Properties

Label 832.2.ba.g.673.4
Level $832$
Weight $2$
Character 832.673
Analytic conductor $6.644$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.4
Root \(-1.12824 - 0.651388i\) of defining polynomial
Character \(\chi\) \(=\) 832.673
Dual form 832.2.ba.g.225.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{3} +(3.12250 + 1.80278i) q^{7} +(-1.00000 + 1.73205i) q^{9} +(-0.866025 - 1.50000i) q^{11} +3.60555 q^{13} +(1.50000 - 2.59808i) q^{17} +(-0.866025 + 1.50000i) q^{19} +3.60555 q^{21} +(3.12250 + 5.40833i) q^{23} -5.00000 q^{25} +5.00000i q^{27} +(5.40833 - 3.12250i) q^{29} +7.21110i q^{31} +(-1.50000 - 0.866025i) q^{33} +(-1.80278 - 3.12250i) q^{37} +(3.12250 - 1.80278i) q^{39} +(4.50000 - 2.59808i) q^{41} +(-0.866025 - 0.500000i) q^{43} +(3.00000 + 5.19615i) q^{49} -3.00000i q^{51} -12.4900i q^{53} +1.73205i q^{57} +(6.06218 - 10.5000i) q^{59} +(5.40833 + 3.12250i) q^{61} +(-6.24500 + 3.60555i) q^{63} +(0.866025 + 1.50000i) q^{67} +(5.40833 + 3.12250i) q^{69} +(9.36750 + 5.40833i) q^{71} +3.46410i q^{73} +(-4.33013 + 2.50000i) q^{75} -6.24500i q^{77} -12.4900 q^{79} +(-0.500000 - 0.866025i) q^{81} -6.92820 q^{83} +(3.12250 - 5.40833i) q^{87} +(7.50000 - 4.33013i) q^{89} +(11.2583 + 6.50000i) q^{91} +(3.60555 + 6.24500i) q^{93} +(-10.5000 - 6.06218i) q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} + 12 q^{17} - 40 q^{25} - 12 q^{33} + 36 q^{41} + 24 q^{49} - 4 q^{81} + 60 q^{89} - 84 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 0.500000i 0.500000 0.288675i −0.228714 0.973494i \(-0.573452\pi\)
0.728714 + 0.684819i \(0.240119\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 3.12250 + 1.80278i 1.18019 + 0.681385i 0.956059 0.293173i \(-0.0947112\pi\)
0.224134 + 0.974558i \(0.428045\pi\)
\(8\) 0 0
\(9\) −1.00000 + 1.73205i −0.333333 + 0.577350i
\(10\) 0 0
\(11\) −0.866025 1.50000i −0.261116 0.452267i 0.705422 0.708787i \(-0.250757\pi\)
−0.966539 + 0.256520i \(0.917424\pi\)
\(12\) 0 0
\(13\) 3.60555 1.00000
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) −0.866025 + 1.50000i −0.198680 + 0.344124i −0.948101 0.317970i \(-0.896999\pi\)
0.749421 + 0.662094i \(0.230332\pi\)
\(20\) 0 0
\(21\) 3.60555 0.786796
\(22\) 0 0
\(23\) 3.12250 + 5.40833i 0.651086 + 1.12771i 0.982860 + 0.184355i \(0.0590196\pi\)
−0.331774 + 0.943359i \(0.607647\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) 5.40833 3.12250i 1.00430 0.579834i 0.0947831 0.995498i \(-0.469784\pi\)
0.909518 + 0.415664i \(0.136451\pi\)
\(30\) 0 0
\(31\) 7.21110i 1.29515i 0.762001 + 0.647576i \(0.224217\pi\)
−0.762001 + 0.647576i \(0.775783\pi\)
\(32\) 0 0
\(33\) −1.50000 0.866025i −0.261116 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.80278 3.12250i −0.296374 0.513336i 0.678929 0.734204i \(-0.262444\pi\)
−0.975304 + 0.220868i \(0.929111\pi\)
\(38\) 0 0
\(39\) 3.12250 1.80278i 0.500000 0.288675i
\(40\) 0 0
\(41\) 4.50000 2.59808i 0.702782 0.405751i −0.105601 0.994409i \(-0.533677\pi\)
0.808383 + 0.588657i \(0.200343\pi\)
\(42\) 0 0
\(43\) −0.866025 0.500000i −0.132068 0.0762493i 0.432511 0.901629i \(-0.357628\pi\)
