i
\(537\) 0 0
\(538\) −40.1904 12.3971i −1.73273 0.534477i
\(539\) −12.4061 −0.534370
\(540\) 0 0
\(541\) 1.36338 1.70962i 0.0586163 0.0735025i −0.751659 0.659552i \(-0.770746\pi\)
0.810275 + 0.586049i \(0.199318\pi\)
\(542\) −1.81332 1.68252i −0.0778889 0.0722704i
\(543\) 0 0
\(544\) −6.21579 + 15.8376i −0.266500 + 0.679030i
\(545\) −0.373741 4.98723i −0.0160093 0.213629i
\(546\) 0 0
\(547\) −3.46885 8.83848i −0.148317 0.377906i 0.837336 0.546688i \(-0.184112\pi\)
−0.985653 + 0.168782i \(0.946017\pi\)
\(548\) 33.1016 + 41.5081i 1.41403 + 1.77314i
\(549\) 0 0
\(550\) −42.9605 −1.83184
\(551\) 0.905017 + 20.3299i 0.0385550 + 0.866085i
\(552\) 0 0
\(553\) −27.2052 18.5482i −1.15688 0.788749i
\(554\) −5.51509 + 14.0522i −0.234314 + 0.597022i
\(555\) 0 0
\(556\) −6.21032 + 82.8710i −0.263376 + 3.51451i
\(557\) −11.3897 5.48500i −0.482598 0.232407i 0.176734 0.984259i \(-0.443447\pi\)
−0.659332 + 0.751852i \(0.729161\pi\)
\(558\) 0 0
\(559\) 1.40380 6.15046i 0.0593745 0.260137i
\(560\) −11.6436 10.8037i −0.492032 0.456539i
\(561\) 0 0
\(562\) −6.74532 + 6.25875i −0.284534 + 0.264009i
\(563\) 10.7605 + 18.6377i 0.453499 + 0.785484i 0.998601 0.0528862i \(-0.0168421\pi\)
−0.545101 + 0.838370i \(0.683509\pi\)
\(564\) 0 0
\(565\) 1.75602 1.19723i 0.0738762 0.0503679i
\(566\) −12.3811 5.96242i −0.520416 0.250619i
\(567\) 0 0
\(568\) −59.8229 −2.51011
\(569\) −1.91961 0.592121i −0.0804743 0.0248230i 0.254257 0.967137i \(-0.418169\pi\)
−0.334731 + 0.942314i \(0.608645\pi\)
\(570\) 0 0
\(571\) −42.6242 + 13.1478i −1.78377 + 0.550220i −0.997691 0.0679096i \(-0.978367\pi\)
−0.786077 + 0.618129i \(0.787891\pi\)
\(572\) −17.8667 + 5.51114i −0.747044 + 0.230432i
\(573\) 0 0
\(574\) 28.0396 19.1170i 1.17035 0.797930i
\(575\) −11.6821 + 5.62580i −0.487177 + 0.234612i
\(576\) 0 0
\(577\) 15.5915 + 19.5511i 0.649081 + 0.813922i 0.992106 0.125405i \(-0.0400229\pi\)
−0.343025 + 0.939326i \(0.611451\pi\)
\(578\) −3.55339 + 47.4167i −0.147802 + 1.97228i
\(579\) 0 0
\(580\) −20.3119 0.615898i −0.843406 0.0255738i
\(581\) −16.1845 28.0324i −0.671448 1.16298i
\(582\) 0 0
\(583\) 13.1966 1.98906i 0.546546 0.0823785i
\(584\) −33.5385 + 42.0560i −1.38783 + 1.74029i
\(585\) 0 0
\(586\) −62.0818 29.8970i −2.56458 1.23503i
\(587\) −8.01721 + 1.20840i −0.330906 + 0.0498760i −0.312394 0.949953i \(-0.601131\pi\)
−0.0185117 + 0.999829i \(0.505893\pi\)
\(588\) 0 0
\(589\) 20.1208 6.20644i 0.829063 0.255732i
\(590\) −5.40937 0.815331i −0.222700 0.0335666i
\(591\) 0 0
\(592\) 32.3257 55.9898i 1.32858 2.30117i
\(593\) −3.54355 15.5253i −0.145516 0.637547i −0.994098 0.108484i \(-0.965400\pi\)
0.848582 0.529064i \(-0.177457\pi\)
\(594\) 0 0
\(595\) −15.1587 7.30005i −0.621446 0.299273i
\(596\) −26.1687 8.07196i −1.07191 0.330640i
\(597\) 0 0
