Properties

Label 819.2.ct.b.316.5
Level $819$
Weight $2$
Character 819.316
Analytic conductor $6.540$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(127,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.ct (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22x^{14} + 187x^{12} + 774x^{10} + 1619x^{8} + 1618x^{6} + 690x^{4} + 96x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.5
Root \(-0.485989i\) of defining polynomial
Character \(\chi\) \(=\) 819.316
Dual form 819.2.ct.b.127.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.420879 + 0.242995i) q^{2} +(-0.881907 - 1.52751i) q^{4} -1.06536i q^{5} +(-0.866025 + 0.500000i) q^{7} -1.82917i q^{8} +(0.258876 - 0.448387i) q^{10} +(-4.98494 - 2.87806i) q^{11} +(1.77592 + 3.13785i) q^{13} -0.485989 q^{14} +(-1.31934 + 2.28516i) q^{16} +(-1.17266 - 2.03111i) q^{17} +(-5.36979 + 3.10025i) q^{19} +(-1.62734 + 0.939548i) q^{20} +(-1.39870 - 2.42263i) q^{22} +(-2.75674 + 4.77481i) q^{23} +3.86501 q^{25} +(-0.0150320 + 1.75219i) q^{26} +(1.52751 + 0.881907i) q^{28} +(2.80215 - 4.85347i) q^{29} +5.46420i q^{31} +(-4.27878 + 2.47036i) q^{32} -1.13980i q^{34} +(0.532679 + 0.922628i) q^{35} +(-4.08375 - 2.35775i) q^{37} -3.01337 q^{38} -1.94873 q^{40} +(-7.69141 - 4.44064i) q^{41} +(-4.77851 - 8.27662i) q^{43} +10.1527i q^{44} +(-2.32051 + 1.33975i) q^{46} +5.21864i q^{47} +(0.500000 - 0.866025i) q^{49} +(1.62670 + 0.939177i) q^{50} +(3.22689 - 5.48003i) q^{52} -1.52870 q^{53} +(-3.06616 + 5.31075i) q^{55} +(0.914587 + 1.58411i) q^{56} +(2.35873 - 1.36181i) q^{58} +(9.06406 - 5.23314i) q^{59} +(-3.82305 - 6.62171i) q^{61} +(-1.32777 + 2.29977i) q^{62} +2.87621 q^{64} +(3.34294 - 1.89199i) q^{65} +(2.83779 + 1.63840i) q^{67} +(-2.06836 + 3.58251i) q^{68} +0.517753i q^{70} +(-7.50761 + 4.33452i) q^{71} -7.63941i q^{73} +(-1.14584 - 1.98466i) q^{74} +(9.47131 + 5.46826i) q^{76} +5.75611 q^{77} -15.6147 q^{79} +(2.43451 + 1.40557i) q^{80} +(-2.15810 - 3.73794i) q^{82} +2.63313i q^{83} +(-2.16387 + 1.24931i) q^{85} -4.64461i q^{86} +(-5.26447 + 9.11832i) q^{88} +(-10.4502 - 6.03343i) q^{89} +(-3.10692 - 1.82950i) q^{91} +9.72476 q^{92} +(-1.26810 + 2.19642i) q^{94} +(3.30288 + 5.72075i) q^{95} +(14.5156 - 8.38057i) q^{97} +(0.420879 - 0.242995i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} - 4 q^{10} + 12 q^{11} + 4 q^{13} - 4 q^{14} - 10 q^{16} - 10 q^{17} - 6 q^{20} - 2 q^{22} + 2 q^{23} + 12 q^{25} - 20 q^{26} - 12 q^{29} - 30 q^{32} + 2 q^{35} + 18 q^{37} + 32 q^{38} - 60 q^{40}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.420879 + 0.242995i 0.297606 + 0.171823i 0.641367 0.767234i \(-0.278368\pi\)
−0.343761 + 0.939057i \(0.611701\pi\)
\(3\) 0 0
\(4\) −0.881907 1.52751i −0.440954 0.763754i
\(5\) 1.06536i 0.476443i −0.971211 0.238221i \(-0.923436\pi\)
0.971211 0.238221i \(-0.0765644\pi\)
\(6\) 0 0
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i
\(8\) 1.82917i 0.646710i
\(9\) 0 0
\(10\) 0.258876 0.448387i 0.0818639 0.141792i
\(11\) −4.98494 2.87806i −1.50302 0.867767i −0.999994 0.00349358i \(-0.998888\pi\)
−0.503022 0.864273i \(-0.667779\pi\)
\(12\) 0 0
\(13\) 1.77592 + 3.13785i 0.492552 + 0.870283i
\(14\) −0.485989 −0.129886
\(15\) 0 0
\(16\) −1.31934 + 2.28516i −0.329834 + 0.571289i
\(17\) −1.17266 2.03111i −0.284413 0.492618i 0.688054 0.725660i \(-0.258465\pi\)
−0.972467 + 0.233042i \(0.925132\pi\)
\(18\) 0 0
\(19\) −5.36979 + 3.10025i −1.23191 + 0.711246i −0.967429 0.253144i \(-0.918535\pi\)
−0.264485 + 0.964390i \(0.585202\pi\)
\(20\) −1.62734 + 0.939548i −0.363885 + 0.210089i
\(21\) 0 0
\(22\) −1.39870 2.42263i −0.298205 0.516506i
\(23\) −2.75674 + 4.77481i −0.574820 + 0.995618i 0.421241 + 0.906949i \(0.361595\pi\)
−0.996061 + 0.0886690i \(0.971739\pi\)
\(24\) 0 0
\(25\) 3.86501 0.773002
\(26\) −0.0150320 + 1.75219i −0.00294801 + 0.343634i
\(27\) 0 0
\(28\) 1.52751 + 0.881907i 0.288672 + 0.166665i
\(29\) 2.80215 4.85347i 0.520346 0.901266i −0.479374 0.877611i \(-0.659136\pi\)
0.999720 0.0236554i \(-0.00753046\pi\)
\(30\) 0 0
\(31\) 5.46420i 0.981400i 0.871329 + 0.490700i \(0.163259\pi\)
−0.871329 + 0.490700i \(0.836741\pi\)
\(32\) −4.27878 + 2.47036i −0.756389 + 0.436701i
\(33\) 0 0
\(34\) 1.13980i 0.195475i
\(35\) 0.532679 + 0.922628i 0.0900393 + 0.155953i
\(36\) 0 0
\(37\) −4.08375 2.35775i −0.671364 0.387612i 0.125229 0.992128i \(-0.460033\pi\)
−0.796593 + 0.604515i \(0.793367\pi\)
\(38\) −3.01337 −0.488834
\(39\) 0 0
\(40\) −1.94873 −0.308121
\(41\) −7.69141 4.44064i −1.20120 0.693511i −0.240375 0.970680i \(-0.577270\pi\)
−0.960821 + 0.277169i \(0.910604\pi\)
\(42\) 0 0
\(43\) −4.77851 8.27662i −0.728716 1.26217i −0.957426 0.288679i \(-0.906784\pi\)
0.228710 0.973495i \(-0.426549\pi\)
\(44\) 10.1527i 1.53058i
\(45\) 0 0
\(46\) −2.32051 + 1.33975i −0.342140 + 0.197535i
\(47\) 5.21864i 0.761217i 0.924736 + 0.380608i \(0.124285\pi\)
−0.924736 + 0.380608i \(0.875715\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) 1.62670 + 0.939177i 0.230050 + 0.132820i
\(51\) 0 0
\(52\) 3.22689 5.48003i 0.447489 0.759943i
\(53\) −1.52870 −0.209982 −0.104991 0.994473i \(-0.533481\pi\)
−0.104991 + 0.994473i \(0.533481\pi\)
\(54\) 0 0
\(55\) −3.06616 + 5.31075i −0.413441 + 0.716102i
\(56\) 0.914587 + 1.58411i 0.122217 + 0.211686i
\(57\) 0 0
\(58\) 2.35873 1.36181i 0.309717 0.178815i
\(59\) 9.06406 5.23314i 1.18004 0.681297i 0.224016 0.974585i \(-0.428083\pi\)
0.956024 + 0.293289i \(0.0947497\pi\)
\(60\) 0 0
\(61\) −3.82305 6.62171i −0.489491 0.847823i 0.510436 0.859916i \(-0.329484\pi\)
−0.999927 + 0.0120926i \(0.996151\pi\)
\(62\) −1.32777 + 2.29977i −0.168627 + 0.292071i
\(63\) 0 0
\(64\) 2.87621 0.359526
\(65\) 3.34294 1.89199i 0.414640 0.234673i
\(66\) 0 0
\(67\) 2.83779 + 1.63840i 0.346691 + 0.200162i 0.663227 0.748418i \(-0.269186\pi\)
−0.316536 + 0.948581i \(0.602520\pi\)
\(68\) −2.06836 + 3.58251i −0.250826 + 0.434443i
