Properties

Label 832.2.ba.b.225.1
Level $832$
Weight $2$
Character 832.225
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 225.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.225
Dual form 832.2.ba.b.673.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.36603 - 1.36603i) q^{3} -1.73205 q^{5} +(1.73205 - 1.00000i) q^{7} +(2.23205 + 3.86603i) q^{9} +(1.73205 - 3.00000i) q^{11} +(3.59808 - 0.232051i) q^{13} +(4.09808 + 2.36603i) q^{15} +(0.232051 + 0.401924i) q^{17} +(-2.36603 - 4.09808i) q^{19} -5.46410 q^{21} +(2.36603 - 4.09808i) q^{23} -2.00000 q^{25} -4.00000i q^{27} +(0.401924 + 0.232051i) q^{29} -0.196152i q^{31} +(-8.19615 + 4.73205i) q^{33} +(-3.00000 + 1.73205i) q^{35} +(-4.59808 + 7.96410i) q^{37} +(-8.83013 - 4.36603i) q^{39} +(-4.50000 - 2.59808i) q^{41} +(-10.7321 + 6.19615i) q^{43} +(-3.86603 - 6.69615i) q^{45} -11.6603i q^{47} +(-1.50000 + 2.59808i) q^{49} -1.26795i q^{51} -12.4641i q^{53} +(-3.00000 + 5.19615i) q^{55} +12.9282i q^{57} +(0.464102 + 0.803848i) q^{59} +(11.5981 - 6.69615i) q^{61} +(7.73205 + 4.46410i) q^{63} +(-6.23205 + 0.401924i) q^{65} +(-4.09808 + 7.09808i) q^{67} +(-11.1962 + 6.46410i) q^{69} +(-10.0981 + 5.83013i) q^{71} -5.19615i q^{73} +(4.73205 + 2.73205i) q^{75} -6.92820i q^{77} +6.00000 q^{79} +(1.23205 - 2.13397i) q^{81} -2.53590 q^{83} +(-0.401924 - 0.696152i) q^{85} +(-0.633975 - 1.09808i) q^{87} +(-13.3923 - 7.73205i) q^{89} +(6.00000 - 4.00000i) q^{91} +(-0.267949 + 0.464102i) q^{93} +(4.09808 + 7.09808i) q^{95} +(5.19615 - 3.00000i) q^{97} +15.4641 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} + 2 q^{9} + 4 q^{13} + 6 q^{15} - 6 q^{17} - 6 q^{19} - 8 q^{21} + 6 q^{23} - 8 q^{25} + 12 q^{29} - 12 q^{33} - 12 q^{35} - 8 q^{37} - 18 q^{39} - 18 q^{41} - 36 q^{43} - 12 q^{45} - 6 q^{49}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36603 1.36603i −1.36603 0.788675i −0.375608 0.926779i \(-0.622566\pi\)
−0.990418 + 0.138104i \(0.955899\pi\)
\(4\) 0 0
\(5\) −1.73205 −0.774597 −0.387298 0.921954i \(-0.626592\pi\)
−0.387298 + 0.921954i \(0.626592\pi\)
\(6\) 0 0
\(7\) 1.73205 1.00000i 0.654654 0.377964i −0.135583 0.990766i \(-0.543291\pi\)
0.790237 + 0.612801i \(0.209957\pi\)
\(8\) 0 0
\(9\) 2.23205 + 3.86603i 0.744017 + 1.28868i
\(10\) 0 0
\(11\) 1.73205 3.00000i 0.522233 0.904534i −0.477432 0.878668i \(-0.658432\pi\)
0.999665 0.0258656i \(-0.00823419\pi\)
\(12\) 0 0
\(13\) 3.59808 0.232051i 0.997927 0.0643593i
\(14\) 0 0
\(15\) 4.09808 + 2.36603i 1.05812 + 0.610905i
\(16\) 0 0
\(17\) 0.232051 + 0.401924i 0.0562806 + 0.0974808i 0.892793 0.450467i \(-0.148743\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(18\) 0 0
\(19\) −2.36603 4.09808i −0.542803 0.940163i −0.998742 0.0501517i \(-0.984030\pi\)
0.455938 0.890011i \(-0.349304\pi\)
\(20\) 0 0
\(21\) −5.46410 −1.19236
\(22\) 0 0
\(23\) 2.36603 4.09808i 0.493350 0.854508i −0.506620 0.862169i \(-0.669105\pi\)
0.999971 + 0.00766135i \(0.00243871\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 0.401924 + 0.232051i 0.0746354 + 0.0430908i 0.536853 0.843676i \(-0.319613\pi\)
−0.462218 + 0.886766i \(0.652946\pi\)
\(30\) 0 0
\(31\) 0.196152i 0.0352300i −0.999845 0.0176150i \(-0.994393\pi\)
0.999845 0.0176150i \(-0.00560732\pi\)
\(32\) 0 0
\(33\) −8.19615 + 4.73205i −1.42677 + 0.823744i
\(34\) 0 0
\(35\) −3.00000 + 1.73205i −0.507093 + 0.292770i
\(36\) 0 0
\(37\) −4.59808 + 7.96410i −0.755919 + 1.30929i 0.188997 + 0.981978i \(0.439476\pi\)
−0.944916 + 0.327313i \(0.893857\pi\)
\(38\) 0 0
\(39\) −8.83013 4.36603i −1.41395 0.699124i
\(40\) 0 0
\(41\) −4.50000 2.59808i −0.702782 0.405751i 0.105601 0.994409i \(-0.466323\pi\)
−0.808383 + 0.588657i \(0.799657\pi\)
\(42\) 0 0
\(43\) −10.7321 + 6.19615i −1.63662 + 0.944904i −0.654638 + 0.755943i \(0.727179\pi\)
−0.981984 + 0.188962i \(0.939488\pi\)
\(44\) 0 0
\(45\) −3.86603 6.69615i −0.576313 0.998203i
\(46\) 0 0
\(47\) 11.6603i 1.70082i −0.526118 0.850411i \(-0.676353\pi\)
0.526118 0.850411i \(-0.323647\pi\)
\(48\) 0 0
\(49\) −1.50000 + 2.59808i −0.214286 + 0.371154i
\(50\) 0 0
\(51\) 1.26795i 0.177548i
\(52\) 0 0
\(53\) 12.4641i 1.71208i −0.516913 0.856038i \(-0.672919\pi\)
0.516913 0.856038i \(-0.327081\pi\)
\(54\) 0 0
\(55\) −3.00000 + 5.19615i −0.404520 + 0.700649i
\(56\) 0 0
\(57\) 12.9282i 1.71238i
\(58\) 0 0
\(59\) 0.464102 + 0.803848i 0.0604209 + 0.104652i 0.894654 0.446760i \(-0.147422\pi\)
−0.834233 + 0.551413i \(0.814089\pi\)
\(60\) 0 0
\(61\) 11.5981 6.69615i 1.48498 0.857354i 0.485128 0.874443i \(-0.338773\pi\)
0.999854 + 0.0170890i \(0.00543985\pi\)
\(62\) 0 0
\(63\) 7.73205 + 4.46410i 0.974147 + 0.562424i
\(64\) 0 0
\(65\) −6.23205 + 0.401924i −0.772991 + 0.0498525i
\(66\) 0 0
\(67\) −4.09808 + 7.09808i −0.500660 + 0.867168i 0.499340 + 0.866406i \(0.333576\pi\)
−1.00000 0.000761916i \(0.999757\pi\)
\(68\) 0 0
\(69\) −11.1962 + 6.46410i −1.34786 + 0.778186i
\(70\) 0 0
\(71\) −10.0981 + 5.83013i −1.19842 + 0.691909i −0.960203 0.279303i \(-0.909897\pi\)
−0.238218 + 0.971212i \(0.576563\pi\)
\(72\) 0 0
\(73\) 5.19615i 0.608164i −0.952646 0.304082i \(-0.901650\pi\)
0.952646 0.304082i \(-0.0983496\pi\)
\(74\) 0 0