\(598\) −6.07630 + 5.63799i −0.248479 + 0.230554i
\(599\) 1.56835 + 0.236390i 0.0640808 + 0.00965863i 0.181004 0.983482i \(-0.442065\pi\)
−0.116924 + 0.993141i \(0.537303\pi\)
\(600\) 0 0
\(601\) −5.61986 5.21447i −0.229239 0.212703i 0.557187 0.830387i \(-0.311881\pi\)
−0.786426 + 0.617684i \(0.788071\pi\)
\(602\) 28.9761 + 36.3349i 1.18098 + 1.48090i
\(603\) 0 0
\(604\) −6.30324 + 3.03548i −0.256475 + 0.123512i
\(605\) 1.79735 + 4.57956i 0.0730725 + 0.186186i
\(606\) 0 0
\(607\) 4.27104 + 2.91194i 0.173356 + 0.118192i 0.646890 0.762584i \(-0.276069\pi\)
−0.473534 + 0.880776i \(0.657022\pi\)
\(608\) −5.35805 9.28041i −0.217298 0.376370i
\(609\) 0 0
\(610\) 4.53315 7.85164i 0.183542 0.317904i
\(611\) 4.76993 2.29708i 0.192971 0.0929298i
\(612\) 0 0
\(613\) −6.69400 + 8.39402i −0.270368 + 0.339031i −0.898417 0.439143i \(-0.855282\pi\)
0.628049 + 0.778174i \(0.283854\pi\)
\(614\) 1.57684 21.0415i 0.0636362 0.849167i
\(615\) 0 0
\(616\) 26.7274 68.1003i 1.07688 2.74384i
\(617\) −25.2213 + 7.77973i −1.01537 + 0.313200i −0.757399 0.652952i \(-0.773530\pi\)
−0.257971 + 0.966153i \(0.583054\pi\)
\(618\) 0 0
\(619\) −2.60230 6.63056i −0.104595 0.266505i 0.868989 0.494831i \(-0.164770\pi\)
−0.973585 + 0.228326i \(0.926675\pi\)
\(620\) 4.67882 + 20.4993i 0.187906 + 0.823270i
\(621\) 0 0
\(622\) 14.5193 + 63.6134i 0.582172 + 2.55066i
\(623\) 34.3208 23.3995i 1.37503 0.937483i
\(624\) 0 0
\(625\) −10.1699 + 9.43627i −0.406795 + 0.377451i
\(626\) 4.14356 + 7.17685i 0.165610 + 0.286845i
\(627\) 0 0
\(628\) −20.5966 52.4793i −0.821895 2.09415i
\(629\) 15.2387 66.7653i 0.607608 2.66211i
\(630\) 0 0
\(631\) 0.371221 + 0.465496i 0.0147781 + 0.0185311i 0.789166 0.614180i \(-0.210513\pi\)
−0.774388 + 0.632712i \(0.781942\pi\)
\(632\) 48.6701 33.1827i 1.93599 1.31994i
\(633\) 0 0
\(634\) −58.7942 8.86180i −2.33502 0.351947i
\(635\) 1.17446 2.99248i 0.0466071 0.118753i
\(636\) 0 0
\(637\) −1.64179 + 2.84367i −0.0650502 + 0.112670i
\(638\) −18.4843 51.6480i −0.731801 2.04476i
\(639\) 0 0
\(640\) −12.9595 + 6.24097i −0.512269 + 0.246696i
\(641\) 41.0761 6.19123i 1.62241 0.244539i 0.725977 0.687719i \(-0.241388\pi\)
0.896432 + 0.443181i \(0.146150\pi\)
\(642\) 0 0
\(643\) −13.8311 9.42990i −0.545446 0.371879i 0.259025 0.965871i \(-0.416599\pi\)
−0.804471 + 0.593992i \(0.797551\pi\)
\(644\) −3.10666 41.4554i −0.122419 1.63357i
\(645\) 0 0
\(646\) −41.6017 38.6007i −1.63680 1.51873i
\(647\) 0.331767 1.45357i 0.0130431 0.0571456i −0.967988 0.250998i \(-0.919241\pi\)
0.981031 + 0.193853i \(0.0620983\pi\)
\(648\) 0 0
\(649\) −2.23711 9.80140i −0.0878141 0.384739i
\(650\) −5.68528 + 9.84719i −0.222995 + 0.386238i
\(651\) 0 0
\(652\) 5.91687 + 78.9551i 0.231722 + 3.09212i
\(653\) 2.00722 + 26.7844i 0.0785484 + 1.04816i 0.887660 + 0.460500i \(0.152330\pi\)