−0.564578 + 0.825380i \(0.690961\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 3.00000i 0.420084i
\(52\) 0 0
\(53\) 12.4900i 1.71563i −0.513956 0.857816i \(-0.671821\pi\)
0.513956 0.857816i \(-0.328179\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.73205i 0.229416i
\(58\) 0 0
\(59\) 6.06218 10.5000i 0.789228 1.36698i −0.137212 0.990542i \(-0.543814\pi\)
0.926440 0.376442i \(-0.122853\pi\)
\(60\) 0 0
\(61\) 5.40833 + 3.12250i 0.692465 + 0.399795i 0.804535 0.593905i \(-0.202415\pi\)
−0.112070 + 0.993700i \(0.535748\pi\)
\(62\) 0 0
\(63\) −6.24500 + 3.60555i −0.786796 + 0.454257i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.866025 + 1.50000i 0.105802 + 0.183254i 0.914066 0.405567i \(-0.132926\pi\)
−0.808264 + 0.588821i \(0.799592\pi\)
\(68\) 0 0
\(69\) 5.40833 + 3.12250i 0.651086 + 0.375905i
\(70\) 0 0
\(71\) 9.36750 + 5.40833i 1.11172 + 0.641850i 0.939274 0.343169i \(-0.111500\pi\)
0.172444 + 0.985019i \(0.444834\pi\)
\(72\) 0 0
\(73\) 3.46410i 0.405442i 0.979236 + 0.202721i \(0.0649785\pi\)
−0.979236 + 0.202721i \(0.935021\pi\)
\(74\) 0 0
\(75\) −4.33013 + 2.50000i −0.500000 + 0.288675i
\(76\) 0 0
\(77\) 6.24500i 0.711684i
\(78\) 0 0
\(79\) −12.4900 −1.40523 −0.702617 0.711568i \(-0.747985\pi\)
−0.702617 + 0.711568i \(0.747985\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −6.92820 −0.760469 −0.380235 0.924890i \(-0.624157\pi\)
−0.380235 + 0.924890i \(0.624157\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.12250 5.40833i 0.334767 0.579834i
\(88\) 0 0
\(89\) 7.50000 4.33013i 0.794998 0.458993i −0.0467209 0.998908i \(-0.514877\pi\)
0.841719 + 0.539915i \(0.181544\pi\)
\(90\) 0 0
\(91\) 11.2583 + 6.50000i 1.18019 + 0.681385i
\(92\) 0 0
\(93\) 3.60555 + 6.24500i 0.373878 + 0.647576i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.5000 6.06218i −1.06611 0.615521i −0.138996 0.990293i \(-0.544388\pi\)
−0.927117 + 0.374772i \(0.877721\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 0 0
\(101\) −5.40833 + 3.12250i −0.538149 + 0.310700i −0.744328 0.667814i \(-0.767230\pi\)
0.206180 + 0.978514i \(0.433897\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9904 + 7.50000i −1.25583 + 0.725052i −0.972261 0.233900i \(-0.924851\pi\)
−0.283567 + 0.958952i \(0.591518\pi\)
\(108\) 0 0
\(109\) −14.4222 −1.38140 −0.690698 0.723143i \(-0.742697\pi\)
−0.690698 + 0.723143i \(0.742697\pi\)
\(110\) 0 0
\(111\) −3.12250 1.80278i −0.296374 0.171112i
\(112\) 0 0
\(113\) −4.50000 + 7.79423i −0.423324 + 0.733219i −0.996262 0.0863794i \(-0.972470\pi\)
0.572938 + 0.819599i \(0.305804\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.60555 + 6.24500i −0.333333 + 0.577350i
\(118\) 0 0
\(119\) 9.36750 5.40833i 0.858717 0.495781i
\(120\) 0 0
\(121\) 4.00000 6.92820i 0.363636 0.629837i
\(122\) 0 0
\(123\) 2.59808 4.50000i 0.234261 0.405751i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.12250 5.40833i −0.277077 0.479911i 0.693580 0.720380i \(-0.256032\pi\)
−0.970657 + 0.240468i \(0.922699\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 6.00000i 0.524222i 0.965038 + 0.262111i \(0.0844187\pi\)