\(75\) 4.73205 + 2.73205i 0.546410 + 0.315470i
\(76\) 0 0
\(77\) 6.92820i 0.789542i
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 0 0
\(83\) −2.53590 −0.278351 −0.139176 0.990268i \(-0.544445\pi\)
−0.139176 + 0.990268i \(0.544445\pi\)
\(84\) 0 0
\(85\) −0.401924 0.696152i −0.0435948 0.0755083i
\(86\) 0 0
\(87\) −0.633975 1.09808i −0.0679692 0.117726i
\(88\) 0 0
\(89\) −13.3923 7.73205i −1.41958 0.819596i −0.423320 0.905980i \(-0.639135\pi\)
−0.996262 + 0.0863847i \(0.972469\pi\)
\(90\) 0 0
\(91\) 6.00000 4.00000i 0.628971 0.419314i
\(92\) 0 0
\(93\) −0.267949 + 0.464102i −0.0277850 + 0.0481251i
\(94\) 0 0
\(95\) 4.09808 + 7.09808i 0.420454 + 0.728247i
\(96\) 0 0
\(97\) 5.19615 3.00000i 0.527589 0.304604i −0.212445 0.977173i \(-0.568143\pi\)
0.740034 + 0.672569i \(0.234809\pi\)
\(98\) 0 0
\(99\) 15.4641 1.55420
\(100\) 0 0
\(101\) 8.59808 + 4.96410i 0.855541 + 0.493947i 0.862516 0.506029i \(-0.168887\pi\)
−0.00697585 + 0.999976i \(0.502220\pi\)
\(102\) 0 0
\(103\) −13.2679 −1.30733 −0.653665 0.756784i \(-0.726769\pi\)
−0.653665 + 0.756784i \(0.726769\pi\)
\(104\) 0 0
\(105\) 9.46410 0.923602
\(106\) 0 0
\(107\) −12.2942 7.09808i −1.18853 0.686197i −0.230556 0.973059i \(-0.574055\pi\)
−0.957972 + 0.286862i \(0.907388\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 21.7583 12.5622i 2.06521 1.19235i
\(112\) 0 0
\(113\) 1.50000 + 2.59808i 0.141108 + 0.244406i 0.927914 0.372794i \(-0.121600\pi\)
−0.786806 + 0.617200i \(0.788267\pi\)
\(114\) 0 0
\(115\) −4.09808 + 7.09808i −0.382148 + 0.661899i
\(116\) 0 0
\(117\) 8.92820 + 13.3923i 0.825413 + 1.23812i
\(118\) 0 0
\(119\) 0.803848 + 0.464102i 0.0736886 + 0.0425441i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) 0 0
\(123\) 7.09808 + 12.2942i 0.640012 + 1.10853i
\(124\) 0 0
\(125\) 12.1244 1.08444
\(126\) 0 0
\(127\) −2.83013 + 4.90192i −0.251133 + 0.434975i −0.963838 0.266489i \(-0.914137\pi\)
0.712705 + 0.701464i \(0.247470\pi\)
\(128\) 0 0
\(129\) 33.8564 2.98089
\(130\) 0 0
\(131\) 21.1244i 1.84564i −0.385227 0.922822i \(-0.625877\pi\)
0.385227 0.922822i \(-0.374123\pi\)
\(132\) 0 0
\(133\) −8.19615 4.73205i −0.710697 0.410321i
\(134\) 0 0
\(135\) 6.92820i 0.596285i
\(136\) 0 0
\(137\) 5.30385 3.06218i 0.453138 0.261620i −0.256016 0.966672i \(-0.582410\pi\)
0.709155 + 0.705053i \(0.249077\pi\)
\(138\) 0 0
\(139\) 0.339746 0.196152i 0.0288169 0.0166374i −0.485522 0.874224i \(-0.661371\pi\)
0.514339 + 0.857587i \(0.328037\pi\)
\(140\) 0 0
\(141\) −15.9282 + 27.5885i −1.34140 + 2.32337i
\(142\) 0 0
\(143\) 5.53590 11.1962i 0.462935 0.936269i
\(144\) 0 0
\(145\) −0.696152 0.401924i −0.0578123 0.0333780i
\(146\) 0 0
\(147\) 7.09808 4.09808i 0.585439 0.338004i
\(148\) 0 0
\(149\) −2.59808 4.50000i −0.212843 0.368654i 0.739760 0.672870i \(-0.234939\pi\)
−0.952603 + 0.304216i \(0.901606\pi\)
\(150\) 0 0
\(151\) 11.8038i 0.960583i −0.877109 0.480292i \(-0.840531\pi\)
0.877109 0.480292i \(-0.159469\pi\)
\(152\) 0 0
\(153\) −1.03590 + 1.79423i −0.0837474 + 0.145055i
\(154\) 0 0
\(155\) 0.339746i 0.0272891i
\(156\) 0 0
\(157\) 14.3205i 1.14290i 0.820637 + 0.571450i \(0.193619\pi\)
−0.820637 + 0.571450i \(0.806381\pi\)
\(158\) 0 0
\(159\) −17.0263 + 29.4904i −1.35027 + 2.33874i
\(160\) 0 0
\(161\) 9.46410i 0.745876i
\(162\) 0 0
\(163\) 4.73205 + 8.19615i 0.370643 + 0.641972i 0.989665 0.143402i \(-0.0458041\pi\)
−0.619022 + 0.785374i \(0.712471\pi\)
\(164\) 0 0
\(165\) 14.1962 8.19615i 1.10517 0.638070i
\(166\) 0 0
\(167\) 9.00000 + 5.19615i 0.696441 + 0.402090i 0.806020 0.591888i \(-0.201617\pi\)
−0.109580 + 0.993978i \(0.534950\pi\)
\(168\) 0 0
\(169\) 12.8923 1.66987i 0.991716 0.128452i
\(170\) 0 0
\(171\) 10.5622 18.2942i 0.807710 1.39899i
\(172\) 0 0
\(173\) −10.3923 + 6.00000i −0.790112 + 0.456172i −0.840002 0.542583i \(-0.817446\pi\)
0.0498898 + 0.998755i \(0.484113\pi\)
\(174\) 0 0
\(175\) −3.46410 + 2.00000i −0.261861 + 0.151186i
\(176\) 0 0
\(177\) 2.53590i 0.190610i
\(178\) 0 0
\(179\) 12.0000 + 6.92820i 0.896922 + 0.517838i 0.876200 0.481947i \(-0.160070\pi\)
0.0207218 + 0.999785i \(0.493404\pi\)
\(180\) 0 0
\(181\) 9.92820i 0.737958i −0.929438 0.368979i \(-0.879708\pi\)
0.929438 0.368979i \(-0.120292\pi\)
\(182\) 0 0
\(183\) −36.5885 −2.70470
\(184\) 0 0
\(185\) 7.96410 13.7942i 0.585532 1.01417i
\(186\) 0 0
\(187\) 1.60770 0.117566
\(188\) 0 0
\(189\) −4.00000 6.92820i −0.290957 0.503953i
\(190\) 0 0
\(191\) 8.02628 + 13.9019i 0.580761 + 1.00591i 0.995389 + 0.0959170i \(0.0305783\pi\)
−0.414628 + 0.909991i \(0.636088\pi\)
\(192\) 0 0
\(193\) −12.6962 7.33013i −0.913889 0.527634i −0.0322086 0.999481i \(-0.510254\pi\)
−0.881680 + 0.471847i \(0.843587\pi\)
\(194\) 0 0
\(195\) 15.2942 + 7.56218i 1.09524 + 0.541539i
\(196\) 0 0
\(197\) −1.73205 + 3.00000i −0.123404 + 0.213741i −0.921108 0.389308i \(-0.872714\pi\)
0.797704 + 0.603049i \(0.206048\pi\)
\(198\) 0 0
\(199\) −3.29423 5.70577i −0.233522 0.404471i 0.725320 0.688412i \(-0.241692\pi\)
−0.958842 + 0.283940i \(0.908358\pi\)
\(200\) 0 0
\(201\) 19.3923 11.1962i 1.36783 0.789716i
\(202\) 0 0
\(203\) 0.928203 0.0651471
\(204\) 0 0
\(205\) 7.79423 + 4.50000i 0.544373 + 0.314294i