−0.809111 + 0.587655i \(0.800051\pi\)
\(654\) 0 0
\(655\) −3.85580 + 6.67843i −0.150658 + 0.260948i
\(656\) 5.39054 + 23.6175i 0.210465 + 0.922109i
\(657\) 0 0
\(658\) −8.67859 + 38.0234i −0.338327 + 1.48231i
\(659\) 11.9109 + 11.0517i 0.463982 + 0.430512i 0.877204 0.480118i \(-0.159406\pi\)
−0.413222 + 0.910630i \(0.635597\pi\)
\(660\) 0 0
\(661\) −0.0879444 1.17354i −0.00342064 0.0456453i 0.995232 0.0975332i \(-0.0310952\pi\)
−0.998653 + 0.0518879i \(0.983476\pi\)
\(662\) 43.2271 + 29.4718i 1.68007 + 1.14545i
\(663\) 0 0
\(664\) 57.2615 8.63078i 2.22218 0.334939i
\(665\) 9.54774 4.59795i 0.370245 0.178301i
\(666\) 0 0
\(667\) −11.7898 11.6239i −0.456504 0.450079i
\(668\) −7.86356 + 13.6201i −0.304250 + 0.526977i
\(669\) 0 0
\(670\) 5.59521 14.2564i 0.216162 0.550771i
\(671\) 16.4757 + 2.48331i 0.636036 + 0.0958671i
\(672\) 0 0
\(673\) −39.1126 + 26.6665i −1.50768 + 1.02792i −0.523242 + 0.852184i \(0.675278\pi\)
−0.984438 + 0.175735i \(0.943770\pi\)
\(674\) −13.1692 16.5136i −0.507258 0.636082i
\(675\) 0 0
\(676\) 11.2382 49.2377i 0.432238 1.89376i
\(677\) 8.56297 + 21.8181i 0.329102 + 0.838538i 0.995658 + 0.0930833i \(0.0296723\pi\)
−0.666556 + 0.745455i \(0.732232\pi\)
\(678\) 0 0
\(679\) 10.8036 + 18.7123i 0.414603 + 0.718113i
\(680\) 22.0647 20.4730i 0.846142 0.785105i
\(681\) 0 0
\(682\) −46.8970 + 31.9739i −1.79578 + 1.22434i
\(683\) 0.00571427 + 0.0250358i 0.000218650 + 0.000957970i 0.975037 0.222042i \(-0.0712722\pi\)
−0.974818 + 0.223000i \(0.928415\pi\)
\(684\) 0 0
\(685\) −2.45010 10.7346i −0.0936135 0.410147i
\(686\) 11.4548 + 29.1864i 0.437347 + 1.11434i
\(687\) 0 0
\(688\) −31.7009 + 9.77842i −1.20858 + 0.372799i
\(689\) 1.29047 3.28807i 0.0491631 0.125266i
\(690\) 0 0
\(691\) 2.74912 36.6844i 0.104581 1.39554i −0.660122 0.751158i \(-0.729495\pi\)
0.764703 0.644382i \(-0.222885\pi\)
\(692\) −48.8936 + 61.3107i −1.85866 + 2.33068i
\(693\) 0 0
\(694\) 7.22858 3.48110i 0.274393 0.132141i
\(695\) 8.61751 14.9260i 0.326881 0.566174i
\(696\) 0 0
\(697\) 12.8301 + 22.2225i 0.485976 + 0.841736i
\(698\) −11.5219 7.85551i −0.436111 0.297335i
\(699\) 0 0
\(700\) −20.8340 53.0842i −0.787451 2.00639i
\(701\) 31.5385 15.1881i 1.19119 0.573648i 0.270039 0.962849i \(-0.412963\pi\)
0.921152 + 0.389202i \(0.127249\pi\)
\(702\) 0 0
\(703\) 26.8934 + 33.7233i 1.01430 + 1.27190i
\(704\) −12.6186 11.7083i −0.475580 0.441274i
\(705\) 0 0
\(706\) 26.1477 + 3.94113i 0.984080 + 0.148326i
\(707\) 28.0921 26.0656i 1.05651 0.980298i
\(708\) 0 0
\(709\) 16.2558 + 5.01425i 0.610499 + 0.188314i 0.584561 0.811350i \(-0.301267\pi\)
0.0259376 + 0.999664i \(0.491743\pi\)
\(710\) 21.0460 + 10.1352i 0.789840 + 0.380367i
\(711\) 0 0
\(712\) 16.5361 + 72.4495i 0.619717 + 2.71516i