−0.965038 + 0.262111i \(0.915581\pi\)
\(132\) 0 0
\(133\) −5.40833 + 3.12250i −0.468961 + 0.270755i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.5000 6.06218i −0.897076 0.517927i −0.0208253 0.999783i \(-0.506629\pi\)
−0.876250 + 0.481856i \(0.839963\pi\)
\(138\) 0 0
\(139\) −9.52628 5.50000i −0.808008 0.466504i 0.0382553 0.999268i \(-0.487820\pi\)
−0.846264 + 0.532764i \(0.821153\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.12250 5.40833i −0.261116 0.452267i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.19615 + 3.00000i 0.428571 + 0.247436i
\(148\) 0 0
\(149\) −5.40833 + 9.36750i −0.443067 + 0.767415i −0.997915 0.0645365i \(-0.979443\pi\)
0.554848 + 0.831952i \(0.312776\pi\)
\(150\) 0 0
\(151\) 7.21110i 0.586831i −0.955985 0.293416i \(-0.905208\pi\)
0.955985 0.293416i \(-0.0947920\pi\)
\(152\) 0 0
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.4900i 0.996810i 0.866944 + 0.498405i \(0.166081\pi\)
−0.866944 + 0.498405i \(0.833919\pi\)
\(158\) 0 0
\(159\) −6.24500 10.8167i −0.495261 0.857816i
\(160\) 0 0
\(161\) 22.5167i 1.77456i
\(162\) 0 0
\(163\) 7.79423 13.5000i 0.610491 1.05740i −0.380667 0.924712i \(-0.624305\pi\)
0.991158 0.132689i \(-0.0423612\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.36750 5.40833i 0.724879 0.418509i −0.0916670 0.995790i \(-0.529220\pi\)
0.816546 + 0.577281i \(0.195886\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −1.73205 3.00000i −0.132453 0.229416i
\(172\) 0 0
\(173\) −16.2250 9.36750i −1.23356 0.712198i −0.265792 0.964030i \(-0.585633\pi\)
−0.967771 + 0.251833i \(0.918967\pi\)
\(174\) 0 0
\(175\) −15.6125 9.01388i −1.18019 0.681385i
\(176\) 0 0
\(177\) 12.1244i 0.911322i
\(178\) 0 0
\(179\) 7.79423 4.50000i 0.582568 0.336346i −0.179585 0.983742i \(-0.557476\pi\)
0.762153 + 0.647397i \(0.224142\pi\)
\(180\) 0 0
\(181\) 12.4900i 0.928374i 0.885737 + 0.464187i \(0.153653\pi\)
−0.885737 + 0.464187i \(0.846347\pi\)
\(182\) 0 0
\(183\) 6.24500 0.461644
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.19615 −0.379980
\(188\) 0 0
\(189\) −9.01388 + 15.6125i −0.655663 + 1.13564i
\(190\) 0 0
\(191\) −3.12250 + 5.40833i −0.225936 + 0.391333i −0.956600 0.291405i \(-0.905877\pi\)
0.730664 + 0.682737i \(0.239211\pi\)
\(192\) 0 0
\(193\) 22.5000 12.9904i 1.61959 0.935068i 0.632559 0.774512i \(-0.282005\pi\)
0.987027 0.160556i \(-0.0513286\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.40833 9.36750i −0.385327 0.667407i 0.606487 0.795093i \(-0.292578\pi\)
−0.991815 + 0.127687i \(0.959245\pi\)
\(198\) 0 0
\(199\) 3.12250 5.40833i 0.221348 0.383386i −0.733869 0.679290i \(-0.762288\pi\)
0.955218 + 0.295904i \(0.0956210\pi\)
\(200\) 0 0
\(201\) 1.50000 + 0.866025i 0.105802 + 0.0610847i
\(202\) 0 0
\(203\) 22.5167 1.58036
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −12.4900 −0.868115
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −16.4545 + 9.50000i −1.13277 + 0.654007i −0.944631 0.328135i \(-0.893580\pi\)
−0.188142 + 0.982142i \(0.560247\pi\)
\(212\) 0 0
\(213\) 10.8167 0.741145