\(206\) 0 0
\(207\) 21.1244 1.46824
\(208\) 0 0
\(209\) −16.3923 −1.13388
\(210\) 0 0
\(211\) 5.36603 + 3.09808i 0.369412 + 0.213280i 0.673202 0.739459i \(-0.264919\pi\)
−0.303789 + 0.952739i \(0.598252\pi\)
\(212\) 0 0
\(213\) 31.8564 2.18277
\(214\) 0 0
\(215\) 18.5885 10.7321i 1.26772 0.731920i
\(216\) 0 0
\(217\) −0.196152 0.339746i −0.0133157 0.0230635i
\(218\) 0 0
\(219\) −7.09808 + 12.2942i −0.479644 + 0.830767i
\(220\) 0 0
\(221\) 0.928203 + 1.39230i 0.0624377 + 0.0936566i
\(222\) 0 0
\(223\) −10.5622 6.09808i −0.707296 0.408357i 0.102763 0.994706i \(-0.467232\pi\)
−0.810059 + 0.586348i \(0.800565\pi\)
\(224\) 0 0
\(225\) −4.46410 7.73205i −0.297607 0.515470i
\(226\) 0 0
\(227\) −4.90192 8.49038i −0.325352 0.563526i 0.656231 0.754560i \(-0.272149\pi\)
−0.981584 + 0.191033i \(0.938816\pi\)
\(228\) 0 0
\(229\) 22.7846 1.50565 0.752825 0.658221i \(-0.228691\pi\)
0.752825 + 0.658221i \(0.228691\pi\)
\(230\) 0 0
\(231\) −9.46410 + 16.3923i −0.622692 + 1.07853i
\(232\) 0 0
\(233\) −25.8564 −1.69391 −0.846955 0.531665i \(-0.821567\pi\)
−0.846955 + 0.531665i \(0.821567\pi\)
\(234\) 0 0
\(235\) 20.1962i 1.31745i
\(236\) 0 0
\(237\) −14.1962 8.19615i −0.922139 0.532397i
\(238\) 0 0
\(239\) 0.928203i 0.0600405i −0.999549 0.0300202i \(-0.990443\pi\)
0.999549 0.0300202i \(-0.00955717\pi\)
\(240\) 0 0
\(241\) 15.6962 9.06218i 1.01108 0.583746i 0.0995709 0.995030i \(-0.468253\pi\)
0.911507 + 0.411284i \(0.134920\pi\)
\(242\) 0 0
\(243\) −16.2224 + 9.36603i −1.04067 + 0.600831i
\(244\) 0 0
\(245\) 2.59808 4.50000i 0.165985 0.287494i
\(246\) 0 0
\(247\) −9.46410 14.1962i −0.602186 0.903280i
\(248\) 0 0
\(249\) 6.00000 + 3.46410i 0.380235 + 0.219529i
\(250\) 0 0
\(251\) −1.90192 + 1.09808i −0.120048 + 0.0693100i −0.558822 0.829288i \(-0.688746\pi\)
0.438773 + 0.898598i \(0.355413\pi\)
\(252\) 0 0
\(253\) −8.19615 14.1962i −0.515288 0.892504i
\(254\) 0 0
\(255\) 2.19615i 0.137528i
\(256\) 0 0
\(257\) −5.42820 + 9.40192i −0.338602 + 0.586476i −0.984170 0.177227i \(-0.943287\pi\)
0.645568 + 0.763703i \(0.276621\pi\)
\(258\) 0 0
\(259\) 18.3923i 1.14284i
\(260\) 0 0
\(261\) 2.07180i 0.128241i
\(262\) 0 0
\(263\) −9.12436 + 15.8038i −0.562632 + 0.974507i 0.434634 + 0.900607i \(0.356878\pi\)
−0.997266 + 0.0738997i \(0.976456\pi\)
\(264\) 0 0
\(265\) 21.5885i 1.32617i
\(266\) 0 0
\(267\) 21.1244 + 36.5885i 1.29279 + 2.23918i
\(268\) 0 0
\(269\) −2.19615 + 1.26795i −0.133902 + 0.0773082i −0.565455 0.824779i \(-0.691299\pi\)
0.431553 + 0.902088i \(0.357966\pi\)
\(270\) 0 0
\(271\) 16.2679 + 9.39230i 0.988208 + 0.570542i 0.904738 0.425968i \(-0.140067\pi\)
0.0834695 + 0.996510i \(0.473400\pi\)
\(272\) 0 0
\(273\) −19.6603 + 1.26795i −1.18989 + 0.0767398i
\(274\) 0 0
\(275\) −3.46410 + 6.00000i −0.208893 + 0.361814i
\(276\) 0 0
\(277\) −15.4019 + 8.89230i −0.925412 + 0.534287i −0.885358 0.464911i \(-0.846086\pi\)
−0.0400543 + 0.999198i \(0.512753\pi\)
\(278\) 0 0
\(279\) 0.758330 0.437822i 0.0454000 0.0262117i
\(280\) 0 0
\(281\) 16.2679i 0.970464i 0.874385 + 0.485232i \(0.161265\pi\)
−0.874385 + 0.485232i \(0.838735\pi\)
\(282\) 0 0
\(283\) −12.4641 7.19615i −0.740914 0.427767i 0.0814876 0.996674i \(-0.474033\pi\)
−0.822402 + 0.568907i \(0.807366\pi\)
\(284\) 0 0
\(285\) 22.3923i 1.32641i
\(286\) 0 0
\(287\) −10.3923 −0.613438
\(288\) 0 0
\(289\) 8.39230 14.5359i 0.493665 0.855053i
\(290\) 0 0
\(291\) −16.3923 −0.960934
\(292\) 0 0
\(293\) −15.8660 27.4808i −0.926903 1.60544i −0.788472 0.615071i \(-0.789127\pi\)
−0.138432 0.990372i \(-0.544206\pi\)
\(294\) 0 0
\(295\) −0.803848 1.39230i −0.0468018 0.0810631i
\(296\) 0 0
\(297\) −12.0000 6.92820i −0.696311 0.402015i
\(298\) 0 0
\(299\) 7.56218 15.2942i 0.437332 0.884488i
\(300\) 0 0
\(301\) −12.3923 + 21.4641i −0.714281 + 1.23717i
\(302\) 0 0
\(303\) −13.5622 23.4904i −0.779127 1.34949i
\(304\) 0 0
\(305\) −20.0885 + 11.5981i −1.15026 + 0.664104i
\(306\) 0 0
\(307\) 5.66025 0.323048 0.161524 0.986869i \(-0.448359\pi\)
0.161524 + 0.986869i \(0.448359\pi\)
\(308\) 0 0
\(309\) 31.3923 + 18.1244i 1.78585 + 1.03106i
\(310\) 0 0
\(311\) 10.7321 0.608559 0.304279 0.952583i \(-0.401584\pi\)
0.304279 + 0.952583i \(0.401584\pi\)
\(312\) 0 0
\(313\) −11.6077 −0.656106 −0.328053 0.944659i \(-0.606392\pi\)
−0.328053 + 0.944659i \(0.606392\pi\)
\(314\) 0 0
\(315\) −13.3923 7.73205i −0.754571 0.435652i
\(316\) 0 0
\(317\) 24.8038 1.39312 0.696561 0.717497i \(-0.254712\pi\)
0.696561 + 0.717497i \(0.254712\pi\)
\(318\) 0 0
\(319\) 1.39230 0.803848i 0.0779541 0.0450068i
\(320\) 0 0
\(321\) 19.3923 + 33.5885i 1.08237 + 1.87472i
\(322\) 0 0
\(323\) 1.09808 1.90192i 0.0610986 0.105826i
\(324\) 0 0
\(325\) −7.19615 + 0.464102i −0.399171 + 0.0257437i
\(326\) 0 0
\(327\) −4.73205 2.73205i −0.261683 0.151083i
\(328\) 0 0
\(329\) −11.6603 20.1962i −0.642851 1.11345i
\(330\) 0 0
\(331\) −10.3923 18.0000i −0.571213 0.989369i −0.996442 0.0842837i \(-0.973140\pi\)
0.425229 0.905086i \(-0.360194\pi\)
\(332\) 0 0
\(333\) −41.0526 −2.24967
\(334\) 0 0
\(335\) 7.09808 12.2942i 0.387809 0.671705i
\(336\) 0 0
\(337\) 21.3923 1.16531 0.582657 0.812718i \(-0.302013\pi\)