\(713\) −8.56547 + 14.8358i −0.320780 + 0.555606i
\(714\) 0 0
\(715\) 3.83438 + 0.577941i 0.143398 + 0.0216138i
\(716\) −25.9027 + 7.98991i −0.968028 + 0.298597i
\(717\) 0 0
\(718\) −41.4542 + 6.24821i −1.54706 + 0.233181i
\(719\) 17.7357 + 8.54109i 0.661432 + 0.318529i 0.734312 0.678812i \(-0.237505\pi\)
−0.0728804 + 0.997341i \(0.523219\pi\)
\(720\) 0 0
\(721\) 36.6777 45.9924i 1.36595 1.71285i
\(722\) −11.6823 + 1.76082i −0.434769 + 0.0655309i
\(723\) 0 0
\(724\) −2.08674 3.61435i −0.0775532 0.134326i
\(725\) −20.1542 10.4697i −0.748507 0.388836i
\(726\) 0 0
\(727\) 1.95557 26.0952i 0.0725279 0.967818i −0.835658 0.549250i \(-0.814913\pi\)
0.908186 0.418567i \(-0.137468\pi\)
\(728\) −12.0726 15.1385i −0.447439 0.561071i
\(729\) 0 0
\(730\) 18.9241 9.11337i 0.700413 0.337301i
\(731\) −29.0344 + 19.7953i −1.07388 + 0.732156i
\(732\) 0 0
\(733\) 31.9449 9.85370i 1.17991 0.363955i 0.358083 0.933690i \(-0.383430\pi\)
0.821828 + 0.569735i \(0.192954\pi\)
\(734\) −83.3186 + 25.7004i −3.07534 + 0.948618i
\(735\) 0 0
\(736\) 8.33106 + 2.56979i 0.307087 + 0.0947238i
\(737\) 28.1455 1.03675
\(738\) 0 0
\(739\) 4.50561 + 2.16979i 0.165741 + 0.0798168i 0.514915 0.857241i \(-0.327823\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(740\) −35.5883 + 24.2637i −1.30825 + 0.891950i
\(741\) 0 0
\(742\) 13.0106 + 22.5350i 0.477633 + 0.827285i
\(743\) 22.8051 21.1600i 0.836638 0.776286i −0.140233 0.990119i \(-0.544785\pi\)
0.976870 + 0.213832i \(0.0685946\pi\)
\(744\) 0 0
\(745\) 4.16338 + 3.86305i 0.152534 + 0.141531i
\(746\) −0.253744 + 1.11172i −0.00929022 + 0.0407031i
\(747\) 0 0
\(748\) 93.8343 + 45.1882i 3.43092 + 1.65225i
\(749\) 3.10200 41.3932i 0.113344 1.51248i
\(750\) 0 0
\(751\) 5.28243 13.4594i 0.192759 0.491141i −0.801519 0.597969i \(-0.795974\pi\)
0.994277 + 0.106829i \(0.0340696\pi\)
\(752\) −23.0028 15.6830i −0.838824 0.571901i
\(753\) 0 0
\(754\) −14.2847 2.59808i −0.520216 0.0946164i
\(755\) 1.45093 0.0528049
\(756\) 0 0
\(757\) −6.49403 8.14326i −0.236030 0.295972i 0.649684 0.760205i \(-0.274901\pi\)
−0.885713 + 0.464233i \(0.846330\pi\)
\(758\) 2.12154 + 5.40561i 0.0770580 + 0.196341i
\(759\) 0 0
\(760\) 1.41676 + 18.9054i 0.0513914 + 0.685770i
\(761\) 4.08835 10.4169i 0.148202 0.377614i −0.837424 0.546554i \(-0.815939\pi\)
0.985626 + 0.168940i \(0.0540346\pi\)
\(762\) 0 0
\(763\) 13.1368 + 12.1892i 0.475584 + 0.441277i
\(764\) −40.8358 + 51.2065i −1.47739 + 1.85259i
\(765\) 0 0
\(766\) −33.5049 −1.21058
\(767\) −2.54268 0.784313i −0.0918108 0.0283199i
\(768\) 0 0
\(769\) 0.237992 + 3.17578i 0.00858222 + 0.114522i 0.999850 0.0173459i \(-0.00552166\pi\)
−0.991267 + 0.131868i \(0.957903\pi\)
\(770\) −20.9404 + 19.4298i −0.754638 + 0.700202i
\(771\) 0 0
\(772\) 87.1269 + 26.8751i 3.13576 + 0.967255i