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −13.0000 + 22.5167i −0.882498 + 1.52853i
\(218\) 0 0
\(219\) 1.73205 + 3.00000i 0.117041 + 0.202721i
\(220\) 0 0
\(221\) 5.40833 9.36750i 0.363803 0.630126i
\(222\) 0 0
\(223\) −15.6125 + 9.01388i −1.04549 + 0.603614i −0.921383 0.388655i \(-0.872940\pi\)
−0.124107 + 0.992269i \(0.539606\pi\)
\(224\) 0 0
\(225\) 5.00000 8.66025i 0.333333 0.577350i
\(226\) 0 0
\(227\) −7.79423 + 13.5000i −0.517321 + 0.896026i 0.482476 + 0.875909i \(0.339737\pi\)
−0.999798 + 0.0201176i \(0.993596\pi\)
\(228\) 0 0
\(229\) −14.4222 −0.953046 −0.476523 0.879162i \(-0.658103\pi\)
−0.476523 + 0.879162i \(0.658103\pi\)
\(230\) 0 0
\(231\) −3.12250 5.40833i −0.205445 0.355842i
\(232\) 0 0
\(233\) −24.0000 −1.57229 −0.786146 0.618041i \(-0.787927\pi\)
−0.786146 + 0.618041i \(0.787927\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10.8167 + 6.24500i −0.702617 + 0.405656i
\(238\) 0 0
\(239\) 21.6333i 1.39934i −0.714465 0.699671i \(-0.753330\pi\)
0.714465 0.699671i \(-0.246670\pi\)
\(240\) 0 0
\(241\) −19.5000 11.2583i −1.25611 0.725213i −0.283790 0.958886i \(-0.591592\pi\)
−0.972315 + 0.233674i \(0.924925\pi\)
\(242\) 0 0
\(243\) −13.8564 8.00000i −0.888889 0.513200i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.12250 + 5.40833i −0.198680 + 0.344124i
\(248\) 0 0
\(249\) −6.00000 + 3.46410i −0.380235 + 0.219529i
\(250\) 0 0
\(251\) 2.59808 + 1.50000i 0.163989 + 0.0946792i 0.579748 0.814795i \(-0.303151\pi\)
−0.415759 + 0.909475i \(0.636484\pi\)
\(252\) 0 0
\(253\) 5.40833 9.36750i 0.340019 0.588929i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) 13.0000i 0.807781i
\(260\) 0 0
\(261\) 12.4900i 0.773111i
\(262\) 0 0
\(263\) 3.12250 + 5.40833i 0.192542 + 0.333492i 0.946092 0.323899i \(-0.104994\pi\)
−0.753550 + 0.657390i \(0.771660\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4.33013 7.50000i 0.264999 0.458993i
\(268\) 0 0
\(269\) −27.0416 15.6125i −1.64876 0.951911i −0.977567 0.210626i \(-0.932450\pi\)
−0.671191 0.741285i \(-0.734217\pi\)
\(270\) 0 0
\(271\) −3.12250 + 1.80278i −0.189678 + 0.109511i −0.591832 0.806061i \(-0.701595\pi\)
0.402154 + 0.915572i \(0.368262\pi\)
\(272\) 0 0
\(273\) 13.0000 0.786796
\(274\) 0 0
\(275\) 4.33013 + 7.50000i 0.261116 + 0.452267i
\(276\) 0 0
\(277\) 16.2250 + 9.36750i 0.974865 + 0.562838i 0.900716 0.434409i \(-0.143043\pi\)
0.0741488 + 0.997247i \(0.476376\pi\)
\(278\) 0 0
\(279\) −12.4900 7.21110i −0.747757 0.431717i
\(280\) 0 0
\(281\) 17.3205i 1.03325i −0.856210 0.516627i \(-0.827187\pi\)
0.856210 0.516627i \(-0.172813\pi\)
\(282\) 0 0
\(283\) −19.9186 + 11.5000i −1.18404 + 0.683604i −0.956945 0.290269i \(-0.906255\pi\)
−0.227092 + 0.973873i \(0.572922\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.7350 1.10589
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) −12.1244 −0.710742
\(292\) 0 0
\(293\) 16.2250 28.1025i 0.947873 1.64177i 0.197980 0.980206i \(-0.436562\pi\)
0.749893 0.661559i \(-0.230105\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.50000 4.33013i 0.435194 0.251259i
\(298\) 0 0