\(69\) 0 0
\(70\) 0.517753i 0.0618833i
\(71\) −7.50761 + 4.33452i −0.890990 + 0.514413i −0.874266 0.485447i \(-0.838657\pi\)
−0.0167238 + 0.999860i \(0.505324\pi\)
\(72\) 0 0
\(73\) 7.63941i 0.894126i −0.894503 0.447063i \(-0.852470\pi\)
0.894503 0.447063i \(-0.147530\pi\)
\(74\) −1.14584 1.98466i −0.133202 0.230712i
\(75\) 0 0
\(76\) 9.47131 + 5.46826i 1.08643 + 0.627253i
\(77\) 5.75611 0.655970
\(78\) 0 0
\(79\) −15.6147 −1.75679 −0.878397 0.477932i \(-0.841387\pi\)
−0.878397 + 0.477932i \(0.841387\pi\)
\(80\) 2.43451 + 1.40557i 0.272187 + 0.157147i
\(81\) 0 0
\(82\) −2.15810 3.73794i −0.238322 0.412786i
\(83\) 2.63313i 0.289024i 0.989503 + 0.144512i \(0.0461612\pi\)
−0.989503 + 0.144512i \(0.953839\pi\)
\(84\) 0 0
\(85\) −2.16387 + 1.24931i −0.234704 + 0.135507i
\(86\) 4.64461i 0.500841i
\(87\) 0 0
\(88\) −5.26447 + 9.11832i −0.561194 + 0.972016i
\(89\) −10.4502 6.03343i −1.10772 0.639542i −0.169481 0.985533i \(-0.554209\pi\)
−0.938238 + 0.345991i \(0.887543\pi\)
\(90\) 0 0
\(91\) −3.10692 1.82950i −0.325694 0.191783i
\(92\) 9.72476 1.01388
\(93\) 0 0
\(94\) −1.26810 + 2.19642i −0.130795 + 0.226543i
\(95\) 3.30288 + 5.72075i 0.338868 + 0.586936i
\(96\) 0 0
\(97\) 14.5156 8.38057i 1.47383 0.850918i 0.474268 0.880381i \(-0.342713\pi\)
0.999566 + 0.0294624i \(0.00937954\pi\)
\(98\) 0.420879 0.242995i 0.0425152 0.0245462i
\(99\) 0 0
\(100\) −3.40858 5.90384i −0.340858 0.590384i
\(101\) 1.28815 2.23115i 0.128176 0.222008i −0.794794 0.606880i \(-0.792421\pi\)
0.922970 + 0.384872i \(0.125754\pi\)
\(102\) 0 0
\(103\) 10.3824 1.02301 0.511506 0.859280i \(-0.329088\pi\)
0.511506 + 0.859280i \(0.329088\pi\)
\(104\) 5.73967 3.24847i 0.562821 0.318539i
\(105\) 0 0
\(106\) −0.643396 0.371465i −0.0624921 0.0360798i
\(107\) 8.51774 14.7532i 0.823441 1.42624i −0.0796637 0.996822i \(-0.525385\pi\)
0.903105 0.429420i \(-0.141282\pi\)
\(108\) 0 0
\(109\) 1.86126i 0.178276i 0.996019 + 0.0891380i \(0.0284112\pi\)
−0.996019 + 0.0891380i \(0.971589\pi\)
\(110\) −2.58097 + 1.49012i −0.246086 + 0.142078i
\(111\) 0 0
\(112\) 2.63867i 0.249331i
\(113\) −2.38371 4.12870i −0.224240 0.388396i 0.731851 0.681465i \(-0.238657\pi\)
−0.956091 + 0.293069i \(0.905323\pi\)
\(114\) 0 0
\(115\) 5.08689 + 2.93692i 0.474355 + 0.273869i
\(116\) −9.88495 −0.917794
\(117\) 0 0
\(118\) 5.08650 0.468250
\(119\) 2.03111 + 1.17266i 0.186192 + 0.107498i
\(120\) 0 0
\(121\) 11.0664 + 19.1676i 1.00604 + 1.74251i
\(122\) 3.71592i 0.336423i
\(123\) 0 0
\(124\) 8.34662 4.81892i 0.749548 0.432752i
\(125\) 9.44442i 0.844734i
\(126\) 0 0
\(127\) −0.593804 + 1.02850i −0.0526916 + 0.0912645i −0.891168 0.453673i \(-0.850113\pi\)
0.838477 + 0.544938i \(0.183447\pi\)
\(128\) 9.76810 + 5.63962i 0.863386 + 0.498476i
\(129\) 0 0
\(130\) 1.86672 + 0.0160144i 0.163722 + 0.00140456i
\(131\) 14.8261 1.29537 0.647683 0.761910i \(-0.275738\pi\)
0.647683 + 0.761910i \(0.275738\pi\)
\(132\) 0 0
\(133\) 3.10025 5.36979i 0.268826 0.465619i
\(134\) 0.796244 + 1.37914i 0.0687850 + 0.119139i
\(135\) 0 0
\(136\) −3.71526 + 2.14501i −0.318581 + 0.183933i
\(137\) −5.69247 + 3.28655i −0.486341 + 0.280789i −0.723055 0.690790i \(-0.757263\pi\)
0.236714 + 0.971579i \(0.423929\pi\)
\(138\) 0 0
\(139\) 0.367315 + 0.636208i 0.0311553 + 0.0539625i 0.881183 0.472776i \(-0.156748\pi\)
−0.850027 + 0.526739i \(0.823415\pi\)
\(140\) 0.939548 1.62734i 0.0794063 0.137536i
\(141\) 0 0
\(142\) −4.21306 −0.353552
\(143\) 0.178040 20.7532i 0.0148885 1.73547i
\(144\) 0 0
\(145\) −5.17068 2.98530i −0.429402 0.247915i
\(146\) 1.85634 3.21527i 0.153631 0.266097i
\(147\) 0 0
\(148\) 8.31728i 0.683676i
\(149\) −19.6065 + 11.3198i −1.60622 + 0.927354i −0.616019 + 0.787732i \(0.711255\pi\)
−0.990205 + 0.139622i \(0.955411\pi\)
\(150\) 0 0
\(151\) 7.94508i 0.646561i −0.946303 0.323281i \(-0.895214\pi\)
0.946303 0.323281i \(-0.104786\pi\)
\(152\) 5.67089 + 9.82227i 0.459970 + 0.796691i
\(153\) 0 0
\(154\) 2.42263 + 1.39870i 0.195221 + 0.112711i
\(155\) 5.82134 0.467581
\(156\) 0 0
\(157\) 15.4868 1.23598 0.617991 0.786185i \(-0.287947\pi\)
0.617991 + 0.786185i \(0.287947\pi\)
\(158\) −6.57191 3.79429i −0.522833 0.301858i
\(159\) 0 0
\(160\) 2.63182 + 4.55844i 0.208063 + 0.360376i
\(161\) 5.51348i 0.434523i
\(162\) 0 0
\(163\) 5.10619 2.94806i 0.399947 0.230910i −0.286514 0.958076i \(-0.592496\pi\)
0.686461 + 0.727166i \(0.259163\pi\)
\(164\) 15.6649i 1.22322i
\(165\) 0 0
\(166\) −0.639837 + 1.10823i −0.0496609 + 0.0860153i
\(167\) −8.23496 4.75446i −0.637241 0.367911i 0.146310 0.989239i \(-0.453260\pi\)
−0.783551 + 0.621328i \(0.786594\pi\)
\(168\) 0 0
\(169\) −6.69220 + 11.1452i −0.514784 + 0.857320i
\(170\) −1.21430 −0.0931326
\(171\) 0 0
\(172\) −8.42841 + 14.5984i −0.642660 + 1.11312i
\(173\) 0.812324 + 1.40699i 0.0617599 + 0.106971i 0.895252 0.445560i \(-0.146995\pi\)
−0.833492 + 0.552531i \(0.813662\pi\)
\(174\) 0 0
\(175\) −3.34720 + 1.93251i −0.253024 + 0.146084i
\(176\) 13.1536 7.59424i 0.991491 0.572438i
\(177\) 0 0
\(178\) −2.93218 5.07869i −0.219776 0.380664i
\(179\) −9.87735 + 17.1081i −0.738268 + 1.27872i 0.215007 + 0.976612i \(0.431023\pi\)
−0.953275 + 0.302105i \(0.902311\pi\)
\(180\) 0 0
\(181\) −0.589428 −0.0438118 −0.0219059 0.999760i \(-0.506973\pi\)
−0.0219059 + 0.999760i \(0.506973\pi\)
\(182\) −0.863079 1.52496i −0.0639757 0.113038i
\(183\) 0 0
\(184\) 8.73396 + 5.04256i 0.643876 + 0.371742i
\(185\) −2.51185 + 4.35066i −0.184675 + 0.319867i
\(186\) 0 0
\(187\) 13.5000i 0.987217i
\(188\) 7.97152 4.60236i 0.581383 0.335661i
\(189\) 0 0
\(190\) 3.21032i 0.232901i
\(191\) 4.58812 + 7.94686i 0.331985 + 0.575015i 0.982901 0.184135i \(-0.0589484\pi\)
−0.650916 + 0.759150i \(0.725615\pi\)
\(192\) 0 0
\(193\) −2.84691 1.64367i −0.204925 0.118314i 0.394025 0.919100i \(-0.371082\pi\)
−0.598951 + 0.800786i \(0.704416\pi\)
\(194\) 8.14574 0.584830
\(195\) 0 0
\(196\) −1.76381 −0.125987