\(773\) 21.5343 27.0032i 0.774536 0.971237i −0.225460 0.974253i \(-0.572388\pi\)
0.999995 + 0.00301519i \(0.000959767\pi\)
\(774\) 0 0
\(775\) −5.22912 + 22.9103i −0.187836 + 0.822962i
\(776\) −38.2234 + 5.76125i −1.37214 + 0.206817i
\(777\) 0 0
\(778\) 66.2069 + 45.1391i 2.37363 + 1.61832i
\(779\) −15.9817 2.40885i −0.572603 0.0863060i
\(780\) 0 0
\(781\) −3.20808 + 42.8089i −0.114794 + 1.53182i
\(782\) 46.1718 1.65110
\(783\) 0 0
\(784\) 17.2671 0.616683
\(785\) −0.873748 + 11.6594i −0.0311854 + 0.416141i
\(786\) 0 0
\(787\) 12.8611 + 1.93849i 0.458447 + 0.0690998i 0.374206 0.927346i \(-0.377915\pi\)
0.0842411 + 0.996445i \(0.473153\pi\)
\(788\) −10.3195 7.03574i −0.367618 0.250638i
\(789\) 0 0
\(790\) −22.7442 + 3.42813i −0.809201 + 0.121967i
\(791\) −1.69462 + 7.42463i −0.0602539 + 0.263989i
\(792\) 0 0
\(793\) 2.74956 3.44784i 0.0976396 0.122436i
\(794\) −32.9932 10.1771i −1.17089 0.361171i
\(795\) 0 0
\(796\) 52.4814 48.6956i 1.86015 1.72597i
\(797\) −1.66546 22.2240i −0.0589936 0.787215i −0.945733 0.324945i \(-0.894654\pi\)
0.886739 0.462270i \(-0.152965\pi\)
\(798\) 0 0
\(799\) −28.1798 8.69232i −0.996930 0.307512i
\(800\) 11.9595 0.422833
\(801\) 0 0
\(802\) 20.0943 25.1975i 0.709556 0.889755i
\(803\) 28.2964 + 26.2553i 0.998560 + 0.926528i
\(804\) 0 0
\(805\) −3.14985 + 8.02568i −0.111018 + 0.282868i
\(806\) 1.12266 + 14.9808i 0.0395439 + 0.527677i
\(807\) 0 0
\(808\) 25.0471 + 63.8190i 0.881155 + 2.24515i
\(809\) 19.2405 + 24.1268i 0.676460 + 0.848254i 0.995023 0.0996477i \(-0.0317716\pi\)
−0.318563 + 0.947902i \(0.603200\pi\)
\(810\) 0 0
\(811\) −7.84939 −0.275629 −0.137815 0.990458i \(-0.544008\pi\)
−0.137815 + 0.990458i \(0.544008\pi\)
\(812\) 54.8548 47.8872i 1.92503 1.68051i
\(813\) 0 0
\(814\) −96.0685 65.4984i −3.36720 2.29572i
\(815\) 5.99913 15.2855i 0.210140 0.535429i
\(816\) 0 0
\(817\) 1.65402 22.0714i 0.0578669 0.772180i
\(818\) −15.3176 7.37655i −0.535566 0.257915i
\(819\) 0 0
\(820\) 3.59133 15.7346i 0.125415 0.549478i
\(821\) 7.88702 + 7.31808i 0.275259 + 0.255403i 0.805707 0.592315i \(-0.201786\pi\)
−0.530448 + 0.847718i \(0.677976\pi\)
\(822\) 0 0
\(823\) −38.0620 + 35.3163i −1.32676 + 1.23105i −0.373959 + 0.927445i \(0.622000\pi\)
−0.952798 + 0.303605i \(0.901810\pi\)
\(824\) 52.6203 + 91.1411i 1.83312 + 3.17505i
\(825\) 0 0
\(826\) 16.1960 11.0423i 0.563533 0.384210i
\(827\) −35.8253 17.2526i −1.24577 0.599930i −0.309394 0.950934i \(-0.600126\pi\)
−0.936374 + 0.351004i \(0.885840\pi\)
\(828\) 0 0
\(829\) −1.49247 −0.0518358 −0.0259179 0.999664i \(-0.508251\pi\)
−0.0259179 + 0.999664i \(0.508251\pi\)
\(830\) −21.6071 6.66490i −0.749992 0.231342i
\(831\) 0 0
\(832\) −4.35362 + 1.34291i −0.150935 + 0.0465572i
\(833\) 17.4777 5.39115i 0.605566 0.186792i
\(834\) 0 0