\(299\) 11.2583 + 19.5000i 0.651086 + 1.12771i
\(300\) 0 0
\(301\) −1.80278 3.12250i −0.103910 0.179978i
\(302\) 0 0
\(303\) −3.12250 + 5.40833i −0.179383 + 0.310700i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 27.7128 1.58165 0.790827 0.612040i \(-0.209651\pi\)
0.790827 + 0.612040i \(0.209651\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.9800 1.41649 0.708243 0.705969i \(-0.249488\pi\)
0.708243 + 0.705969i \(0.249488\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.6333 1.21505 0.607524 0.794301i \(-0.292163\pi\)
0.607524 + 0.794301i \(0.292163\pi\)
\(318\) 0 0
\(319\) −9.36750 5.40833i −0.524479 0.302808i
\(320\) 0 0
\(321\) −7.50000 + 12.9904i −0.418609 + 0.725052i
\(322\) 0 0
\(323\) 2.59808 + 4.50000i 0.144561 + 0.250387i
\(324\) 0 0
\(325\) −18.0278 −1.00000
\(326\) 0 0
\(327\) −12.4900 + 7.21110i −0.690698 + 0.398775i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.2583 19.5000i 0.618814 1.07182i −0.370889 0.928677i \(-0.620947\pi\)
0.989703 0.143140i \(-0.0457198\pi\)
\(332\) 0 0
\(333\) 7.21110 0.395166
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −4.00000 −0.217894 −0.108947 0.994048i \(-0.534748\pi\)
−0.108947 + 0.994048i \(0.534748\pi\)
\(338\) 0 0
\(339\) 9.00000i 0.488813i
\(340\) 0 0
\(341\) 10.8167 6.24500i 0.585755 0.338186i
\(342\) 0 0
\(343\) 3.60555i 0.194681i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.5788 16.5000i −1.53419 0.885766i −0.999162 0.0409337i \(-0.986967\pi\)
−0.535031 0.844833i \(-0.679700\pi\)
\(348\) 0 0
\(349\) 12.6194 + 21.8575i 0.675503 + 1.17000i 0.976322 + 0.216324i \(0.0694066\pi\)
−0.300819 + 0.953681i \(0.597260\pi\)
\(350\) 0 0
\(351\) 18.0278i 0.962250i
\(352\) 0 0
\(353\) 7.50000 4.33013i 0.399185 0.230469i −0.286947 0.957946i \(-0.592641\pi\)
0.686132 + 0.727477i \(0.259307\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5.40833 9.36750i 0.286239 0.495781i
\(358\) 0 0
\(359\) 21.6333i 1.14176i 0.821033 + 0.570881i \(0.193398\pi\)
−0.821033 + 0.570881i \(0.806602\pi\)
\(360\) 0 0
\(361\) 8.00000 + 13.8564i 0.421053 + 0.729285i
\(362\) 0 0
\(363\) 8.00000i 0.419891i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 15.6125 + 27.0416i 0.814966 + 1.41156i 0.909353 + 0.416026i \(0.136578\pi\)
−0.0943870 + 0.995536i \(0.530089\pi\)
\(368\) 0 0
\(369\) 10.3923i 0.541002i
\(370\) 0 0
\(371\) 22.5167 39.0000i 1.16901 2.02478i
\(372\) 0 0
\(373\) 16.2250 + 9.36750i 0.840098 + 0.485031i 0.857297 0.514821i \(-0.172142\pi\)
−0.0171998 + 0.999852i \(0.505475\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.5000 11.2583i 1.00430 0.579834i
\(378\) 0 0
\(379\) −0.866025 1.50000i −0.0444847 0.0770498i 0.842926 0.538030i \(-0.180831\pi\)
−0.887410 + 0.460980i \(0.847498\pi\)
\(380\) 0 0
\(381\) −5.40833 3.12250i −0.277077 0.159970i
\(382\) 0 0
\(383\) 28.1025 + 16.2250i 1.43597 + 0.829058i 0.997567 0.0697204i \(-0.0222107\pi\)
0.438404 + 0.898778i \(0.355544\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.73205 1.00000i 0.0880451 0.0508329i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 18.7350 0.947469