0.582657 + 0.812718i \(0.302013\pi\)
\(338\) 0 0
\(339\) 8.19615i 0.445154i
\(340\) 0 0
\(341\) −0.588457 0.339746i −0.0318667 0.0183983i
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 19.3923 11.1962i 1.04405 0.602781i
\(346\) 0 0
\(347\) 24.8827 14.3660i 1.33577 0.771209i 0.349595 0.936901i \(-0.386319\pi\)
0.986178 + 0.165692i \(0.0529858\pi\)
\(348\) 0 0
\(349\) −4.80385 + 8.32051i −0.257144 + 0.445387i −0.965476 0.260493i \(-0.916115\pi\)
0.708332 + 0.705880i \(0.249448\pi\)
\(350\) 0 0
\(351\) −0.928203 14.3923i −0.0495438 0.768204i
\(352\) 0 0
\(353\) −26.8923 15.5263i −1.43133 0.826380i −0.434110 0.900860i \(-0.642937\pi\)
−0.997223 + 0.0744792i \(0.976271\pi\)
\(354\) 0 0
\(355\) 17.4904 10.0981i 0.928293 0.535950i
\(356\) 0 0
\(357\) −1.26795 2.19615i −0.0671070 0.116233i
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −1.69615 + 2.93782i −0.0892712 + 0.154622i
\(362\) 0 0
\(363\) 2.73205i 0.143395i
\(364\) 0 0
\(365\) 9.00000i 0.471082i
\(366\) 0 0
\(367\) 1.09808 1.90192i 0.0573191 0.0992796i −0.835942 0.548818i \(-0.815078\pi\)
0.893261 + 0.449538i \(0.148411\pi\)
\(368\) 0 0
\(369\) 23.1962i 1.20754i
\(370\) 0 0
\(371\) −12.4641 21.5885i −0.647104 1.12082i
\(372\) 0 0
\(373\) 7.20577 4.16025i 0.373101 0.215410i −0.301712 0.953399i \(-0.597558\pi\)
0.674812 + 0.737989i \(0.264225\pi\)
\(374\) 0 0
\(375\) −28.6865 16.5622i −1.48137 0.855267i
\(376\) 0 0
\(377\) 1.50000 + 0.741670i 0.0772539 + 0.0381979i
\(378\) 0 0
\(379\) 3.29423 5.70577i 0.169213 0.293086i −0.768930 0.639333i \(-0.779211\pi\)
0.938143 + 0.346247i \(0.112544\pi\)
\(380\) 0 0
\(381\) 13.3923 7.73205i 0.686109 0.396125i
\(382\) 0 0
\(383\) 22.3923 12.9282i 1.14419 0.660600i 0.196728 0.980458i \(-0.436968\pi\)
0.947466 + 0.319858i \(0.103635\pi\)
\(384\) 0 0
\(385\) 12.0000i 0.611577i
\(386\) 0 0
\(387\) −47.9090 27.6603i −2.43535 1.40605i
\(388\) 0 0
\(389\) 19.3923i 0.983229i −0.870813 0.491614i \(-0.836407\pi\)
0.870813 0.491614i \(-0.163593\pi\)
\(390\) 0 0
\(391\) 2.19615 0.111064
\(392\) 0 0
\(393\) −28.8564 + 49.9808i −1.45561 + 2.52120i
\(394\) 0 0
\(395\) −10.3923 −0.522894
\(396\) 0 0
\(397\) −2.80385 4.85641i −0.140721 0.243736i 0.787047 0.616893i \(-0.211609\pi\)
−0.927768 + 0.373157i \(0.878275\pi\)
\(398\) 0 0
\(399\) 12.9282 + 22.3923i 0.647220 + 1.12102i
\(400\) 0 0
\(401\) 32.6769 + 18.8660i 1.63181 + 0.942124i 0.983535 + 0.180715i \(0.0578413\pi\)
0.648272 + 0.761409i \(0.275492\pi\)
\(402\) 0 0
\(403\) −0.0455173 0.705771i −0.00226738 0.0351570i
\(404\) 0 0
\(405\) −2.13397 + 3.69615i −0.106038 + 0.183663i
\(406\) 0 0
\(407\) 15.9282 + 27.5885i 0.789532 + 1.36751i
\(408\) 0 0
\(409\) 24.6962 14.2583i 1.22115 0.705029i 0.255984 0.966681i \(-0.417601\pi\)
0.965162 + 0.261652i \(0.0842673\pi\)
\(410\) 0 0
\(411\) −16.7321 −0.825331
\(412\) 0 0
\(413\) 1.60770 + 0.928203i 0.0791095 + 0.0456739i
\(414\) 0 0
\(415\) 4.39230 0.215610
\(416\) 0 0
\(417\) −1.07180 −0.0524861
\(418\) 0 0
\(419\) −10.0981 5.83013i −0.493323 0.284820i 0.232629 0.972566i \(-0.425267\pi\)
−0.725952 + 0.687745i \(0.758601\pi\)
\(420\) 0 0
\(421\) −23.5885 −1.14963 −0.574816 0.818283i \(-0.694926\pi\)
−0.574816 + 0.818283i \(0.694926\pi\)
\(422\) 0 0
\(423\) 45.0788 26.0263i 2.19181 1.26544i
\(424\) 0 0
\(425\) −0.464102 0.803848i −0.0225122 0.0389923i
\(426\) 0 0
\(427\) 13.3923 23.1962i 0.648099 1.12254i
\(428\) 0 0
\(429\) −28.3923 + 18.9282i −1.37079 + 0.913862i
\(430\) 0 0
\(431\) −1.60770 0.928203i −0.0774400 0.0447100i 0.460780 0.887514i \(-0.347570\pi\)
−0.538220 + 0.842804i \(0.680903\pi\)
\(432\) 0 0
\(433\) 7.89230 + 13.6699i 0.379280 + 0.656932i 0.990958 0.134175i \(-0.0428384\pi\)
−0.611678 + 0.791107i \(0.709505\pi\)
\(434\) 0 0
\(435\) 1.09808 + 1.90192i 0.0526487 + 0.0911903i
\(436\) 0 0
\(437\) −22.3923 −1.07117
\(438\) 0 0
\(439\) 7.26795 12.5885i 0.346880 0.600814i −0.638813 0.769362i \(-0.720574\pi\)
0.985694 + 0.168548i \(0.0539077\pi\)
\(440\) 0 0
\(441\) −13.3923 −0.637729
\(442\) 0 0
\(443\) 5.07180i 0.240968i −0.992715 0.120484i \(-0.961555\pi\)
0.992715 0.120484i \(-0.0384447\pi\)
\(444\) 0 0
\(445\) 23.1962 + 13.3923i 1.09960 + 0.634856i
\(446\) 0 0
\(447\) 14.1962i 0.671455i
\(448\) 0 0
\(449\) −1.39230 + 0.803848i −0.0657069 + 0.0379359i −0.532494 0.846434i \(-0.678745\pi\)
0.466787 + 0.884370i \(0.345412\pi\)
\(450\) 0 0
\(451\) −15.5885 + 9.00000i −0.734032 + 0.423793i
\(452\) 0 0
\(453\) −16.1244 + 27.9282i −0.757588 + 1.31218i
\(454\) 0 0
\(455\) −10.3923 + 6.92820i −0.487199 + 0.324799i
\(456\) 0 0
\(457\) 27.4808 + 15.8660i 1.28550 + 0.742181i 0.977847 0.209319i \(-0.0671246\pi\)
0.307648 + 0.951500i \(0.400458\pi\)
\(458\) 0 0
\(459\) 1.60770 0.928203i 0.0750408 0.0433248i
\(460\) 0 0
\(461\) 1.33013 + 2.30385i 0.0619502 + 0.107301i 0.895337 0.445389i \(-0.146935\pi\)
−0.833387 + 0.552690i \(0.813601\pi\)
\(462\) 0 0
\(463\) 20.3923i 0.947711i −0.880603 0.473855i \(-0.842862\pi\)
0.880603 0.473855i \(-0.157138\pi\)
\(464\) 0 0
\(465\) 0.464102 0.803848i 0.0215222 0.0372775i
\(466\) 0 0
\(467\) 26.7846i 1.23944i −0.784821 0.619722i \(-0.787245\pi\)
0.784821 0.619722i \(-0.212755\pi\)