\(835\) 2.69494 1.83738i 0.0932621 0.0635850i
\(836\) −59.1018 + 28.4619i −2.04408 + 0.984376i
\(837\) 0 0
\(838\) 0.471128 + 0.590775i 0.0162748 + 0.0204080i
\(839\) 1.69799 22.6581i 0.0586212 0.782245i −0.887989 0.459865i \(-0.847898\pi\)
0.946610 0.322380i \(-0.104483\pi\)
\(840\) 0 0
\(841\) 3.91534 28.7345i 0.135012 0.990844i
\(842\) 13.0584 + 22.6178i 0.450023 + 0.779463i
\(843\) 0 0
\(844\) −91.7474 + 13.8287i −3.15808 + 0.476003i
\(845\) −6.53052 + 8.18902i −0.224657 + 0.281711i
\(846\) 0 0
\(847\) −15.8826 7.64867i −0.545733 0.262811i
\(848\) −18.3673 + 2.76842i −0.630735 + 0.0950679i
\(849\) 0 0
\(850\) 60.5225 18.6687i 2.07591 0.640332i
\(851\) −34.7008 5.23030i −1.18953 0.179292i
\(852\) 0 0
\(853\) −15.8038 + 27.3729i −0.541111 + 0.937231i 0.457730 + 0.889091i \(0.348663\pi\)
−0.998841 + 0.0481400i \(0.984671\pi\)
\(854\) 7.22903 + 31.6724i 0.247372 + 1.08381i
\(855\) 0 0
\(856\) 66.9061 + 32.2203i 2.28680 + 1.10127i
\(857\) −16.3464 5.04220i −0.558383 0.172238i 0.00270233 0.999996i \(-0.499140\pi\)
−0.561085 + 0.827758i \(0.689616\pi\)
\(858\) 0 0
\(859\) −1.35426 + 1.25657i −0.0462068 + 0.0428736i −0.702938 0.711251i \(-0.748129\pi\)
0.656731 + 0.754125i \(0.271939\pi\)
\(860\) 21.8551 + 3.29412i 0.745251 + 0.112329i
\(861\) 0 0
\(862\) 29.8117 + 27.6612i 1.01539 + 0.942143i
\(863\) −19.7728 24.7944i −0.673075 0.844010i 0.321621 0.946869i \(-0.395772\pi\)
−0.994696 + 0.102859i \(0.967201\pi\)
\(864\) 0 0
\(865\) 14.6530 7.05651i 0.498216 0.239928i
\(866\) 18.9097 + 48.1812i 0.642579 + 1.63726i
\(867\) 0 0
\(868\) −62.2515 42.4424i −2.11296 1.44059i
\(869\) −21.1353 36.6075i −0.716967 1.24182i
\(870\) 0 0
\(871\) 3.72470 6.45137i 0.126207 0.218596i
\(872\) −28.8852 + 13.9104i −0.978175 + 0.471064i
\(873\) 0 0
\(874\) −18.1319 + 22.7367i −0.613322 + 0.769082i
\(875\) −1.93165 + 25.7760i −0.0653015 + 0.871388i
\(876\) 0 0
\(877\) −1.82867 + 4.65937i −0.0617497 + 0.157336i −0.958419 0.285366i \(-0.907885\pi\)
0.896669 + 0.442702i \(0.145980\pi\)
\(878\) 25.8987 7.98870i 0.874040 0.269606i
\(879\) 0 0
\(880\) −7.44979 18.9818i −0.251132 0.639875i
\(881\) 8.99154 + 39.3945i 0.302933 + 1.32724i 0.865677 + 0.500604i \(0.166889\pi\)
−0.562744 + 0.826631i \(0.690254\pi\)
\(882\) 0 0
\(883\) −11.7833 51.6258i −0.396538 1.73735i −0.640864 0.767655i \(-0.721424\pi\)
0.244325 0.969693i \(-0.421434\pi\)
\(884\) 22.7756 15.5281i 0.766026 0.522268i
\(885\) 0 0
\(886\) 24.7710 22.9841i 0.832197 0.772166i
\(887\) −15.6494 27.1055i −0.525454 0.910113i −0.999560 0.0296453i \(-0.990562\pi\)
0.474107 0.880467i \(-0.342771\pi\)
\(888\) 0 0
\(889\) 4.20841 + 10.7228i 0.141145 + 0.359633i
\(890\) 6.45691 28.2896i 0.216436 0.948269i
\(891\) 0 0
\(892\) −54.8492 68.7787i −1.83649 2.30288i
\(893\) 15.3468 10.4633i 0.513562 0.350140i