\(392\) 0 0
\(393\) 3.00000 + 5.19615i 0.151330 + 0.262111i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.80278 + 3.12250i −0.0904787 + 0.156714i −0.907713 0.419592i \(-0.862173\pi\)
0.817234 + 0.576306i \(0.195506\pi\)
\(398\) 0 0
\(399\) −3.12250 + 5.40833i −0.156320 + 0.270755i
\(400\) 0 0
\(401\) −1.50000 + 0.866025i −0.0749064 + 0.0432472i −0.536985 0.843592i \(-0.680437\pi\)
0.462079 + 0.886839i \(0.347104\pi\)
\(402\) 0 0
\(403\) 26.0000i 1.29515i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.12250 + 5.40833i −0.154777 + 0.268081i
\(408\) 0 0
\(409\) −13.5000 7.79423i −0.667532 0.385400i 0.127609 0.991825i \(-0.459270\pi\)
−0.795141 + 0.606425i \(0.792603\pi\)
\(410\) 0 0
\(411\) −12.1244 −0.598050
\(412\) 0 0
\(413\) 37.8583 21.8575i 1.86288 1.07554i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −11.0000 −0.538672
\(418\) 0 0
\(419\) −18.1865 + 10.5000i −0.888470 + 0.512959i −0.873442 0.486928i \(-0.838117\pi\)
−0.0150285 + 0.999887i \(0.504784\pi\)
\(420\) 0 0
\(421\) 14.4222 0.702895 0.351448 0.936208i \(-0.385690\pi\)
0.351448 + 0.936208i \(0.385690\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.50000 + 12.9904i −0.363803 + 0.630126i
\(426\) 0 0
\(427\) 11.2583 + 19.5000i 0.544829 + 0.943671i
\(428\) 0 0
\(429\) −5.40833 3.12250i −0.261116 0.150756i
\(430\) 0 0
\(431\) 28.1025 16.2250i 1.35365 0.781530i 0.364891 0.931050i \(-0.381106\pi\)
0.988759 + 0.149521i \(0.0477730\pi\)
\(432\) 0 0
\(433\) 3.50000 6.06218i 0.168199 0.291330i −0.769588 0.638541i \(-0.779538\pi\)
0.937787 + 0.347212i \(0.112871\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.8167 −0.517431
\(438\) 0 0
\(439\) −3.12250 5.40833i −0.149029 0.258125i 0.781840 0.623479i \(-0.214281\pi\)
−0.930869 + 0.365354i \(0.880948\pi\)
\(440\) 0 0
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) 18.0000i 0.855206i 0.903967 + 0.427603i \(0.140642\pi\)
−0.903967 + 0.427603i \(0.859358\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 10.8167i 0.511610i
\(448\) 0 0
\(449\) −31.5000 18.1865i −1.48658 0.858276i −0.486694 0.873573i \(-0.661797\pi\)
−0.999883 + 0.0152970i \(0.995131\pi\)
\(450\) 0 0
\(451\) −7.79423 4.50000i −0.367016 0.211897i
\(452\) 0 0
\(453\) −3.60555 6.24500i −0.169404 0.293416i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.5000 11.2583i 0.912172 0.526642i 0.0310423 0.999518i \(-0.490117\pi\)
0.881129 + 0.472876i \(0.156784\pi\)
\(458\) 0 0
\(459\) 12.9904 + 7.50000i 0.606339 + 0.350070i
\(460\) 0 0
\(461\) 5.40833 9.36750i 0.251891 0.436288i −0.712156 0.702022i \(-0.752281\pi\)
0.964046 + 0.265734i \(0.0856143\pi\)
\(462\) 0 0
\(463\) 7.21110i 0.335128i 0.985861 + 0.167564i \(0.0535901\pi\)
−0.985861 + 0.167564i \(0.946410\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.0000i 1.11059i −0.831654 0.555294i \(-0.812606\pi\)
0.831654 0.555294i \(-0.187394\pi\)
\(468\) 0 0
\(469\) 6.24500i 0.288367i
\(470\) 0 0
\(471\) 6.24500 + 10.8167i 0.287754 + 0.498405i
\(472\) 0 0
\(473\) 1.73205i 0.0796398i
\(474\) 0 0
\(475\) 4.33013 7.50000i 0.198680 0.344124i
\(476\) 0 0