\(197\) 13.2678 + 7.66017i 0.945292 + 0.545765i 0.891615 0.452793i \(-0.149573\pi\)
0.0536771 + 0.998558i \(0.482906\pi\)
\(198\) 0 0
\(199\) −7.26150 12.5773i −0.514754 0.891581i −0.999853 0.0171214i \(-0.994550\pi\)
0.485099 0.874459i \(-0.338784\pi\)
\(200\) 7.06977i 0.499909i
\(201\) 0 0
\(202\) 1.08431 0.626029i 0.0762921 0.0440473i
\(203\) 5.60430i 0.393345i
\(204\) 0 0
\(205\) −4.73087 + 8.19411i −0.330418 + 0.572301i
\(206\) 4.36975 + 2.52288i 0.304455 + 0.175777i
\(207\) 0 0
\(208\) −9.51351 0.0816157i −0.659643 0.00565903i
\(209\) 35.6908 2.46878
\(210\) 0 0
\(211\) 8.26364 14.3130i 0.568892 0.985350i −0.427783 0.903881i \(-0.640705\pi\)
0.996676 0.0814692i \(-0.0259612\pi\)
\(212\) 1.34817 + 2.33509i 0.0925925 + 0.160375i
\(213\) 0 0
\(214\) 7.16988 4.13953i 0.490123 0.282972i
\(215\) −8.81757 + 5.09083i −0.601354 + 0.347192i
\(216\) 0 0
\(217\) −2.73210 4.73214i −0.185467 0.321239i
\(218\) −0.452275 + 0.783363i −0.0306319 + 0.0530561i
\(219\) 0 0
\(220\) 10.8163 0.729234
\(221\) 4.29077 7.28675i 0.288628 0.490160i
\(222\) 0 0
\(223\) −18.7844 10.8452i −1.25789 0.726246i −0.285230 0.958459i \(-0.592070\pi\)
−0.972665 + 0.232213i \(0.925403\pi\)
\(224\) 2.47036 4.27878i 0.165058 0.285888i
\(225\) 0 0
\(226\) 2.31691i 0.154119i
\(227\) 4.70729 2.71776i 0.312434 0.180384i −0.335581 0.942011i \(-0.608933\pi\)
0.648015 + 0.761627i \(0.275599\pi\)
\(228\) 0 0
\(229\) 9.99668i 0.660599i 0.943876 + 0.330300i \(0.107150\pi\)
−0.943876 + 0.330300i \(0.892850\pi\)
\(230\) 1.42731 + 2.47217i 0.0941141 + 0.163010i
\(231\) 0 0
\(232\) −8.87783 5.12562i −0.582858 0.336513i
\(233\) −1.72553 −0.113043 −0.0565217 0.998401i \(-0.518001\pi\)
−0.0565217 + 0.998401i \(0.518001\pi\)
\(234\) 0 0
\(235\) 5.55972 0.362676
\(236\) −15.9873 9.23029i −1.04069 0.600840i
\(237\) 0 0
\(238\) 0.569902 + 0.987100i 0.0369413 + 0.0639842i
\(239\) 5.80837i 0.375712i 0.982197 + 0.187856i \(0.0601539\pi\)
−0.982197 + 0.187856i \(0.939846\pi\)
\(240\) 0 0
\(241\) 9.63038 5.56010i 0.620348 0.358158i −0.156657 0.987653i \(-0.550072\pi\)
0.777004 + 0.629495i \(0.216738\pi\)
\(242\) 10.7563i 0.691443i
\(243\) 0 0
\(244\) −6.74315 + 11.6795i −0.431686 + 0.747701i
\(245\) −0.922628 0.532679i −0.0589445 0.0340316i
\(246\) 0 0
\(247\) −19.2644 11.3438i −1.22577 0.721787i
\(248\) 9.99498 0.634682
\(249\) 0 0
\(250\) 2.29494 3.97496i 0.145145 0.251398i
\(251\) −4.87634 8.44607i −0.307792 0.533111i 0.670087 0.742283i \(-0.266257\pi\)
−0.977879 + 0.209171i \(0.932923\pi\)
\(252\) 0 0
\(253\) 27.4844 15.8681i 1.72793 0.997620i
\(254\) −0.499839 + 0.288582i −0.0313627 + 0.0181073i
\(255\) 0 0
\(256\) −0.135416 0.234547i −0.00846350 0.0146592i
\(257\) −5.19710 + 9.00164i −0.324186 + 0.561507i −0.981347 0.192243i \(-0.938424\pi\)
0.657161 + 0.753750i \(0.271757\pi\)
\(258\) 0 0
\(259\) 4.71551 0.293007
\(260\) −5.83820 3.43780i −0.362070 0.213203i
\(261\) 0 0
\(262\) 6.24001 + 3.60267i 0.385509 + 0.222574i
\(263\) −12.2395 + 21.1994i −0.754717 + 1.30721i 0.190798 + 0.981629i \(0.438893\pi\)
−0.945515 + 0.325579i \(0.894441\pi\)
\(264\) 0 0
\(265\) 1.62861i 0.100045i
\(266\) 2.60966 1.50669i 0.160008 0.0923809i
\(267\) 0 0
\(268\) 5.77966i 0.353049i
\(269\) 2.52910 + 4.38052i 0.154202 + 0.267085i 0.932768 0.360477i \(-0.117386\pi\)
−0.778566 + 0.627562i \(0.784053\pi\)
\(270\) 0 0
\(271\) 11.7523 + 6.78518i 0.713900 + 0.412170i 0.812503 0.582957i \(-0.198104\pi\)
−0.0986037 + 0.995127i \(0.531438\pi\)
\(272\) 6.18855 0.375236
\(273\) 0 0
\(274\) −3.19446 −0.192984
\(275\) −19.2669 11.1237i −1.16183 0.670786i
\(276\) 0 0
\(277\) −11.7870 20.4156i −0.708210 1.22666i −0.965521 0.260327i \(-0.916170\pi\)
0.257311 0.966329i \(-0.417164\pi\)
\(278\) 0.357022i 0.0214128i
\(279\) 0 0
\(280\) 1.68765 0.974363i 0.100856 0.0582293i
\(281\) 14.8688i 0.886996i −0.896275 0.443498i \(-0.853737\pi\)
0.896275 0.443498i \(-0.146263\pi\)
\(282\) 0 0
\(283\) −10.4948 + 18.1776i −0.623852 + 1.08054i 0.364910 + 0.931043i \(0.381100\pi\)
−0.988762 + 0.149500i \(0.952233\pi\)
\(284\) 13.2420 + 7.64530i 0.785770 + 0.453665i
\(285\) 0 0
\(286\) 5.11785 8.69132i 0.302625 0.513929i
\(287\) 8.88127 0.524245
\(288\) 0 0
\(289\) 5.74972 9.95880i 0.338219 0.585812i
\(290\) −1.45082 2.51290i −0.0851952 0.147562i
\(291\) 0 0
\(292\) −11.6693 + 6.73725i −0.682892 + 0.394268i
\(293\) −6.39182 + 3.69032i −0.373414 + 0.215591i −0.674949 0.737864i \(-0.735834\pi\)
0.301535 + 0.953455i \(0.402501\pi\)
\(294\) 0 0
\(295\) −5.57517 9.65648i −0.324599 0.562222i
\(296\) −4.31274 + 7.46989i −0.250673 + 0.434178i
\(297\) 0 0
\(298\) −11.0026 −0.637363
\(299\) −19.8784 0.170535i −1.14960 0.00986232i
\(300\) 0 0
\(301\) 8.27662 + 4.77851i 0.477057 + 0.275429i
\(302\) 1.93061 3.34392i 0.111094 0.192421i
\(303\) 0 0
\(304\) 16.3611i 0.938371i
\(305\) −7.05450 + 4.07292i −0.403939 + 0.233215i
\(306\) 0 0
\(307\) 26.2172i 1.49629i −0.663534 0.748146i \(-0.730944\pi\)
0.663534 0.748146i \(-0.269056\pi\)
\(308\) −5.07636 8.79251i −0.289252 0.501000i
\(309\) 0 0
\(310\) 2.45008 + 1.41455i 0.139155 + 0.0803413i
\(311\) 23.3730 1.32536 0.662681 0.748902i \(-0.269419\pi\)
0.662681 + 0.748902i \(0.269419\pi\)
\(312\) 0 0
\(313\) −20.5337 −1.16064 −0.580318 0.814390i \(-0.697072\pi\)
−0.580318 + 0.814390i \(0.697072\pi\)
\(314\) 6.51807 + 3.76321i 0.367836 + 0.212370i
\(315\) 0 0
\(316\) 13.7707 + 23.8516i 0.774665 + 1.34176i
\(317\) 2.73722i 0.153738i 0.997041 + 0.0768689i \(0.0244923\pi\)
−0.997041 + 0.0768689i \(0.975508\pi\)
\(318\) 0 0
\(319\) −27.9371 + 16.1295i −1.56418 + 0.903079i
\(320\) 3.06419i 0.171294i
\(321\) 0 0
\(322\) 1.33975 2.32051i 0.0746611 0.129317i
\(323\) 12.5939 + 7.27110i 0.700744 + 0.404575i
\(324\) 0 0
\(325\) 6.86396 + 12.1278i 0.380744 + 0.672730i
\(326\) 2.86545 0.158703
\(327\) 0 0
\(328\) −8.12269 + 14.0689i −0.448501 + 0.776826i
\(329\) −2.60932 4.51947i −0.143856 0.249167i