\(894\) 0 0
\(895\) 5.55899 + 0.837883i 0.185817 + 0.0280074i
\(896\) 18.8302 47.9787i 0.629074 1.60286i
\(897\) 0 0
\(898\) −24.8349 + 43.0153i −0.828750 + 1.43544i
\(899\) −29.7931 + 3.57088i −0.993656 + 0.119096i
\(900\) 0 0
\(901\) −17.7269 + 8.53681i −0.590568 + 0.284402i
\(902\) 43.0805 6.49334i 1.43442 0.216205i
\(903\) 0 0
\(904\) −11.2569 7.67482i −0.374399 0.255261i
\(905\) 0.0646827 + 0.863131i 0.00215013 + 0.0286914i
\(906\) 0 0
\(907\) −24.2045 22.4585i −0.803696 0.745721i 0.167020 0.985954i \(-0.446586\pi\)
−0.970715 + 0.240233i \(0.922776\pi\)
\(908\) −26.0098 + 113.956i −0.863166 + 3.78178i
\(909\) 0 0
\(910\) 1.68241 + 7.37113i 0.0557714 + 0.244351i
\(911\) −19.6029 + 33.9531i −0.649472 + 1.12492i 0.333778 + 0.942652i \(0.391677\pi\)
−0.983249 + 0.182266i \(0.941657\pi\)
\(912\) 0 0
\(913\) −3.10541 41.4388i −0.102774 1.37142i
\(914\) −0.654377 8.73205i −0.0216449 0.288831i
\(915\) 0 0
\(916\) 16.8751 29.2285i 0.557569 0.965737i
\(917\) −6.14885 26.9399i −0.203053 0.889633i
\(918\) 0 0
\(919\) 13.1695 57.6995i 0.434423 1.90333i 0.00550808 0.999985i \(-0.498247\pi\)
0.428915 0.903345i \(-0.358896\pi\)
\(920\) −11.3067 10.4911i −0.372771 0.345881i
\(921\) 0 0
\(922\) 0.565211 + 7.54221i 0.0186142 + 0.248390i
\(923\) 9.38788 + 6.40055i 0.309006 + 0.210677i
\(924\) 0 0
\(925\) −47.6010 + 7.17469i −1.56511 + 0.235902i
\(926\) 79.1352 38.1095i 2.60054 1.25236i
\(927\) 0 0
\(928\) 5.14573 + 14.3780i 0.168917 + 0.471980i
\(929\) 11.2940 19.5618i 0.370544 0.641801i −0.619105 0.785308i \(-0.712505\pi\)
0.989649 + 0.143507i \(0.0458380\pi\)
\(930\) 0 0
\(931\) −4.20879 + 10.7238i −0.137937 + 0.351459i
\(932\) −0.579048 0.0872774i −0.0189673 0.00285887i
\(933\) 0 0
\(934\) 2.05385 1.40029i 0.0672041 0.0458190i
\(935\) −13.4671 16.8872i −0.440422 0.552272i
\(936\) 0 0
\(937\) −4.65368 + 20.3891i −0.152029 + 0.666083i 0.840265 + 0.542176i \(0.182399\pi\)
−0.992294 + 0.123906i \(0.960458\pi\)
\(938\) 20.0491 + 51.0843i 0.654627 + 1.66796i
\(939\) 0 0
\(940\) 9.27400 + 16.0630i 0.302485 + 0.523919i
\(941\) 9.36425 8.68875i 0.305266 0.283245i −0.512632 0.858608i \(-0.671330\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(942\) 0 0
\(943\) 10.8644 7.40722i 0.353794 0.241212i
\(944\) 3.11366 + 13.6418i 0.101341 + 0.444003i
\(945\) 0 0
\(946\) 13.2762 + 58.1670i 0.431648 + 1.89117i
\(947\) 11.5612 + 29.4575i 0.375689 + 0.957240i 0.986248 + 0.165270i \(0.0528495\pi\)
−0.610559 + 0.791971i \(0.709055\pi\)
\(948\) 0 0
\(949\) 9.76277 3.01142i 0.316913 0.0977547i
\(950\) −14.5744 + 37.1349i −0.472856 + 1.20482i
\(951\) 0 0
\(952\) −8.06004 + 107.554i −0.261227 + 3.48584i
\(953\) 7.65483 9.59885i 0.247964 0.310937i −0.642236 0.766507i \(-0.721993\pi\)
0.890200 + 0.455570i \(0.150564\pi\)