\(477\) 21.6333 + 12.4900i 0.990521 + 0.571878i
\(478\) 0 0
\(479\) 28.1025 16.2250i 1.28404 0.741338i 0.306452 0.951886i \(-0.400858\pi\)
0.977584 + 0.210548i \(0.0675248\pi\)
\(480\) 0 0
\(481\) −6.50000 11.2583i −0.296374 0.513336i
\(482\) 0 0
\(483\) 11.2583 + 19.5000i 0.512272 + 0.887281i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −3.12250 1.80278i −0.141494 0.0816916i 0.427582 0.903977i \(-0.359366\pi\)
−0.569076 + 0.822285i \(0.692699\pi\)
\(488\) 0 0
\(489\) 15.5885i 0.704934i
\(490\) 0 0
\(491\) −18.1865 + 10.5000i −0.820747 + 0.473858i −0.850674 0.525694i \(-0.823806\pi\)
0.0299272 + 0.999552i \(0.490472\pi\)
\(492\) 0 0
\(493\) 18.7350i 0.843782i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 19.5000 + 33.7750i 0.874695 + 1.51502i
\(498\) 0 0
\(499\) −41.5692 −1.86089 −0.930447 0.366427i \(-0.880581\pi\)
−0.930447 + 0.366427i \(0.880581\pi\)
\(500\) 0 0
\(501\) 5.40833 9.36750i 0.241626 0.418509i
\(502\) 0 0
\(503\) −15.6125 + 27.0416i −0.696127 + 1.20573i 0.273673 + 0.961823i \(0.411762\pi\)
−0.969799 + 0.243904i \(0.921572\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.2583 6.50000i 0.500000 0.288675i
\(508\) 0 0
\(509\) 5.40833 + 9.36750i 0.239720 + 0.415207i 0.960634 0.277818i \(-0.0896111\pi\)
−0.720914 + 0.693025i \(0.756278\pi\)
\(510\) 0 0
\(511\) −6.24500 + 10.8167i −0.276262 + 0.478501i
\(512\) 0 0
\(513\) −7.50000 4.33013i −0.331133 0.191180i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −18.7350 −0.822375
\(520\) 0 0
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) 16.4545 9.50000i 0.719504 0.415406i −0.0950659 0.995471i \(-0.530306\pi\)
0.814570 + 0.580065i \(0.196973\pi\)
\(524\) 0 0
\(525\) −18.0278 −0.786796
\(526\) 0 0
\(527\) 18.7350 + 10.8167i 0.816109 + 0.471181i
\(528\) 0 0
\(529\) −8.00000 + 13.8564i −0.347826 + 0.602452i
\(530\) 0 0
\(531\) 12.1244 + 21.0000i 0.526152 + 0.911322i
\(532\) 0 0
\(533\) 16.2250 9.36750i 0.702782 0.405751i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.50000 7.79423i 0.194189 0.336346i
\(538\) 0 0
\(539\) 5.19615 9.00000i 0.223814 0.387657i
\(540\) 0 0
\(541\) 36.0555 1.55015 0.775074 0.631871i \(-0.217713\pi\)
0.775074 + 0.631871i \(0.217713\pi\)
\(542\) 0 0
\(543\) 6.24500 + 10.8167i 0.267999 + 0.464187i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10.0000i 0.427569i −0.976881 0.213785i \(-0.931421\pi\)
0.976881 0.213785i \(-0.0685791\pi\)
\(548\) 0 0
\(549\) −10.8167 + 6.24500i −0.461644 + 0.266530i
\(550\) 0 0
\(551\) 10.8167i 0.460805i
\(552\) 0 0
\(553\) −39.0000 22.5167i −1.65845 0.957506i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.40833 9.36750i −0.229158 0.396914i 0.728401 0.685151i \(-0.240264\pi\)
−0.957559 + 0.288238i \(0.906931\pi\)
\(558\) 0 0
\(559\) −3.12250 1.80278i −0.132068 0.0762493i
\(560\) 0 0
\(561\) −4.50000 + 2.59808i −0.189990 + 0.109691i
\(562\) 0 0
\(563\) 7.79423 + 4.50000i 0.328488 + 0.189652i 0.655169 0.755482i \(-0.272597\pi\)
−0.326682 + 0.945134i \(0.605931\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.60555i 0.151419i
\(568\) 0 0