\(468\) 0 0
\(469\) 16.3923i 0.756926i
\(470\) 0 0
\(471\) 19.5622 33.8827i 0.901378 1.56123i
\(472\) 0 0
\(473\) 42.9282i 1.97384i
\(474\) 0 0
\(475\) 4.73205 + 8.19615i 0.217121 + 0.376065i
\(476\) 0 0
\(477\) 48.1865 27.8205i 2.20631 1.27381i
\(478\) 0 0
\(479\) −24.2942 14.0263i −1.11003 0.640877i −0.171194 0.985237i \(-0.554763\pi\)
−0.938838 + 0.344360i \(0.888096\pi\)
\(480\) 0 0
\(481\) −14.6962 + 29.7224i −0.670087 + 1.35523i
\(482\) 0 0
\(483\) −12.9282 + 22.3923i −0.588254 + 1.01889i
\(484\) 0 0
\(485\) −9.00000 + 5.19615i −0.408669 + 0.235945i
\(486\) 0 0
\(487\) 7.26795 4.19615i 0.329342 0.190146i −0.326207 0.945298i \(-0.605771\pi\)
0.655549 + 0.755153i \(0.272437\pi\)
\(488\) 0 0
\(489\) 25.8564i 1.16927i
\(490\) 0 0
\(491\) 0.588457 + 0.339746i 0.0265567 + 0.0153325i 0.513220 0.858257i \(-0.328453\pi\)
−0.486663 + 0.873590i \(0.661786\pi\)
\(492\) 0 0
\(493\) 0.215390i 0.00970069i
\(494\) 0 0
\(495\) −26.7846 −1.20388
\(496\) 0 0
\(497\) −11.6603 + 20.1962i −0.523034 + 0.905921i
\(498\) 0 0
\(499\) 9.80385 0.438880 0.219440 0.975626i \(-0.429577\pi\)
0.219440 + 0.975626i \(0.429577\pi\)
\(500\) 0 0
\(501\) −14.1962 24.5885i −0.634237 1.09853i
\(502\) 0 0
\(503\) 13.8564 + 24.0000i 0.617827 + 1.07011i 0.989882 + 0.141896i \(0.0453200\pi\)
−0.372055 + 0.928211i \(0.621347\pi\)
\(504\) 0 0
\(505\) −14.8923 8.59808i −0.662699 0.382609i
\(506\) 0 0
\(507\) −32.7846 13.6603i −1.45602 0.606673i
\(508\) 0 0
\(509\) 9.99038 17.3038i 0.442816 0.766980i −0.555081 0.831796i \(-0.687313\pi\)
0.997897 + 0.0648165i \(0.0206462\pi\)
\(510\) 0 0
\(511\) −5.19615 9.00000i −0.229864 0.398137i
\(512\) 0 0
\(513\) −16.3923 + 9.46410i −0.723738 + 0.417850i
\(514\) 0 0
\(515\) 22.9808 1.01265
\(516\) 0 0
\(517\) −34.9808 20.1962i −1.53845 0.888226i
\(518\) 0 0
\(519\) 32.7846 1.43908
\(520\) 0 0
\(521\) 5.53590 0.242532 0.121266 0.992620i \(-0.461305\pi\)
0.121266 + 0.992620i \(0.461305\pi\)
\(522\) 0 0
\(523\) −2.07180 1.19615i −0.0905933 0.0523041i 0.454019 0.890992i \(-0.349990\pi\)
−0.544612 + 0.838688i \(0.683323\pi\)
\(524\) 0 0
\(525\) 10.9282 0.476946
\(526\) 0 0
\(527\) 0.0788383 0.0455173i 0.00343425 0.00198277i
\(528\) 0 0
\(529\) 0.303848 + 0.526279i 0.0132108 + 0.0228817i
\(530\) 0 0
\(531\) −2.07180 + 3.58846i −0.0899083 + 0.155726i
\(532\) 0 0
\(533\) −16.7942 8.30385i −0.727439 0.359680i
\(534\) 0 0
\(535\) 21.2942 + 12.2942i 0.920630 + 0.531526i
\(536\) 0 0
\(537\) −18.9282 32.7846i −0.816812 1.41476i
\(538\) 0 0
\(539\) 5.19615 + 9.00000i 0.223814 + 0.387657i
\(540\) 0 0
\(541\) −2.80385 −0.120547 −0.0602734 0.998182i \(-0.519197\pi\)
−0.0602734 + 0.998182i \(0.519197\pi\)
\(542\) 0 0
\(543\) −13.5622 + 23.4904i −0.582009 + 1.00807i
\(544\) 0 0
\(545\) −3.46410 −0.148386
\(546\) 0 0
\(547\) 12.9808i 0.555017i 0.960723 + 0.277509i \(0.0895087\pi\)
−0.960723 + 0.277509i \(0.910491\pi\)
\(548\) 0 0
\(549\) 51.7750 + 29.8923i 2.20970 + 1.27577i
\(550\) 0 0
\(551\) 2.19615i 0.0935592i
\(552\) 0 0
\(553\) 10.3923 6.00000i 0.441926 0.255146i
\(554\) 0 0
\(555\) −37.6865 + 21.7583i −1.59970 + 0.923590i
\(556\) 0 0
\(557\) 18.8660 32.6769i 0.799379 1.38457i −0.120642 0.992696i \(-0.538495\pi\)
0.920021 0.391869i \(-0.128171\pi\)
\(558\) 0 0
\(559\) −37.1769 + 24.7846i −1.57242 + 1.04828i
\(560\) 0 0
\(561\) −3.80385 2.19615i −0.160599 0.0927216i
\(562\) 0 0
\(563\) 13.3923 7.73205i 0.564418 0.325867i −0.190499 0.981687i \(-0.561010\pi\)
0.754917 + 0.655820i \(0.227677\pi\)
\(564\) 0 0
\(565\) −2.59808 4.50000i −0.109302 0.189316i
\(566\) 0 0
\(567\) 4.92820i 0.206965i
\(568\) 0 0
\(569\) 0.928203 1.60770i 0.0389123 0.0673981i −0.845913 0.533320i \(-0.820944\pi\)
0.884826 + 0.465922i \(0.154277\pi\)
\(570\) 0 0
\(571\) 22.0000i 0.920671i 0.887745 + 0.460336i \(0.152271\pi\)
−0.887745 + 0.460336i \(0.847729\pi\)
\(572\) 0 0
\(573\) 43.8564i 1.83213i
\(574\) 0 0
\(575\) −4.73205 + 8.19615i −0.197340 + 0.341803i
\(576\) 0 0
\(577\) 44.6603i 1.85923i −0.368531 0.929615i \(-0.620139\pi\)
0.368531 0.929615i \(-0.379861\pi\)
\(578\) 0 0
\(579\) 20.0263 + 34.6865i 0.832264 + 1.44152i
\(580\) 0 0
\(581\) −4.39230 + 2.53590i −0.182224 + 0.105207i
\(582\) 0 0
\(583\) −37.3923 21.5885i −1.54863 0.894103i
\(584\) 0 0
\(585\) −15.4641 23.1962i −0.639362 0.959043i
\(586\) 0 0
\(587\) 5.66025 9.80385i 0.233624 0.404648i −0.725248 0.688488i \(-0.758275\pi\)
0.958872 + 0.283839i \(0.0916083\pi\)
\(588\) 0 0
\(589\) −0.803848 + 0.464102i −0.0331220 + 0.0191230i
\(590\) 0 0
\(591\) 8.19615 4.73205i 0.337145 0.194651i
\(592\) 0 0
\(593\) 28.5167i 1.17104i −0.810658 0.585519i \(-0.800891\pi\)
0.810658 0.585519i \(-0.199109\pi\)
\(594\) 0 0
\(595\) −1.39230 0.803848i −0.0570789 0.0329545i
\(596\) 0 0
\(597\) 18.0000i 0.736691i
\(598\) 0 0
\(599\) 33.8038 1.38119 0.690594 0.723243i \(-0.257349\pi\)
0.690594 + 0.723243i \(0.257349\pi\)
\(600\) 0 0
\(601\) −16.8923 + 29.2583i −0.689051 + 1.19347i 0.283094 + 0.959092i \(0.408639\pi\)
−0.972145 + 0.234380i \(0.924694\pi\)
\(602\) 0 0
\(603\) −36.5885 −1.49000
\(604\) 0 0
\(605\) 0.866025 + 1.50000i 0.0352089 + 0.0609837i
\(606\) 0 0
