Properties

Label 8.8.a.b
Level $8$
Weight $8$
Character orbit 8.a
Self dual yes
Analytic conductor $2.499$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8,8,Mod(1,8)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 8.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.49908020387\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 44 q^{3} + 430 q^{5} - 1224 q^{7} - 251 q^{9} - 3164 q^{11} + 6118 q^{13} + 18920 q^{15} - 16270 q^{17} - 5476 q^{19} - 53856 q^{21} + 1576 q^{23} + 106775 q^{25} - 107272 q^{27} + 122838 q^{29} + 251360 q^{31}+ \cdots + 794164 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 44.0000 0 430.000 0 −1224.00 0 −251.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8.8.a.b 1
3.b odd 2 1 72.8.a.a 1
4.b odd 2 1 16.8.a.a 1
5.b even 2 1 200.8.a.b 1
5.c odd 4 2 200.8.c.c 2
7.b odd 2 1 392.8.a.b 1
8.b even 2 1 64.8.a.b 1
8.d odd 2 1 64.8.a.f 1
12.b even 2 1 144.8.a.a 1
16.e even 4 2 256.8.b.g 2
16.f odd 4 2 256.8.b.a 2
20.d odd 2 1 400.8.a.p 1
20.e even 4 2 400.8.c.f 2
24.f even 2 1 576.8.a.z 1
24.h odd 2 1 576.8.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.8.a.b 1 1.a even 1 1 trivial
16.8.a.a 1 4.b odd 2 1
64.8.a.b 1 8.b even 2 1
64.8.a.f 1 8.d odd 2 1
72.8.a.a 1 3.b odd 2 1
144.8.a.a 1 12.b even 2 1
200.8.a.b 1 5.b even 2 1
200.8.c.c 2 5.c odd 4 2
256.8.b.a 2 16.f odd 4 2
256.8.b.g 2 16.e even 4 2
392.8.a.b 1 7.b odd 2 1
400.8.a.p 1 20.d odd 2 1
400.8.c.f 2 20.e even 4 2
576.8.a.y 1 24.h odd 2 1
576.8.a.z 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 44 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(8))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 44 \) Copy content Toggle raw display
$5$ \( T - 430 \) Copy content Toggle raw display
$7$ \( T + 1224 \) Copy content Toggle raw display
$11$ \( T + 3164 \) Copy content Toggle raw display
$13$ \( T - 6118 \) Copy content Toggle raw display
$17$ \( T + 16270 \) Copy content Toggle raw display
$19$ \( T + 5476 \) Copy content Toggle raw display
$23$ \( T - 1576 \) Copy content Toggle raw display
$29$ \( T - 122838 \) Copy content Toggle raw display
$31$ \( T - 251360 \) Copy content Toggle raw display
$37$ \( T + 52338 \) Copy content Toggle raw display
$41$ \( T + 319398 \) Copy content Toggle raw display
$43$ \( T - 710788 \) Copy content Toggle raw display
$47$ \( T - 284112 \) Copy content Toggle raw display
$53$ \( T - 296062 \) Copy content Toggle raw display
$59$ \( T + 897548 \) Copy content Toggle raw display
$61$ \( T + 884810 \) Copy content Toggle raw display
$67$ \( T - 4659692 \) Copy content Toggle raw display
$71$ \( T + 2710792 \) Copy content Toggle raw display
$73$ \( T + 5670854 \) Copy content Toggle raw display
$79$ \( T + 5124176 \) Copy content Toggle raw display
$83$ \( T + 1563556 \) Copy content Toggle raw display
$89$ \( T - 11605674 \) Copy content Toggle raw display
$97$ \( T - 10931618 \) Copy content Toggle raw display
show more
show less