\(330\) 0 0
\(331\) −8.35843 + 4.82574i −0.459421 + 0.265247i −0.711801 0.702382i \(-0.752120\pi\)
0.252380 + 0.967628i \(0.418787\pi\)
\(332\) 4.02213 2.32218i 0.220743 0.127446i
\(333\) 0 0
\(334\) −2.31062 4.00210i −0.126431 0.218985i
\(335\) 1.74548 3.02327i 0.0953659 0.165179i
\(336\) 0 0
\(337\) 11.3368 0.617555 0.308778 0.951134i \(-0.400080\pi\)
0.308778 + 0.951134i \(0.400080\pi\)
\(338\) −5.52482 + 3.06459i −0.300511 + 0.166692i
\(339\) 0 0
\(340\) 3.81666 + 2.20355i 0.206987 + 0.119504i
\(341\) 15.7263 27.2387i 0.851627 1.47506i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −15.1394 + 8.74072i −0.816261 + 0.471268i
\(345\) 0 0
\(346\) 0.789562i 0.0424471i
\(347\) −9.83667 17.0376i −0.528060 0.914627i −0.999465 0.0327100i \(-0.989586\pi\)
0.471405 0.881917i \(-0.343747\pi\)
\(348\) 0 0
\(349\) 6.82990 + 3.94324i 0.365596 + 0.211077i 0.671533 0.740975i \(-0.265636\pi\)
−0.305937 + 0.952052i \(0.598970\pi\)
\(350\) −1.87835 −0.100402
\(351\) 0 0
\(352\) 28.4393 1.51582
\(353\) −12.7151 7.34104i −0.676754 0.390724i 0.121877 0.992545i \(-0.461109\pi\)
−0.798631 + 0.601821i \(0.794442\pi\)
\(354\) 0 0
\(355\) 4.61782 + 7.99830i 0.245089 + 0.424506i
\(356\) 21.2837i 1.12803i
\(357\) 0 0
\(358\) −8.31434 + 4.80028i −0.439426 + 0.253703i
\(359\) 16.7725i 0.885220i −0.896714 0.442610i \(-0.854053\pi\)
0.896714 0.442610i \(-0.145947\pi\)
\(360\) 0 0
\(361\) 9.72307 16.8408i 0.511740 0.886360i
\(362\) −0.248078 0.143228i −0.0130387 0.00752789i
\(363\) 0 0
\(364\) −0.0545559 + 6.35929i −0.00285951 + 0.333317i
\(365\) −8.13871 −0.426000
\(366\) 0 0
\(367\) 5.47023 9.47471i 0.285543 0.494576i −0.687197 0.726471i \(-0.741159\pi\)
0.972741 + 0.231895i \(0.0744926\pi\)
\(368\) −7.27413 12.5992i −0.379190 0.656777i
\(369\) 0 0
\(370\) −2.11437 + 1.22073i −0.109921 + 0.0634629i
\(371\) 1.32389 0.764348i 0.0687329 0.0396830i
\(372\) 0 0
\(373\) 3.61767 + 6.26599i 0.187316 + 0.324441i 0.944354 0.328930i \(-0.106688\pi\)
−0.757039 + 0.653370i \(0.773355\pi\)
\(374\) −3.28042 + 5.68186i −0.169627 + 0.293802i
\(375\) 0 0
\(376\) 9.54580 0.492287
\(377\) 20.2059 + 0.173345i 1.04065 + 0.00892770i
\(378\) 0 0
\(379\) 2.28182 + 1.31741i 0.117209 + 0.0676707i 0.557458 0.830205i \(-0.311777\pi\)
−0.440249 + 0.897876i \(0.645110\pi\)
\(380\) 5.82566 10.0903i 0.298850 0.517623i
\(381\) 0 0
\(382\) 4.45956i 0.228171i
\(383\) −7.45530 + 4.30432i −0.380948 + 0.219941i −0.678231 0.734849i \(-0.737253\pi\)
0.297283 + 0.954790i \(0.403920\pi\)
\(384\) 0 0
\(385\) 6.13233i 0.312532i
\(386\) −0.798804 1.38357i −0.0406581 0.0704218i
\(387\) 0 0
\(388\) −25.6028 14.7818i −1.29978 0.750431i
\(389\) −19.9726 −1.01265 −0.506325 0.862343i \(-0.668996\pi\)
−0.506325 + 0.862343i \(0.668996\pi\)
\(390\) 0 0
\(391\) 12.9309 0.653945
\(392\) −1.58411 0.914587i −0.0800097 0.0461936i
\(393\) 0 0
\(394\) 3.72276 + 6.44801i 0.187550 + 0.324846i
\(395\) 16.6353i 0.837012i
\(396\) 0 0
\(397\) −2.47610 + 1.42958i −0.124272 + 0.0717485i −0.560847 0.827919i \(-0.689525\pi\)
0.436575 + 0.899668i \(0.356191\pi\)
\(398\) 7.05802i 0.353787i
\(399\) 0 0
\(400\) −5.09924 + 8.83215i −0.254962 + 0.441608i
\(401\) −15.6107 9.01285i −0.779562 0.450080i 0.0567132 0.998391i \(-0.481938\pi\)
−0.836275 + 0.548310i \(0.815271\pi\)
\(402\) 0 0
\(403\) −17.1459 + 9.70400i −0.854096 + 0.483391i
\(404\) −4.54413 −0.226079
\(405\) 0 0
\(406\) −1.36181 + 2.35873i −0.0675857 + 0.117062i
\(407\) 13.5715 + 23.5065i 0.672714 + 1.16518i
\(408\) 0 0
\(409\) −7.58420 + 4.37874i −0.375015 + 0.216515i −0.675647 0.737225i \(-0.736136\pi\)
0.300632 + 0.953740i \(0.402802\pi\)
\(410\) −3.98225 + 2.29915i −0.196669 + 0.113547i
\(411\) 0 0
\(412\) −9.15635 15.8593i −0.451101 0.781330i
\(413\) −5.23314 + 9.06406i −0.257506 + 0.446013i
\(414\) 0 0
\(415\) 2.80523 0.137703
\(416\) −15.3504 9.03901i −0.752615 0.443174i
\(417\) 0 0
\(418\) 15.0215 + 8.67266i 0.734725 + 0.424194i
\(419\) −0.864446 + 1.49726i −0.0422310 + 0.0731462i −0.886368 0.462981i \(-0.846780\pi\)
0.844137 + 0.536127i \(0.180113\pi\)
\(420\) 0 0
\(421\) 25.6427i 1.24975i 0.780726 + 0.624874i \(0.214850\pi\)
−0.780726 + 0.624874i \(0.785150\pi\)
\(422\) 6.95598 4.01604i 0.338612 0.195498i
\(423\) 0 0
\(424\) 2.79625i 0.135798i
\(425\) −4.53236 7.85028i −0.219852 0.380795i
\(426\) 0 0
\(427\) 6.62171 + 3.82305i 0.320447 + 0.185010i
\(428\) −30.0474 −1.45240
\(429\) 0 0
\(430\) −4.94818 −0.238622
\(431\) −0.222971 0.128733i −0.0107402 0.00620083i 0.494620 0.869109i \(-0.335307\pi\)
−0.505360 + 0.862908i \(0.668640\pi\)
\(432\) 0 0
\(433\) −12.1641 21.0688i −0.584570 1.01250i −0.994929 0.100580i \(-0.967930\pi\)
0.410359 0.911924i \(-0.365403\pi\)
\(434\) 2.65554i 0.127470i
\(435\) 0 0
\(436\) 2.84308 1.64145i 0.136159 0.0786114i
\(437\) 34.1863i 1.63535i
\(438\) 0 0
\(439\) 8.50900 14.7380i 0.406112 0.703407i −0.588338 0.808615i \(-0.700218\pi\)
0.994450 + 0.105208i \(0.0335509\pi\)
\(440\) 9.71428 + 5.60854i 0.463110 + 0.267377i
\(441\) 0 0
\(442\) 3.57654 2.02421i 0.170118 0.0962816i
\(443\) −38.1564 −1.81287 −0.906433 0.422349i \(-0.861206\pi\)
−0.906433 + 0.422349i \(0.861206\pi\)
\(444\) 0 0
\(445\) −6.42776 + 11.1332i −0.304705 + 0.527765i
\(446\) −5.27063 9.12900i −0.249572 0.432271i
\(447\) 0 0
\(448\) −2.49087 + 1.43810i −0.117683 + 0.0679440i
\(449\) −35.7959 + 20.6668i −1.68931 + 0.975325i −0.734270 + 0.678858i \(0.762475\pi\)
−0.955043 + 0.296468i \(0.904191\pi\)
\(450\) 0 0
\(451\) 25.5608 + 44.2726i 1.20361 + 2.08472i
\(452\) −4.20442 + 7.28227i −0.197759 + 0.342529i
\(453\) 0 0
\(454\) 2.64160 0.123976
\(455\) −1.94907 + 3.30998i −0.0913738 + 0.155174i
\(456\) 0 0
\(457\) −16.1281 9.31158i −0.754442 0.435578i 0.0728544 0.997343i \(-0.476789\pi\)
−0.827297 + 0.561765i \(0.810123\pi\)
\(458\) −2.42914 + 4.20739i −0.113506 + 0.196599i
\(459\) 0 0
\(460\) 10.3604i 0.483054i