\(954\) 0 0
\(955\) 12.2381 5.89357i 0.396017 0.190712i
\(956\) −39.8754 + 69.0663i −1.28966 + 2.23376i
\(957\) 0 0
\(958\) −0.520178 0.900975i −0.0168062 0.0291092i
\(959\) 32.5985 + 22.2253i 1.05266 + 0.717691i
\(960\) 0 0
\(961\) 0.0173985 + 0.0443307i 0.000561242 + 0.00143002i
\(962\) −27.7266 + 13.3524i −0.893943 + 0.430500i
\(963\) 0 0
\(964\) 52.2352 + 65.5008i 1.68238 + 2.10964i
\(965\) −13.8617 12.8618i −0.446224 0.414035i
\(966\) 0 0
\(967\) −34.4923 5.19888i −1.10920 0.167185i −0.431205 0.902254i \(-0.641912\pi\)
−0.677992 + 0.735069i \(0.737150\pi\)
\(968\) 23.1184 21.4507i 0.743053 0.689453i
\(969\) 0 0
\(970\) 14.4232 + 4.44898i 0.463102 + 0.142848i
\(971\) 4.81331 + 2.31797i 0.154466 + 0.0743871i 0.509520 0.860459i \(-0.329823\pi\)
−0.355053 + 0.934846i \(0.615537\pi\)
\(972\) 0 0
\(973\) 13.7424 + 60.2093i 0.440560 + 1.93022i
\(974\) 8.70199 15.0723i 0.278830 0.482947i
\(975\) 0 0
\(976\) −22.9312 3.45633i −0.734011 0.110634i
\(977\) 3.00569 0.927134i 0.0961607 0.0296616i −0.246301 0.969193i \(-0.579215\pi\)
0.342462 + 0.939532i \(0.388739\pi\)
\(978\) 0 0
\(979\) 52.7311 7.94794i 1.68529 0.254017i
\(980\) −10.3646 4.99133i −0.331085 0.159442i
\(981\) 0 0
\(982\) −1.15338 + 1.44630i −0.0368059 + 0.0461532i
\(983\) −29.7635 + 4.48613i −0.949308 + 0.143085i −0.605403 0.795919i \(-0.706988\pi\)
−0.343905 + 0.939004i \(0.611750\pi\)
\(984\) 0 0
\(985\) 1.29514 + 2.24325i 0.0412667 + 0.0714760i
\(986\) 48.4845 + 64.7290i 1.54406 + 2.06139i
\(987\) 0 0
\(988\) −1.29747 + 17.3136i −0.0412781 + 0.550818i
\(989\) 11.2273 + 14.0786i 0.357007 + 0.447673i
\(990\) 0 0
\(991\) −44.1488 + 21.2609i −1.40243 + 0.675375i −0.973653 0.228034i \(-0.926770\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(992\) 13.0554 8.90100i 0.414508 0.282607i
\(993\) 0 0
\(994\) −79.9837 + 24.6717i −2.53693 + 0.782539i
\(995\) −14.1882 + 4.37649i −0.449797 + 0.138744i
\(996\) 0 0
\(997\) −47.0161 14.5025i −1.48901 0.459300i −0.559733 0.828673i \(-0.689096\pi\)
−0.929281 + 0.369373i \(0.879572\pi\)
\(998\) −14.1286 −0.447233
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 783.2.u.a.397.2 336
3.2 odd 2 261.2.q.a.223.27 yes 336
9.4 even 3 inner 783.2.u.a.658.2 336
9.5 odd 6 261.2.q.a.49.27 yes 336
29.16 even 7 inner 783.2.u.a.451.2 336
87.74 odd 14 261.2.q.a.16.27 336
261.103 even 21 inner 783.2.u.a.712.2 336
261.248 odd 42 261.2.q.a.103.27 yes 336
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
261.2.q.a.16.27 336 87.74 odd 14
261.2.q.a.49.27 yes 336 9.5 odd 6
261.2.q.a.103.27 yes 336 261.248 odd 42
261.2.q.a.223.27 yes 336 3.2 odd 2
783.2.u.a.397.2 336 1.1 even 1 trivial
783.2.u.a.451.2 336 29.16 even 7 inner
783.2.u.a.658.2 336 9.4 even 3 inner
783.2.u.a.712.2 336 261.103 even 21 inner