\(607\) 14.8301 + 25.6865i 0.601936 + 1.04258i 0.992528 + 0.122020i \(0.0389372\pi\)
−0.390591 + 0.920564i \(0.627729\pi\)
\(608\) 0 0
\(609\) −2.19615 1.26795i −0.0889926 0.0513799i
\(610\) 0 0
\(611\) −2.70577 41.9545i −0.109464 1.69730i
\(612\) 0 0
\(613\) 0.598076 1.03590i 0.0241561 0.0418395i −0.853695 0.520774i \(-0.825643\pi\)
0.877851 + 0.478934i \(0.158977\pi\)
\(614\) 0 0
\(615\) −12.2942 21.2942i −0.495751 0.858666i
\(616\) 0 0
\(617\) −22.5000 + 12.9904i −0.905816 + 0.522973i −0.879083 0.476670i \(-0.841844\pi\)
−0.0267333 + 0.999643i \(0.508510\pi\)
\(618\) 0 0
\(619\) 16.1436 0.648866 0.324433 0.945909i \(-0.394827\pi\)
0.324433 + 0.945909i \(0.394827\pi\)
\(620\) 0 0
\(621\) −16.3923 9.46410i −0.657801 0.379781i
\(622\) 0 0
\(623\) −30.9282 −1.23911
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 0 0
\(627\) 38.7846 + 22.3923i 1.54891 + 0.894263i
\(628\) 0 0
\(629\) −4.26795 −0.170174
\(630\) 0 0
\(631\) −24.9282 + 14.3923i −0.992376 + 0.572949i −0.905984 0.423313i \(-0.860867\pi\)
−0.0863924 + 0.996261i \(0.527534\pi\)
\(632\) 0 0
\(633\) −8.46410 14.6603i −0.336418 0.582693i
\(634\) 0 0
\(635\) 4.90192 8.49038i 0.194527 0.336930i
\(636\) 0 0
\(637\) −4.79423 + 9.69615i −0.189954 + 0.384176i
\(638\) 0 0
\(639\) −45.0788 26.0263i −1.78329 1.02958i
\(640\) 0 0
\(641\) 10.5000 + 18.1865i 0.414725 + 0.718325i 0.995400 0.0958109i \(-0.0305444\pi\)
−0.580674 + 0.814136i \(0.697211\pi\)
\(642\) 0 0
\(643\) 18.1244 + 31.3923i 0.714755 + 1.23799i 0.963054 + 0.269308i \(0.0867950\pi\)
−0.248299 + 0.968683i \(0.579872\pi\)
\(644\) 0 0
\(645\) −58.6410 −2.30899
\(646\) 0 0
\(647\) −6.75833 + 11.7058i −0.265697 + 0.460201i −0.967746 0.251928i \(-0.918936\pi\)
0.702049 + 0.712129i \(0.252269\pi\)
\(648\) 0 0
\(649\) 3.21539 0.126215
\(650\) 0 0
\(651\) 1.07180i 0.0420070i
\(652\) 0 0
\(653\) 28.3923 + 16.3923i 1.11108 + 0.641480i 0.939108 0.343622i \(-0.111654\pi\)
0.171969 + 0.985102i \(0.444987\pi\)
\(654\) 0 0
\(655\) 36.5885i 1.42963i
\(656\) 0 0
\(657\) 20.0885 11.5981i 0.783725 0.452484i
\(658\) 0 0
\(659\) −2.78461 + 1.60770i −0.108473 + 0.0626269i −0.553255 0.833012i \(-0.686614\pi\)
0.444782 + 0.895639i \(0.353281\pi\)
\(660\) 0 0
\(661\) 11.1865 19.3756i 0.435106 0.753625i −0.562199 0.827002i \(-0.690044\pi\)
0.997304 + 0.0733771i \(0.0233777\pi\)
\(662\) 0 0
\(663\) −0.294229 4.56218i −0.0114269 0.177180i
\(664\) 0 0
\(665\) 14.1962 + 8.19615i 0.550503 + 0.317833i
\(666\) 0 0
\(667\) 1.90192 1.09808i 0.0736428 0.0425177i
\(668\) 0 0
\(669\) 16.6603 + 28.8564i 0.644123 + 1.11565i
\(670\) 0 0
\(671\) 46.3923i 1.79096i
\(672\) 0 0
\(673\) −22.8923 + 39.6506i −0.882434 + 1.52842i −0.0338062 + 0.999428i \(0.510763\pi\)
−0.848627 + 0.528991i \(0.822570\pi\)
\(674\) 0 0
\(675\) 8.00000i 0.307920i
\(676\) 0 0
\(677\) 47.5692i 1.82823i 0.405451 + 0.914117i \(0.367115\pi\)
−0.405451 + 0.914117i \(0.632885\pi\)
\(678\) 0 0
\(679\) 6.00000 10.3923i 0.230259 0.398820i
\(680\) 0 0
\(681\) 26.7846i 1.02639i
\(682\) 0 0
\(683\) 3.75833 + 6.50962i 0.143809 + 0.249084i 0.928928 0.370261i \(-0.120732\pi\)
−0.785119 + 0.619345i \(0.787398\pi\)
\(684\) 0 0
\(685\) −9.18653 + 5.30385i −0.350999 + 0.202650i
\(686\) 0 0
\(687\) −53.9090 31.1244i −2.05676 1.18747i
\(688\) 0 0
\(689\) −2.89230 44.8468i −0.110188 1.70853i
\(690\) 0 0
\(691\) −12.1244 + 21.0000i −0.461232 + 0.798878i −0.999023 0.0442009i \(-0.985926\pi\)
0.537790 + 0.843079i \(0.319259\pi\)
\(692\) 0 0
\(693\) 26.7846 15.4641i 1.01746 0.587433i
\(694\) 0 0
\(695\) −0.588457 + 0.339746i −0.0223215 + 0.0128873i
\(696\) 0 0
\(697\) 2.41154i 0.0913437i
\(698\) 0 0
\(699\) 61.1769 + 35.3205i 2.31392 + 1.33594i
\(700\) 0 0
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 43.5167 1.64126
\(704\) 0 0
\(705\) 27.5885 47.7846i 1.03904 1.79967i
\(706\) 0 0
\(707\) 19.8564 0.746777
\(708\) 0 0
\(709\) −3.20577 5.55256i −0.120395 0.208531i 0.799528 0.600628i \(-0.205083\pi\)
−0.919924 + 0.392098i \(0.871750\pi\)
\(710\) 0 0
\(711\) 13.3923 + 23.1962i 0.502251 + 0.869924i
\(712\) 0 0
\(713\) −0.803848 0.464102i −0.0301043 0.0173807i
\(714\) 0 0
\(715\) −9.58846 + 19.3923i −0.358588 + 0.725231i
\(716\) 0 0
\(717\) −1.26795 + 2.19615i −0.0473524 + 0.0820168i
\(718\) 0 0
\(719\) −1.73205 3.00000i −0.0645946 0.111881i 0.831919 0.554896i \(-0.187242\pi\)
−0.896514 + 0.443015i \(0.853909\pi\)
\(720\) 0 0
\(721\) −22.9808 + 13.2679i −0.855848 + 0.494124i
\(722\) 0 0
\(723\) −49.5167 −1.84154
\(724\) 0 0
\(725\) −0.803848 0.464102i −0.0298541 0.0172363i
\(726\) 0 0
\(727\) 40.6410 1.50729 0.753646 0.657281i \(-0.228293\pi\)
0.753646 + 0.657281i \(0.228293\pi\)
\(728\) 0 0
\(729\) 43.7846 1.62165
\(730\) 0 0
\(731\) −4.98076 2.87564i −0.184220 0.106360i
\(732\) 0 0
\(733\) 35.9808 1.32898 0.664490 0.747297i \(-0.268649\pi\)
0.664490 + 0.747297i \(0.268649\pi\)
\(734\) 0 0
\(735\) −12.2942 + 7.09808i −0.453479 + 0.261816i
\(736\) 0 0
\(737\) 14.1962 + 24.5885i 0.522922 + 0.905727i
\(738\) 0 0
\(739\) 24.0000 41.5692i 0.882854 1.52915i 0.0347009 0.999398i \(-0.488952\pi\)
0.848153 0.529751i \(-0.177715\pi\)
\(740\) 0 0
\(741\) 3.00000 + 46.5167i 0.110208 + 1.70883i