\(461\) 6.58984 3.80465i 0.306919 0.177200i −0.338628 0.940920i \(-0.609963\pi\)
0.645547 + 0.763720i \(0.276629\pi\)
\(462\) 0 0
\(463\) 25.2029i 1.17128i 0.810571 + 0.585640i \(0.199157\pi\)
−0.810571 + 0.585640i \(0.800843\pi\)
\(464\) 7.39395 + 12.8067i 0.343256 + 0.594536i
\(465\) 0 0
\(466\) −0.726241 0.419295i −0.0336425 0.0194235i
\(467\) −18.6005 −0.860727 −0.430364 0.902656i \(-0.641615\pi\)
−0.430364 + 0.902656i \(0.641615\pi\)
\(468\) 0 0
\(469\) −3.27680 −0.151308
\(470\) 2.33997 + 1.35098i 0.107935 + 0.0623162i
\(471\) 0 0
\(472\) −9.57232 16.5797i −0.440602 0.763144i
\(473\) 55.0113i 2.52942i
\(474\) 0 0
\(475\) −20.7543 + 11.9825i −0.952272 + 0.549794i
\(476\) 4.13673i 0.189607i
\(477\) 0 0
\(478\) −1.41140 + 2.44462i −0.0645561 + 0.111814i
\(479\) 21.2514 + 12.2695i 0.971001 + 0.560608i 0.899541 0.436836i \(-0.143901\pi\)
0.0714598 + 0.997443i \(0.477234\pi\)
\(480\) 0 0
\(481\) 0.145854 17.0014i 0.00665035 0.775196i
\(482\) 5.40430 0.246159
\(483\) 0 0
\(484\) 19.5191 33.8081i 0.887233 1.53673i
\(485\) −8.92832 15.4643i −0.405414 0.702198i
\(486\) 0 0
\(487\) −26.6423 + 15.3819i −1.20728 + 0.697022i −0.962164 0.272472i \(-0.912159\pi\)
−0.245114 + 0.969494i \(0.578825\pi\)
\(488\) −12.1123 + 6.99301i −0.548296 + 0.316559i
\(489\) 0 0
\(490\) −0.258876 0.448387i −0.0116948 0.0202561i
\(491\) 9.60159 16.6304i 0.433313 0.750521i −0.563843 0.825882i \(-0.690678\pi\)
0.997156 + 0.0753611i \(0.0240110\pi\)
\(492\) 0 0
\(493\) −13.1439 −0.591973
\(494\) −5.35152 9.45551i −0.240776 0.425424i
\(495\) 0 0
\(496\) −12.4866 7.20912i −0.560663 0.323699i
\(497\) 4.33452 7.50761i 0.194430 0.336763i
\(498\) 0 0
\(499\) 14.0592i 0.629376i 0.949195 + 0.314688i \(0.101900\pi\)
−0.949195 + 0.314688i \(0.898100\pi\)
\(500\) −14.4264 + 8.32910i −0.645169 + 0.372489i
\(501\) 0 0
\(502\) 4.73970i 0.211543i
\(503\) −0.301296 0.521861i −0.0134341 0.0232686i 0.859230 0.511589i \(-0.170943\pi\)
−0.872664 + 0.488321i \(0.837610\pi\)
\(504\) 0 0
\(505\) −2.37697 1.37235i −0.105774 0.0610686i
\(506\) 15.4235 0.685657
\(507\) 0 0
\(508\) 2.09472 0.0929382
\(509\) 6.81860 + 3.93672i 0.302229 + 0.174492i 0.643444 0.765493i \(-0.277505\pi\)
−0.341215 + 0.939985i \(0.610838\pi\)
\(510\) 0 0
\(511\) 3.81971 + 6.61593i 0.168974 + 0.292671i
\(512\) 22.6901i 1.00277i
\(513\) 0 0
\(514\) −4.37470 + 2.52573i −0.192960 + 0.111405i
\(515\) 11.0610i 0.487407i
\(516\) 0 0
\(517\) 15.0195 26.0146i 0.660559 1.14412i
\(518\) 1.98466 + 1.14584i 0.0872009 + 0.0503455i
\(519\) 0 0
\(520\) −3.46079 6.11481i −0.151766 0.268152i
\(521\) 26.5275 1.16219 0.581096 0.813835i \(-0.302624\pi\)
0.581096 + 0.813835i \(0.302624\pi\)
\(522\) 0 0
\(523\) 3.77968 6.54661i 0.165274 0.286263i −0.771479 0.636255i \(-0.780482\pi\)
0.936753 + 0.349992i \(0.113816\pi\)
\(524\) −13.0753 22.6471i −0.571197 0.989341i
\(525\) 0 0
\(526\) −10.3027 + 5.94824i −0.449217 + 0.259356i
\(527\) 11.0984 6.40768i 0.483455 0.279123i
\(528\) 0 0
\(529\) −3.69924 6.40727i −0.160836 0.278577i
\(530\) −0.395743 + 0.685447i −0.0171900 + 0.0297739i
\(531\) 0 0
\(532\) −10.9365 −0.474158
\(533\) 0.274703 32.0207i 0.0118987 1.38697i
\(534\) 0 0
\(535\) −15.7174 9.07445i −0.679523 0.392323i
\(536\) 2.99692 5.19081i 0.129447 0.224209i
\(537\) 0 0
\(538\) 2.45823i 0.105982i
\(539\) −4.98494 + 2.87806i −0.214717 + 0.123967i
\(540\) 0 0
\(541\) 13.8116i 0.593807i −0.954907 0.296904i \(-0.904046\pi\)
0.954907 0.296904i \(-0.0959540\pi\)
\(542\) 3.29752 + 5.71148i 0.141641 + 0.245329i
\(543\) 0 0
\(544\) 10.0352 + 5.79380i 0.430254 + 0.248407i
\(545\) 1.98291 0.0849383
\(546\) 0 0
\(547\) 15.3668 0.657039 0.328519 0.944497i \(-0.393450\pi\)
0.328519 + 0.944497i \(0.393450\pi\)
\(548\) 10.0405 + 5.79687i 0.428908 + 0.247630i
\(549\) 0 0
\(550\) −5.40601 9.36348i −0.230513 0.399260i
\(551\) 34.7494i 1.48038i
\(552\) 0 0
\(553\) 13.5228 7.80736i 0.575046 0.332003i
\(554\) 11.4567i 0.486747i
\(555\) 0 0
\(556\) 0.647876 1.12215i 0.0274760 0.0475899i
\(557\) 22.5868 + 13.0405i 0.957032 + 0.552542i 0.895258 0.445548i \(-0.146991\pi\)
0.0617734 + 0.998090i \(0.480324\pi\)
\(558\) 0 0
\(559\) 17.4845 29.6929i 0.739517 1.25588i
\(560\) −2.81113 −0.118792
\(561\) 0 0
\(562\) 3.61303 6.25795i 0.152406 0.263976i
\(563\) 6.43529 + 11.1462i 0.271215 + 0.469758i 0.969173 0.246380i \(-0.0792412\pi\)
−0.697958 + 0.716138i \(0.745908\pi\)
\(564\) 0 0
\(565\) −4.39855 + 2.53950i −0.185048 + 0.106838i
\(566\) −8.83409 + 5.10037i −0.371325 + 0.214384i
\(567\) 0 0
\(568\) 7.92859 + 13.7327i 0.332676 + 0.576212i
\(569\) 2.47488 4.28662i 0.103752 0.179704i −0.809475 0.587154i \(-0.800248\pi\)
0.913228 + 0.407449i \(0.133582\pi\)
\(570\) 0 0
\(571\) 28.2860 1.18373 0.591865 0.806037i \(-0.298392\pi\)
0.591865 + 0.806037i \(0.298392\pi\)
\(572\) −31.8577 + 18.0304i −1.33204 + 0.753891i
\(573\) 0 0
\(574\) 3.73794 + 2.15810i 0.156019 + 0.0900774i
\(575\) −10.6548 + 18.4547i −0.444337 + 0.769615i
\(576\) 0 0
\(577\) 30.1903i 1.25684i 0.777875 + 0.628419i \(0.216298\pi\)
−0.777875 + 0.628419i \(0.783702\pi\)
\(578\) 4.83987 2.79430i 0.201312 0.116228i
\(579\) 0 0
\(580\) 10.5310i 0.437277i
\(581\) −1.31657 2.28036i −0.0546203 0.0946052i
\(582\) 0 0
\(583\) 7.62046 + 4.39967i 0.315607 + 0.182216i
\(584\) −13.9738 −0.578240
\(585\) 0 0
\(586\) −3.58691 −0.148174
\(587\) 22.5606 + 13.0253i 0.931174 + 0.537614i 0.887183 0.461418i \(-0.152659\pi\)
0.0439914 + 0.999032i \(0.485993\pi\)
\(588\) 0 0
\(589\) −16.9404 29.3416i −0.698016 1.20900i
\(590\) 5.41895i 0.223094i
\(591\) 0 0
\(592\) 10.7757 6.22134i 0.442877 0.255695i
\(593\) 10.6780i 0.438494i −0.975669 0.219247i \(-0.929640\pi\)
0.975669 0.219247i \(-0.0703601\pi\)
\(594\) 0 0
\(595\) 1.24931 2.16387i 0.0512167 0.0887099i
\(596\) 34.5822 + 19.9660i 1.41654 + 0.817840i
\(597\) 0 0
\(598\) −8.32497 4.90212i −0.340433 0.200463i
\(599\) 13.3791 0.546655 0.273327 0.961921i \(-0.411876\pi\)
