Properties

Label 800.2.u.a
Level $800$
Weight $2$
Character orbit 800.u
Analytic conductor $6.388$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(161,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.u (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10} - 1) q^{3} + (\zeta_{10}^{3} + 2 \zeta_{10} - 2) q^{5} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} - 3) q^{7} + (\zeta_{10}^{2} + \zeta_{10} + 1) q^{9} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 1) q^{11}+ \cdots + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} - 5 q^{5} - 8 q^{7} + 4 q^{9} + q^{11} - 11 q^{13} + 7 q^{17} - 12 q^{19} + q^{21} + q^{23} - 5 q^{25} - 9 q^{27} - 3 q^{29} - 11 q^{31} + 3 q^{33} + 5 q^{35} - 3 q^{37} + 2 q^{39} + 5 q^{41}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
161.1
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
0 −0.190983 + 0.587785i 0 −0.690983 + 2.12663i 0 −4.23607 0 2.11803 + 1.53884i 0
321.1 0 −1.30902 0.951057i 0 −1.80902 1.31433i 0 0.236068 0 −0.118034 0.363271i 0
481.1 0 −1.30902 + 0.951057i 0 −1.80902 + 1.31433i 0 0.236068 0 −0.118034 + 0.363271i 0
641.1 0 −0.190983 0.587785i 0 −0.690983 2.12663i 0 −4.23607 0 2.11803 1.53884i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.u.a 4
4.b odd 2 1 800.2.u.b yes 4
25.d even 5 1 inner 800.2.u.a 4
100.j odd 10 1 800.2.u.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
800.2.u.a 4 1.a even 1 1 trivial
800.2.u.a 4 25.d even 5 1 inner
800.2.u.b yes 4 4.b odd 2 1
800.2.u.b yes 4 100.j odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3T_{3}^{3} + 4T_{3}^{2} + 2T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(800, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} + 11 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$17$ \( T^{4} - 7 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$23$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{4} + 3 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$31$ \( T^{4} + 11 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$37$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 29)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 17 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$53$ \( T^{4} + 8 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$59$ \( T^{4} + 10 T^{3} + \cdots + 10000 \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} - T^{3} + \cdots + 3721 \) Copy content Toggle raw display
$71$ \( T^{4} + 27 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$73$ \( T^{4} - 10 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$79$ \( T^{4} + 18 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$83$ \( T^{4} - 15 T^{3} + \cdots + 9025 \) Copy content Toggle raw display
$89$ \( T^{4} + 34 T^{3} + \cdots + 26896 \) Copy content Toggle raw display
$97$ \( T^{4} - 10 T^{3} + \cdots + 25 \) Copy content Toggle raw display
show more
show less