\(742\) 0 0
\(743\) 44.1962 + 25.5167i 1.62140 + 0.936115i 0.986546 + 0.163483i \(0.0522728\pi\)
0.634853 + 0.772633i \(0.281060\pi\)
\(744\) 0 0
\(745\) 4.50000 + 7.79423i 0.164867 + 0.285558i
\(746\) 0 0
\(747\) −5.66025 9.80385i −0.207098 0.358704i
\(748\) 0 0
\(749\) −28.3923 −1.03743
\(750\) 0 0
\(751\) −17.6603 + 30.5885i −0.644432 + 1.11619i 0.340001 + 0.940425i \(0.389573\pi\)
−0.984432 + 0.175763i \(0.943761\pi\)
\(752\) 0 0
\(753\) 6.00000 0.218652
\(754\) 0 0
\(755\) 20.4449i 0.744065i
\(756\) 0 0
\(757\) 2.19615 + 1.26795i 0.0798205 + 0.0460844i 0.539379 0.842063i \(-0.318659\pi\)
−0.459559 + 0.888147i \(0.651992\pi\)
\(758\) 0 0
\(759\) 44.7846i 1.62558i
\(760\) 0 0
\(761\) 21.0000 12.1244i 0.761249 0.439508i −0.0684947 0.997651i \(-0.521820\pi\)
0.829744 + 0.558144i \(0.188486\pi\)
\(762\) 0 0
\(763\) 3.46410 2.00000i 0.125409 0.0724049i
\(764\) 0 0
\(765\) 1.79423 3.10770i 0.0648705 0.112359i
\(766\) 0 0
\(767\) 1.85641 + 2.78461i 0.0670310 + 0.100546i
\(768\) 0 0
\(769\) −7.39230 4.26795i −0.266573 0.153906i 0.360756 0.932660i \(-0.382519\pi\)
−0.627329 + 0.778754i \(0.715852\pi\)
\(770\) 0 0
\(771\) 25.6865 14.8301i 0.925078 0.534094i
\(772\) 0 0
\(773\) 6.92820 + 12.0000i 0.249190 + 0.431610i 0.963301 0.268422i \(-0.0865023\pi\)
−0.714111 + 0.700032i \(0.753169\pi\)
\(774\) 0 0
\(775\) 0.392305i 0.0140920i
\(776\) 0 0
\(777\) 25.1244 43.5167i 0.901331 1.56115i
\(778\) 0 0
\(779\) 24.5885i 0.880973i
\(780\) 0 0
\(781\) 40.3923i 1.44535i
\(782\) 0 0
\(783\) 0.928203 1.60770i 0.0331713 0.0574543i
\(784\) 0 0
\(785\) 24.8038i 0.885287i
\(786\) 0 0
\(787\) −16.0981 27.8827i −0.573834 0.993910i −0.996167 0.0874695i \(-0.972122\pi\)
0.422333 0.906441i \(-0.361211\pi\)
\(788\) 0 0
\(789\) 43.1769 24.9282i 1.53714 0.887468i
\(790\) 0 0
\(791\) 5.19615 + 3.00000i 0.184754 + 0.106668i
\(792\) 0 0
\(793\) 40.1769 26.7846i 1.42672 0.951149i
\(794\) 0 0
\(795\) 29.4904 51.0788i 1.04592 1.81158i
\(796\) 0 0
\(797\) 22.9808 13.2679i 0.814020 0.469975i −0.0343297 0.999411i \(-0.510930\pi\)
0.848350 + 0.529436i \(0.177596\pi\)
\(798\) 0 0
\(799\) 4.68653 2.70577i 0.165798 0.0957233i
\(800\) 0 0
\(801\) 69.0333i 2.43917i
\(802\) 0 0
\(803\) −15.5885 9.00000i −0.550105 0.317603i
\(804\) 0 0
\(805\) 16.3923i 0.577753i
\(806\) 0 0
\(807\) 6.92820 0.243884
\(808\) 0 0
\(809\) −4.03590 + 6.99038i −0.141895 + 0.245769i −0.928210 0.372057i \(-0.878653\pi\)
0.786315 + 0.617825i \(0.211986\pi\)
\(810\) 0 0
\(811\) 1.26795 0.0445237 0.0222619 0.999752i \(-0.492913\pi\)
0.0222619 + 0.999752i \(0.492913\pi\)
\(812\) 0 0
\(813\) −25.6603 44.4449i −0.899944 1.55875i
\(814\) 0 0
\(815\) −8.19615 14.1962i −0.287099 0.497270i
\(816\) 0 0
\(817\) 50.7846 + 29.3205i 1.77673 + 1.02579i
\(818\) 0 0
\(819\) 28.8564 + 14.2679i 1.00832 + 0.498562i
\(820\) 0 0
\(821\) 2.07180 3.58846i 0.0723062 0.125238i −0.827605 0.561310i \(-0.810297\pi\)
0.899912 + 0.436072i \(0.143631\pi\)
\(822\) 0 0
\(823\) −7.73205 13.3923i −0.269522 0.466826i 0.699216 0.714910i \(-0.253532\pi\)
−0.968739 + 0.248084i \(0.920199\pi\)
\(824\) 0 0
\(825\) 16.3923 9.46410i 0.570707 0.329498i
\(826\) 0 0
\(827\) 29.3205 1.01957 0.509787 0.860301i \(-0.329724\pi\)
0.509787 + 0.860301i \(0.329724\pi\)
\(828\) 0 0
\(829\) 34.7942 + 20.0885i 1.20845 + 0.697701i 0.962421 0.271561i \(-0.0875398\pi\)
0.246032 + 0.969262i \(0.420873\pi\)
\(830\) 0 0
\(831\) 48.5885 1.68551
\(832\) 0 0
\(833\) −1.39230 −0.0482405
\(834\) 0 0
\(835\) −15.5885 9.00000i −0.539461 0.311458i
\(836\) 0 0
\(837\) −0.784610 −0.0271201
\(838\) 0 0
\(839\) 1.90192 1.09808i 0.0656617 0.0379098i −0.466810 0.884358i \(-0.654597\pi\)
0.532471 + 0.846448i \(0.321263\pi\)
\(840\) 0 0
\(841\) −14.3923 24.9282i −0.496286 0.859593i
\(842\) 0 0
\(843\) 22.2224 38.4904i 0.765381 1.32568i
\(844\) 0 0
\(845\) −22.3301 + 2.89230i −0.768180 + 0.0994983i
\(846\) 0 0
\(847\) −1.73205 1.00000i −0.0595140 0.0343604i
\(848\) 0 0
\(849\) 19.6603 + 34.0526i 0.674738 + 1.16868i
\(850\) 0 0
\(851\) 21.7583 + 37.6865i 0.745866 + 1.29188i
\(852\) 0 0
\(853\) 25.1962 0.862700 0.431350 0.902185i \(-0.358037\pi\)
0.431350 + 0.902185i \(0.358037\pi\)
\(854\) 0 0
\(855\) −18.2942 + 31.6865i −0.625649 + 1.08366i
\(856\) 0 0
\(857\) −1.39230 −0.0475602 −0.0237801 0.999717i \(-0.507570\pi\)
−0.0237801 + 0.999717i \(0.507570\pi\)
\(858\) 0 0
\(859\) 17.8038i 0.607459i 0.952758 + 0.303730i \(0.0982320\pi\)
−0.952758 + 0.303730i \(0.901768\pi\)
\(860\) 0 0
\(861\) 24.5885 + 14.1962i 0.837972 + 0.483804i
\(862\) 0 0
\(863\) 31.8564i 1.08440i −0.840248 0.542202i \(-0.817591\pi\)
0.840248 0.542202i \(-0.182409\pi\)
\(864\) 0 0
\(865\) 18.0000 10.3923i 0.612018 0.353349i
\(866\) 0 0
\(867\) −39.7128 + 22.9282i −1.34872 + 0.778683i
\(868\) 0 0
\(869\) 10.3923 18.0000i 0.352535 0.610608i
\(870\) 0 0
\(871\) −13.0981 + 26.4904i −0.443811 + 0.897592i
\(872\) 0 0
\(873\) 23.1962 + 13.3923i 0.785071 + 0.453261i
\(874\) 0 0
\(875\) 21.0000 12.1244i 0.709930 0.409878i
\(876\) 0 0
\(877\) 2.79423 + 4.83975i 0.0943544 + 0.163427i 0.909339 0.416056i \(-0.136588\pi\)
−0.814985 + 0.579483i \(0.803255\pi\)
\(878\) 0 0