0.273327 + 0.961921i \(0.411876\pi\)
\(600\) 0 0
\(601\) −17.4475 + 30.2199i −0.711697 + 1.23270i 0.252522 + 0.967591i \(0.418740\pi\)
−0.964220 + 0.265105i \(0.914593\pi\)
\(602\) 2.32230 + 4.02235i 0.0946501 + 0.163939i
\(603\) 0 0
\(604\) −12.1362 + 7.00682i −0.493814 + 0.285104i
\(605\) 20.4204 11.7897i 0.830207 0.479320i
\(606\) 0 0
\(607\) 17.4463 + 30.2179i 0.708123 + 1.22651i 0.965553 + 0.260208i \(0.0837912\pi\)
−0.257429 + 0.966297i \(0.582875\pi\)
\(608\) 15.3174 26.5306i 0.621204 1.07596i
\(609\) 0 0
\(610\) −3.95879 −0.160287
\(611\) −16.3753 + 9.26790i −0.662474 + 0.374939i
\(612\) 0 0
\(613\) −3.51431 2.02899i −0.141942 0.0819500i 0.427347 0.904087i \(-0.359448\pi\)
−0.569289 + 0.822137i \(0.692781\pi\)
\(614\) 6.37063 11.0343i 0.257098 0.445306i
\(615\) 0 0
\(616\) 10.5289i 0.424223i
\(617\) 1.33035 0.768080i 0.0535580 0.0309217i −0.472982 0.881072i \(-0.656822\pi\)
0.526540 + 0.850150i \(0.323489\pi\)
\(618\) 0 0
\(619\) 15.0023i 0.602993i −0.953467 0.301496i \(-0.902514\pi\)
0.953467 0.301496i \(-0.0974861\pi\)
\(620\) −5.13388 8.89214i −0.206182 0.357117i
\(621\) 0 0
\(622\) 9.83721 + 5.67951i 0.394436 + 0.227728i
\(623\) 12.0669 0.483448
\(624\) 0 0
\(625\) 9.26336 0.370534
\(626\) −8.64222 4.98959i −0.345412 0.199424i
\(627\) 0 0
\(628\) −13.6579 23.6562i −0.545011 0.943986i
\(629\) 11.0594i 0.440968i
\(630\) 0 0
\(631\) −8.08574 + 4.66831i −0.321888 + 0.185842i −0.652234 0.758018i \(-0.726168\pi\)
0.330346 + 0.943860i \(0.392835\pi\)
\(632\) 28.5620i 1.13614i
\(633\) 0 0
\(634\) −0.665131 + 1.15204i −0.0264157 + 0.0457534i
\(635\) 1.09572 + 0.632614i 0.0434823 + 0.0251045i
\(636\) 0 0
\(637\) 3.60542 + 0.0309306i 0.142852 + 0.00122552i
\(638\) −15.6775 −0.620679
\(639\) 0 0
\(640\) 6.00821 10.4065i 0.237495 0.411354i
\(641\) 6.54834 + 11.3421i 0.258644 + 0.447984i 0.965879 0.258994i \(-0.0833911\pi\)
−0.707235 + 0.706979i \(0.750058\pi\)
\(642\) 0 0
\(643\) −12.0111 + 6.93458i −0.473670 + 0.273473i −0.717775 0.696276i \(-0.754839\pi\)
0.244105 + 0.969749i \(0.421506\pi\)
\(644\) −8.42189 + 4.86238i −0.331869 + 0.191605i
\(645\) 0 0
\(646\) 3.53368 + 6.12051i 0.139031 + 0.240808i
\(647\) −5.83908 + 10.1136i −0.229558 + 0.397606i −0.957677 0.287845i \(-0.907061\pi\)
0.728119 + 0.685450i \(0.240395\pi\)
\(648\) 0 0
\(649\) −60.2451 −2.36483
\(650\) −0.0580987 + 6.77225i −0.00227882 + 0.265630i
\(651\) 0 0
\(652\) −9.00637 5.19983i −0.352716 0.203641i
\(653\) 4.34307 7.52242i 0.169958 0.294375i −0.768447 0.639913i \(-0.778970\pi\)
0.938405 + 0.345538i \(0.112304\pi\)
\(654\) 0 0
\(655\) 15.7952i 0.617168i
\(656\) 20.2951 11.7174i 0.792390 0.457487i
\(657\) 0 0
\(658\) 2.53620i 0.0988715i
\(659\) −24.1981 41.9124i −0.942626 1.63268i −0.760436 0.649413i \(-0.775015\pi\)
−0.182190 0.983263i \(-0.558319\pi\)
\(660\) 0 0
\(661\) −22.0611 12.7370i −0.858076 0.495410i 0.00529178 0.999986i \(-0.498316\pi\)
−0.863367 + 0.504576i \(0.831649\pi\)
\(662\) −4.69051 −0.182302
\(663\) 0 0
\(664\) 4.81645 0.186915
\(665\) −5.72075 3.30288i −0.221841 0.128080i
\(666\) 0 0
\(667\) 15.4496 + 26.7595i 0.598211 + 1.03613i
\(668\) 16.7720i 0.648927i
\(669\) 0 0
\(670\) 1.46927 0.848286i 0.0567630 0.0327721i
\(671\) 44.0118i 1.69906i
\(672\) 0 0
\(673\) −0.655263 + 1.13495i −0.0252585 + 0.0437491i −0.878378 0.477966i \(-0.841374\pi\)
0.853120 + 0.521715i \(0.174708\pi\)
\(674\) 4.77142 + 2.75478i 0.183788 + 0.106110i
\(675\) 0 0
\(676\) 22.9262 + 0.393394i 0.881777 + 0.0151305i
\(677\) 47.4782 1.82473 0.912367 0.409373i \(-0.134253\pi\)
0.912367 + 0.409373i \(0.134253\pi\)
\(678\) 0 0
\(679\) −8.38057 + 14.5156i −0.321617 + 0.557057i
\(680\) 2.28520 + 3.95809i 0.0876335 + 0.151786i
\(681\) 0 0
\(682\) 13.2377 7.64281i 0.506899 0.292658i
\(683\) −11.4380 + 6.60376i −0.437665 + 0.252686i −0.702607 0.711579i \(-0.747981\pi\)
0.264942 + 0.964264i \(0.414647\pi\)
\(684\) 0 0
\(685\) 3.50136 + 6.06453i 0.133780 + 0.231714i
\(686\) −0.242995 + 0.420879i −0.00927758 + 0.0160692i
\(687\) 0 0
\(688\) 25.2178 0.961421
\(689\) −2.71484 4.79682i −0.103427 0.182744i
\(690\) 0 0
\(691\) −5.74831 3.31879i −0.218676 0.126253i 0.386661 0.922222i \(-0.373628\pi\)
−0.605337 + 0.795969i \(0.706962\pi\)
\(692\) 1.43279 2.48166i 0.0544665 0.0943387i
\(693\) 0 0
\(694\) 9.56103i 0.362932i
\(695\) 0.677790 0.391322i 0.0257100 0.0148437i
\(696\) 0 0
\(697\) 20.8295i 0.788974i
\(698\) 1.91637 + 3.31926i 0.0725358 + 0.125636i
\(699\) 0 0
\(700\) 5.90384 + 3.40858i 0.223144 + 0.128832i
\(701\) 49.2722 1.86099 0.930494 0.366308i \(-0.119378\pi\)
0.930494 + 0.366308i \(0.119378\pi\)
\(702\) 0 0
\(703\) 29.2385 1.10275
\(704\) −14.3377 8.27789i −0.540373 0.311985i
\(705\) 0 0
\(706\) −3.56767 6.17938i −0.134271 0.232564i
\(707\) 2.57631i 0.0968921i
\(708\) 0 0
\(709\) −10.0225 + 5.78651i −0.376404 + 0.217317i −0.676253 0.736670i \(-0.736397\pi\)
0.299848 + 0.953987i \(0.403064\pi\)
\(710\) 4.48842i 0.168448i
\(711\) 0 0
\(712\) −11.0362 + 19.1152i −0.413598 + 0.716373i
\(713\) −26.0906 15.0634i −0.977099 0.564129i
\(714\) 0 0
\(715\) −22.1096 0.189677i −0.826852 0.00709351i
\(716\) 34.8436 1.30217
\(717\) 0 0
\(718\) 4.07563 7.05920i 0.152101 0.263447i
\(719\) 6.02564 + 10.4367i 0.224718 + 0.389224i 0.956235 0.292600i \(-0.0945204\pi\)
−0.731516 + 0.681824i \(0.761187\pi\)
\(720\) 0 0
\(721\) −8.99146 + 5.19122i −0.334860 + 0.193331i
\(722\) 8.18447 4.72531i 0.304594 0.175858i
\(723\) 0 0
\(724\) 0.519821 + 0.900356i 0.0193190 + 0.0334615i
\(725\) 10.8303 18.7587i 0.402229 0.696681i
\(726\) 0 0
\(727\) −35.1133 −1.30228 −0.651139 0.758958i \(-0.725709\pi\)
−0.651139 + 0.758958i \(0.725709\pi\)
\(728\) −3.34647 + 5.68309i −0.124028 + 0.210629i
\(729\) 0 0
\(730\) −3.42541 1.97766i −0.126780 0.0731966i
\(731\) −11.2072 + 19.4114i −0.414513 + 0.717957i
\(732\) 0 0
\(733\) 4.72292i 0.174445i −0.996189 0.0872225i \(-0.972201\pi\)
0.996189 0.0872225i \(-0.0277991\pi\)
\(734\) 4.60461 2.65847i 0.169959 0.0981259i
\(735\) 0 0
\(736\) 27.2405i 1.00410i
\(737\) −9.43081 16.3346i −0.347388 0.601694i
\(738\) 0 0
\(739\) 5.24267 + 3.02686i 0.192855 + 0.111345i 0.593318 0.804968i \(-0.297818\pi\)
−0.400464 + 0.916313i \(0.631151\pi\)
\(740\) 8.86089 0.325733
\(741\) 0 0
\(742\) 0.742930 0.0272738
\(743\) −20.5317 11.8540i −0.753235 0.434880i 0.0736267 0.997286i \(-0.476543\pi\)
−0.826862 + 0.562406i \(0.809876\pi\)
\(744\) 0 0
\(745\) 12.0596 + 20.8879i 0.441831 + 0.765274i
\(746\) 3.51630i 0.128741i
\(747\) 0 0
\(748\) 20.6213 11.9057i 0.753991 0.435317i
\(749\) 17.0355i 0.622463i
\(750\) 0 0
\(751\) 12.0552 20.8801i 0.439899 0.761927i −0.557782 0.829987i \(-0.688348\pi\)
0.997681 + 0.0680602i \(0.0216810\pi\)
\(752\) −11.9254 6.88514i −0.434875 0.251075i
\(753\) 0 0
\(754\) 8.46210 + 4.98287i 0.308171 + 0.181465i
\(755\) −8.46436 −0.308050
\(756\) 0 0
\(757\) 18.0820 31.3189i 0.657200 1.13830i −0.324137 0.946010i \(-0.605074\pi\)
0.981337 0.192294i \(-0.0615927\pi\)
\(758\) 0.640246 + 1.10894i 0.0232548 + 0.0402785i
\(759\) 0 0
\(760\) 10.4642 6.04153i 0.379578 0.219149i
\(761\) 11.8683 6.85216i 0.430225 0.248390i −0.269218 0.963079i \(-0.586765\pi\)
0.699442 + 0.714689i \(0.253432\pi\)
\(762\) 0 0
\(763\) −0.930628 1.61189i −0.0336910 0.0583545i
\(764\) 8.09260 14.0168i 0.292780 0.507110i
\(765\) 0 0
\(766\) −4.18371 −0.151163
\(767\) 32.5179 + 19.1480i 1.17415 + 0.691395i
\(768\) 0 0
\(769\) 36.7196 + 21.2001i 1.32414 + 0.764494i 0.984387 0.176019i \(-0.0563221\pi\)
0.339756 + 0.940513i \(0.389655\pi\)
\(770\) 1.49012 2.58097i 0.0537003 0.0930116i
\(771\) 0 0
\(772\) 5.79825i 0.208683i
\(773\) 3.66142 2.11392i 0.131692 0.0760325i −0.432707 0.901535i \(-0.642441\pi\)
0.564399 + 0.825502i \(0.309108\pi\)
\(774\) 0 0
\(775\) 21.1192i 0.758624i
\(776\) −15.3295 26.5515i −0.550298 0.953144i
\(777\) 0 0
\(778\) −8.40604 4.85323i −0.301371 0.173997i
\(779\) 55.0683 1.97303
\(780\) 0 0
\(781\) 49.9000 1.78556
\(782\) 5.44236 + 3.14215i 0.194618 + 0.112363i
\(783\) 0 0
\(784\) 1.31934 + 2.28516i 0.0471191 + 0.0816127i
\(785\) 16.4990i 0.588875i
\(786\) 0 0
\(787\) 13.3645 7.71598i 0.476392 0.275045i −0.242520 0.970147i \(-0.577974\pi\)
0.718912 + 0.695101i \(0.244641\pi\)
\(788\) 27.0223i 0.962628i
\(789\) 0 0
\(790\) −4.04229 + 7.00144i −0.143818 + 0.249100i
\(791\) 4.12870 + 2.38371i 0.146800 + 0.0847549i
\(792\) 0 0
\(793\) 13.9885 23.7558i 0.496746 0.843593i
\(794\) −1.38952 −0.0493122
\(795\) 0 0
\(796\) −12.8079 + 22.1840i −0.453966 + 0.786291i
\(797\) −10.0729 17.4467i −0.356799 0.617994i 0.630625 0.776088i \(-0.282799\pi\)
−0.987424 + 0.158094i \(0.949465\pi\)
\(798\) 0 0
\(799\) 10.5997 6.11972i 0.374989 0.216500i
\(800\) −16.5375 + 9.54795i −0.584690 + 0.337571i
\(801\) 0 0
\(802\) −4.38015 7.58664i −0.154668 0.267893i
\(803\) −21.9867 + 38.0820i −0.775893 + 1.34389i
\(804\) 0 0
\(805\) −5.87384 −0.207026
\(806\) −9.57435 0.0821377i −0.337242 0.00289318i
\(807\) 0 0
\(808\) −4.08116 2.35626i −0.143575 0.0828929i
\(809\) 17.0108 29.4635i 0.598067 1.03588i −0.395040 0.918664i \(-0.629269\pi\)
0.993106 0.117218i \(-0.0373975\pi\)
\(810\) 0 0
\(811\) 30.0516i 1.05525i 0.849477 + 0.527626i \(0.176918\pi\)
−0.849477 + 0.527626i \(0.823082\pi\)
\(812\) 8.56062 4.94247i 0.300419 0.173447i
\(813\) 0 0
\(814\) 13.1912i 0.462352i
\(815\) −3.14074 5.43992i −0.110015 0.190552i
\(816\) 0 0
\(817\) 51.3192 + 29.6291i 1.79543 + 1.03659i
\(818\) −4.25604 −0.148809
\(819\) 0 0
\(820\) 16.6888 0.582797
\(821\) −11.7870 6.80525i −0.411370 0.237505i 0.280008 0.959998i \(-0.409663\pi\)
−0.691378 + 0.722493i \(0.742996\pi\)
\(822\) 0 0
\(823\) 20.1300 + 34.8662i 0.701688 + 1.21536i 0.967874 + 0.251437i \(0.0809032\pi\)
−0.266186 + 0.963922i \(0.585763\pi\)
\(824\) 18.9913i 0.661593i
\(825\) 0 0
\(826\) −4.40504 + 2.54325i −0.153271 + 0.0884910i
\(827\) 16.6662i 0.579541i −0.957096 0.289771i \(-0.906421\pi\)
0.957096 0.289771i \(-0.0935790\pi\)
\(828\) 0 0
\(829\) 6.11891 10.5983i 0.212518 0.368093i −0.739984 0.672625i \(-0.765167\pi\)
0.952502 + 0.304532i \(0.0985001\pi\)
\(830\) 1.18066 + 0.681655i 0.0409814 + 0.0236606i
\(831\) 0 0
\(832\) 5.10792 + 9.02511i 0.177085 + 0.312889i
\(833\) −2.34533 −0.0812608
\(834\) 0 0
\(835\) −5.06520 + 8.77319i −0.175289 + 0.303609i
\(836\) −31.4759 54.5179i −1.08862 1.88554i
\(837\) 0 0
\(838\) −0.727654 + 0.420111i −0.0251364 + 0.0145125i
\(839\) −40.5002 + 23.3828i −1.39822 + 0.807265i −0.994206 0.107487i \(-0.965720\pi\)
−0.404017 + 0.914752i \(0.632386\pi\)
\(840\) 0 0
\(841\) −1.20410 2.08555i −0.0415205 0.0719157i
\(842\) −6.23103 + 10.7925i −0.214736 + 0.371933i
\(843\) 0 0
\(844\) −29.1511 −1.00342
\(845\) 11.8736 + 7.12959i 0.408464 + 0.245265i
\(846\) 0 0
\(847\) −19.1676 11.0664i −0.658607 0.380247i
\(848\) 2.01686 3.49331i 0.0692593 0.119961i
\(849\) 0 0
\(850\) 4.40536i 0.151103i
\(851\) 22.5157 12.9994i 0.771827 0.445615i
\(852\) 0 0
\(853\) 4.23317i 0.144941i −0.997371 0.0724704i \(-0.976912\pi\)
0.997371 0.0724704i \(-0.0230883\pi\)
\(854\) 1.85796 + 3.21808i 0.0635781 + 0.110120i
\(855\) 0 0
\(856\) −26.9861 15.5804i −0.922366 0.532528i
\(857\) −12.7087 −0.434122 −0.217061 0.976158i \(-0.569647\pi\)
−0.217061 + 0.976158i \(0.569647\pi\)
\(858\) 0 0
\(859\) 12.6692 0.432266 0.216133 0.976364i \(-0.430655\pi\)
0.216133 + 0.976364i \(0.430655\pi\)
\(860\) 15.5526 + 8.97928i 0.530338 + 0.306191i
\(861\) 0 0
\(862\) −0.0625626 0.108362i −0.00213089 0.00369081i
\(863\) 27.6136i 0.939979i 0.882672 + 0.469989i \(0.155742\pi\)
−0.882672 + 0.469989i \(0.844258\pi\)
\(864\) 0 0
\(865\) 1.49895 0.865417i 0.0509657 0.0294251i
\(866\) 11.8232i 0.401770i
\(867\) 0 0
\(868\) −4.81892 + 8.34662i −0.163565 + 0.283303i
\(869\) 77.8385 + 44.9401i 2.64049 + 1.52449i
\(870\) 0 0
\(871\) −0.101353 + 11.8142i −0.00343423 + 0.400310i