\(879\) 86.6936i 2.92410i
\(880\) 0 0
\(881\) 1.16025 2.00962i 0.0390900 0.0677058i −0.845819 0.533471i \(-0.820887\pi\)
0.884908 + 0.465765i \(0.154221\pi\)
\(882\) 0 0
\(883\) 40.1962i 1.35271i −0.736577 0.676354i \(-0.763559\pi\)
0.736577 0.676354i \(-0.236441\pi\)
\(884\) 0 0
\(885\) 4.39230i 0.147646i
\(886\) 0 0
\(887\) −4.85641 + 8.41154i −0.163062 + 0.282432i −0.935965 0.352092i \(-0.885470\pi\)
0.772903 + 0.634524i \(0.218804\pi\)
\(888\) 0 0
\(889\) 11.3205i 0.379678i
\(890\) 0 0
\(891\) −4.26795 7.39230i −0.142982 0.247652i
\(892\) 0 0
\(893\) −47.7846 + 27.5885i −1.59905 + 0.923213i
\(894\) 0 0
\(895\) −20.7846 12.0000i −0.694753 0.401116i
\(896\) 0 0
\(897\) −38.7846 + 25.8564i −1.29498 + 0.863320i
\(898\) 0 0
\(899\) 0.0455173 0.0788383i 0.00151809 0.00262941i
\(900\) 0 0
\(901\) 5.00962 2.89230i 0.166895 0.0963566i
\(902\) 0 0
\(903\) 58.6410 33.8564i 1.95145 1.12667i
\(904\) 0 0
\(905\) 17.1962i 0.571619i
\(906\) 0 0
\(907\) −0.339746 0.196152i −0.0112811 0.00651313i 0.494349 0.869264i \(-0.335407\pi\)
−0.505630 + 0.862750i \(0.668740\pi\)
\(908\) 0 0
\(909\) 44.3205i 1.47002i
\(910\) 0 0
\(911\) −8.53590 −0.282807 −0.141403 0.989952i \(-0.545161\pi\)
−0.141403 + 0.989952i \(0.545161\pi\)
\(912\) 0 0
\(913\) −4.39230 + 7.60770i −0.145364 + 0.251778i
\(914\) 0 0
\(915\) 63.3731 2.09505
\(916\) 0 0
\(917\) −21.1244 36.5885i −0.697588 1.20826i
\(918\) 0 0
\(919\) 10.0981 + 17.4904i 0.333105 + 0.576954i 0.983119 0.182968i \(-0.0585704\pi\)
−0.650014 + 0.759922i \(0.725237\pi\)
\(920\) 0 0
\(921\) −13.3923 7.73205i −0.441291 0.254780i
\(922\) 0 0
\(923\) −34.9808 + 23.3205i −1.15141 + 0.767604i
\(924\) 0 0
\(925\) 9.19615 15.9282i 0.302368 0.523716i
\(926\) 0 0
\(927\) −29.6147 51.2942i −0.972676 1.68472i
\(928\) 0 0
\(929\) 32.6769 18.8660i 1.07209 0.618974i 0.143342 0.989673i \(-0.454215\pi\)
0.928753 + 0.370699i \(0.120882\pi\)
\(930\) 0 0
\(931\) 14.1962 0.465260
\(932\) 0 0
\(933\) −25.3923 14.6603i −0.831307 0.479955i
\(934\) 0 0
\(935\) −2.78461 −0.0910665
\(936\) 0 0
\(937\) −9.78461 −0.319649 −0.159825 0.987145i \(-0.551093\pi\)
−0.159825 + 0.987145i \(0.551093\pi\)
\(938\) 0 0
\(939\) 27.4641 + 15.8564i 0.896257 + 0.517454i
\(940\) 0 0
\(941\) −27.7128 −0.903412 −0.451706 0.892167i \(-0.649184\pi\)
−0.451706 + 0.892167i \(0.649184\pi\)
\(942\) 0 0
\(943\) −21.2942 + 12.2942i −0.693435 + 0.400355i
\(944\) 0 0
\(945\) 6.92820 + 12.0000i 0.225374 + 0.390360i
\(946\) 0 0
\(947\) −18.7583 + 32.4904i −0.609564 + 1.05580i 0.381748 + 0.924266i \(0.375322\pi\)
−0.991312 + 0.131529i \(0.958011\pi\)
\(948\) 0 0
\(949\) −1.20577 18.6962i −0.0391410 0.606903i
\(950\) 0 0
\(951\) −58.6865 33.8827i −1.90304 1.09872i
\(952\) 0 0
\(953\) −5.53590 9.58846i −0.179325 0.310601i 0.762324 0.647195i \(-0.224058\pi\)
−0.941650 + 0.336595i \(0.890725\pi\)
\(954\) 0 0
\(955\) −13.9019 24.0788i −0.449856 0.779173i
\(956\) 0 0
\(957\) −4.39230 −0.141983
\(958\) 0 0
\(959\) 6.12436 10.6077i 0.197766 0.342540i
\(960\) 0 0
\(961\) 30.9615 0.998759
\(962\) 0 0
\(963\) 63.3731i 2.04217i
\(964\) 0 0
\(965\) 21.9904 + 12.6962i 0.707895 + 0.408704i
\(966\) 0 0
\(967\) 26.9808i 0.867643i −0.900999 0.433821i \(-0.857165\pi\)
0.900999 0.433821i \(-0.142835\pi\)
\(968\) 0 0
\(969\) −5.19615 + 3.00000i −0.166924 + 0.0963739i
\(970\) 0 0
\(971\) −16.9019 + 9.75833i −0.542409 + 0.313160i −0.746055 0.665885i \(-0.768054\pi\)
0.203646 + 0.979045i \(0.434721\pi\)
\(972\) 0 0
\(973\) 0.392305 0.679492i 0.0125767 0.0217835i
\(974\) 0 0
\(975\) 17.6603 + 8.73205i 0.565581 + 0.279649i
\(976\) 0 0
\(977\) −36.4808 21.0622i −1.16712 0.673839i −0.214122 0.976807i \(-0.568689\pi\)
−0.953001 + 0.302968i \(0.902022\pi\)
\(978\) 0 0
\(979\) −46.3923 + 26.7846i −1.48270 + 0.856040i
\(980\) 0 0
\(981\) 4.46410 + 7.73205i 0.142528 + 0.246865i
\(982\) 0 0
\(983\) 17.6603i 0.563275i 0.959521 + 0.281637i \(0.0908775\pi\)
−0.959521 + 0.281637i \(0.909123\pi\)
\(984\) 0 0
\(985\) 3.00000 5.19615i 0.0955879 0.165563i
\(986\) 0 0
\(987\) 63.7128i 2.02800i
\(988\) 0 0
\(989\) 58.6410i 1.86468i
\(990\) 0 0
\(991\) 6.97372 12.0788i 0.221528 0.383697i −0.733744 0.679426i \(-0.762229\pi\)
0.955272 + 0.295729i \(0.0955624\pi\)
\(992\) 0 0
\(993\) 56.7846i 1.80201i
\(994\) 0 0
\(995\) 5.70577 + 9.88269i 0.180885 + 0.313302i
\(996\) 0 0
\(997\) −1.79423 + 1.03590i −0.0568238 + 0.0328072i −0.528143 0.849156i \(-0.677111\pi\)
0.471319 + 0.881963i \(0.343778\pi\)
\(998\) 0 0
\(999\) 31.8564 + 18.3923i 1.00789 + 0.581907i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.b.225.1 yes 4
4.3 odd 2 832.2.ba.f.225.2 yes 4
8.3 odd 2 832.2.ba.a.225.1 4
8.5 even 2 832.2.ba.e.225.2 yes 4
13.10 even 6 832.2.ba.e.673.2 yes 4
52.23 odd 6 832.2.ba.a.673.1 yes 4
104.75 odd 6 832.2.ba.f.673.2 yes 4
104.101 even 6 inner 832.2.ba.b.673.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.a.225.1 4 8.3 odd 2
832.2.ba.a.673.1 yes 4 52.23 odd 6
832.2.ba.b.225.1 yes 4 1.1 even 1 trivial
832.2.ba.b.673.1 yes 4 104.101 even 6 inner
832.2.ba.e.225.2 yes 4 8.5 even 2
832.2.ba.e.673.2 yes 4 13.10 even 6
832.2.ba.f.225.2 yes 4 4.3 odd 2
832.2.ba.f.673.2 yes 4 104.75 odd 6