\(872\) 3.40456 0.115293
\(873\) 0 0
\(874\) 8.30709 14.3883i 0.280991 0.486692i
\(875\) 4.72221 + 8.17911i 0.159640 + 0.276504i
\(876\) 0 0
\(877\) −2.23965 + 1.29306i −0.0756275 + 0.0436636i −0.537337 0.843368i \(-0.680570\pi\)
0.461709 + 0.887031i \(0.347236\pi\)
\(878\) 7.16252 4.13528i 0.241723 0.139559i
\(879\) 0 0
\(880\) −8.09060 14.0133i −0.272734 0.472389i
\(881\) −7.62486 + 13.2067i −0.256888 + 0.444943i −0.965407 0.260749i \(-0.916031\pi\)
0.708518 + 0.705692i \(0.249364\pi\)
\(882\) 0 0
\(883\) 20.9880 0.706304 0.353152 0.935566i \(-0.385110\pi\)
0.353152 + 0.935566i \(0.385110\pi\)
\(884\) −14.9146 0.127952i −0.501633 0.00430348i
\(885\) 0 0
\(886\) −16.0592 9.27180i −0.539521 0.311492i
\(887\) 0.684569 1.18571i 0.0229856 0.0398122i −0.854304 0.519774i \(-0.826016\pi\)
0.877289 + 0.479962i \(0.159349\pi\)
\(888\) 0 0
\(889\) 1.18761i 0.0398311i
\(890\) −5.41062 + 3.12382i −0.181364 + 0.104711i
\(891\) 0 0
\(892\) 38.2577i 1.28096i
\(893\) −16.1791 28.0230i −0.541412 0.937753i
\(894\) 0 0
\(895\) 18.2262 + 10.5229i 0.609236 + 0.351742i
\(896\) −11.2792 −0.376813
\(897\) 0 0
\(898\) −20.0877 −0.670334
\(899\) 26.5203 + 15.3115i 0.884503 + 0.510668i
\(900\) 0 0
\(901\) 1.79265 + 3.10496i 0.0597217 + 0.103441i
\(902\) 24.8446i 0.827233i
\(903\) 0 0
\(904\) −7.55211 + 4.36021i −0.251180 + 0.145019i
\(905\) 0.627952i 0.0208738i
\(906\) 0 0
\(907\) −14.3349 + 24.8288i −0.475984 + 0.824428i −0.999621 0.0275130i \(-0.991241\pi\)
0.523638 + 0.851941i \(0.324575\pi\)
\(908\) −8.30279 4.79362i −0.275538 0.159082i
\(909\) 0 0
\(910\) −1.62463 + 0.919489i −0.0538560 + 0.0304808i
\(911\) −11.9761 −0.396784 −0.198392 0.980123i \(-0.563572\pi\)
−0.198392 + 0.980123i \(0.563572\pi\)
\(912\) 0 0
\(913\) 7.57830 13.1260i 0.250805 0.434407i
\(914\) −4.52533 7.83810i −0.149685 0.259261i
\(915\) 0 0
\(916\) 15.2700 8.81614i 0.504535 0.291294i
\(917\) −12.8398 + 7.41307i −0.424008 + 0.244801i
\(918\) 0 0
\(919\) −13.0048 22.5249i −0.428988 0.743029i 0.567796 0.823169i \(-0.307796\pi\)
−0.996784 + 0.0801408i \(0.974463\pi\)
\(920\) 5.37213 9.30480i 0.177114 0.306770i
\(921\) 0 0
\(922\) 3.69803 0.121788
\(923\) −26.9340 15.8600i −0.886544 0.522038i
\(924\) 0 0
\(925\) −15.7837 9.11274i −0.518966 0.299625i
\(926\) −6.12418 + 10.6074i −0.201253 + 0.348580i
\(927\) 0 0
\(928\) 27.6892i 0.908944i
\(929\) 24.7855 14.3099i 0.813185 0.469492i −0.0348760 0.999392i \(-0.511104\pi\)
0.848061 + 0.529899i \(0.177770\pi\)
\(930\) 0 0
\(931\) 6.20049i 0.203213i
\(932\) 1.52176 + 2.63577i 0.0498469 + 0.0863374i
\(933\) 0 0
\(934\) −7.82855 4.51982i −0.256158 0.147893i
\(935\) 14.3823 0.470352
\(936\) 0 0
\(937\) −45.1573 −1.47522 −0.737612 0.675225i \(-0.764047\pi\)
−0.737612 + 0.675225i \(0.764047\pi\)
\(938\) −1.37914 0.796244i −0.0450304 0.0259983i
\(939\) 0 0
\(940\) −4.90316 8.49252i −0.159923 0.276996i
\(941\) 33.5054i 1.09224i 0.837705 + 0.546122i \(0.183897\pi\)
−0.837705 + 0.546122i \(0.816103\pi\)
\(942\) 0 0
\(943\) 42.4064 24.4834i 1.38094 0.797288i
\(944\) 27.6171i 0.898859i
\(945\) 0 0
\(946\) −13.3675 + 23.1531i −0.434613 + 0.752772i
\(947\) −35.4712 20.4793i −1.15266 0.665488i −0.203125 0.979153i \(-0.565110\pi\)
−0.949534 + 0.313665i \(0.898443\pi\)
\(948\) 0 0
\(949\) 23.9713 13.5670i 0.778142 0.440404i
\(950\) −11.6467 −0.377870
\(951\) 0 0
\(952\) 2.14501 3.71526i 0.0695201 0.120412i
\(953\) 13.5406 + 23.4530i 0.438622 + 0.759716i 0.997584 0.0694777i \(-0.0221333\pi\)
−0.558961 + 0.829194i \(0.688800\pi\)
\(954\) 0 0
\(955\) 8.46626 4.88800i 0.273962 0.158172i
\(956\) 8.87233 5.12244i 0.286952 0.165672i
\(957\) 0 0
\(958\) 5.96284 + 10.3279i 0.192651 + 0.333681i
\(959\) 3.28655 5.69247i 0.106128 0.183820i
\(960\) 0 0
\(961\) 1.14247 0.0368538
\(962\) 4.19263 7.12008i 0.135176 0.229561i
\(963\) 0 0
\(964\) −16.9862 9.80699i −0.547089 0.315862i
\(965\) −1.75109 + 3.03298i −0.0563697 + 0.0976352i
\(966\) 0 0
\(967\) 57.7720i 1.85782i −0.370301 0.928912i \(-0.620746\pi\)
0.370301 0.928912i \(-0.379254\pi\)
\(968\) 35.0609 20.2424i 1.12690 0.650616i
\(969\) 0 0
\(970\) 8.67813i 0.278638i
\(971\) 27.8843 + 48.2970i 0.894849 + 1.54992i 0.833992 + 0.551777i \(0.186050\pi\)
0.0608566 + 0.998147i \(0.480617\pi\)
\(972\) 0 0
\(973\) −0.636208 0.367315i −0.0203959 0.0117756i
\(974\) −14.9509 −0.479058
\(975\) 0 0
\(976\) 20.1755 0.645803
\(977\) 25.4683 + 14.7042i 0.814804 + 0.470427i 0.848621 0.529001i \(-0.177433\pi\)
−0.0338172 + 0.999428i \(0.510766\pi\)
\(978\) 0 0
\(979\) 34.7291 + 60.1526i 1.10995 + 1.92248i
\(980\) 1.87910i 0.0600255i
\(981\) 0 0
\(982\) 8.08221 4.66627i 0.257914 0.148907i
\(983\) 43.0253i 1.37229i −0.727464 0.686146i \(-0.759301\pi\)
0.727464 0.686146i \(-0.240699\pi\)
\(984\) 0 0
\(985\) 8.16083 14.1350i 0.260026 0.450378i
\(986\) −5.53201 3.19390i −0.176175 0.101715i
\(987\) 0 0
\(988\) −0.338274 + 39.4307i −0.0107619 + 1.25446i
\(989\) 52.6925 1.67552
\(990\) 0 0
\(991\) 25.9615 44.9666i 0.824693 1.42841i −0.0774611 0.996995i \(-0.524681\pi\)
0.902154 0.431414i \(-0.141985\pi\)
\(992\) −13.4985 23.3801i −0.428579 0.742320i
\(993\) 0 0
\(994\) 3.64862 2.10653i 0.115727 0.0668151i
\(995\) −13.3993 + 7.73611i −0.424787 + 0.245251i
\(996\) 0 0
\(997\) 4.05357 + 7.02099i 0.128378 + 0.222357i 0.923048 0.384684i \(-0.125690\pi\)
−0.794670 + 0.607041i \(0.792356\pi\)
\(998\) −3.41631 + 5.91722i −0.108141 + 0.187306i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.ct.b.316.5 16
3.2 odd 2 273.2.bd.a.43.4 16
13.10 even 6 inner 819.2.ct.b.127.5 16
39.20 even 12 3549.2.a.bb.1.4 8
39.23 odd 6 273.2.bd.a.127.4 yes 16
39.32 even 12 3549.2.a.bd.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.bd.a.43.4 16 3.2 odd 2
273.2.bd.a.127.4 yes 16 39.23 odd 6
819.2.ct.b.127.5 16 13.10 even 6 inner
819.2.ct.b.316.5 16 1.1 even 1 trivial
3549.2.a.bb.1.4 8 39.20 even 12
3549.2.a.bd.1.5 8 39.32 even 12