\(569\) 10.5000 + 18.1865i 0.440183 + 0.762419i 0.997703 0.0677445i \(-0.0215803\pi\)
−0.557520 + 0.830164i \(0.688247\pi\)
\(570\) 0 0
\(571\) 2.00000i 0.0836974i −0.999124 0.0418487i \(-0.986675\pi\)
0.999124 0.0418487i \(-0.0133247\pi\)
\(572\) 0 0
\(573\) 6.24500i 0.260889i
\(574\) 0 0
\(575\) −15.6125 27.0416i −0.651086 1.12771i
\(576\) 0 0
\(577\) 38.1051i 1.58634i 0.609002 + 0.793168i \(0.291570\pi\)
−0.609002 + 0.793168i \(0.708430\pi\)
\(578\) 0 0
\(579\) 12.9904 22.5000i 0.539862 0.935068i
\(580\) 0 0
\(581\) −21.6333 12.4900i −0.897501 0.518172i
\(582\) 0 0
\(583\) −18.7350 + 10.8167i −0.775924 + 0.447980i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −19.9186 34.5000i −0.822128 1.42397i −0.904095 0.427332i \(-0.859453\pi\)
0.0819667 0.996635i \(-0.473880\pi\)
\(588\) 0 0
\(589\) −10.8167 6.24500i −0.445692 0.257321i
\(590\) 0 0
\(591\) −9.36750 5.40833i −0.385327 0.222469i
\(592\) 0 0
\(593\) 17.3205i 0.711268i −0.934625 0.355634i \(-0.884265\pi\)
0.934625 0.355634i \(-0.115735\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.24500i 0.255591i
\(598\) 0 0
\(599\) −37.4700 −1.53098 −0.765491 0.643446i \(-0.777504\pi\)
−0.765491 + 0.643446i \(0.777504\pi\)
\(600\) 0 0
\(601\) 5.50000 + 9.52628i 0.224350 + 0.388585i 0.956124 0.292962i \(-0.0946409\pi\)
−0.731774 + 0.681547i \(0.761308\pi\)
\(602\) 0 0
\(603\) −3.46410 −0.141069
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 15.6125 27.0416i 0.633692 1.09759i −0.353099 0.935586i \(-0.614872\pi\)
0.986791 0.162000i \(-0.0517945\pi\)
\(608\) 0 0
\(609\) 19.5000 11.2583i 0.790180 0.456211i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.80278 3.12250i −0.0728134 0.126117i 0.827320 0.561731i \(-0.189864\pi\)
−0.900133 + 0.435615i \(0.856531\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5000 + 7.79423i 0.543490 + 0.313784i 0.746492 0.665394i \(-0.231737\pi\)
−0.203002 + 0.979178i \(0.565070\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −27.0416 + 15.6125i −1.08514 + 0.626508i
\(622\) 0 0
\(623\) 31.2250 1.25100
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 2.59808 1.50000i 0.103757 0.0599042i
\(628\) 0 0
\(629\) −10.8167 −0.431288
\(630\) 0 0
\(631\) −3.12250 1.80278i −0.124305 0.0717674i 0.436558 0.899676i \(-0.356197\pi\)
−0.560863 + 0.827909i \(0.689531\pi\)
\(632\) 0 0
\(633\) −9.50000 + 16.4545i −0.377591 + 0.654007i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.8167 + 18.7350i 0.428571 + 0.742307i
\(638\) 0 0
\(639\) −18.7350 + 10.8167i −0.741145 + 0.427900i
\(640\) 0 0
\(641\) 13.5000 23.3827i 0.533218 0.923561i −0.466029 0.884769i \(-0.654316\pi\)
0.999247 0.0387913i \(-0.0123508\pi\)
\(642\) 0 0
\(643\) 0.866025 1.50000i 0.0341527 0.0591542i −0.848444 0.529285i \(-0.822460\pi\)
0.882597 + 0.470131i \(0.155793\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.12250 5.40833i −0.122758 0.212623i 0.798096 0.602530i \(-0.205841\pi\)
−0.920854 + 0.389907i \(0.872507\pi\)
\(648\) 0 0
\(649\) −21.0000 −0.824322
\(650\) 0 0
\(651\) 26.0000i 1.01902i
\(652\) 0 0
\(653\) 16.2250 9.36750i 0.634933 0.366578i −0.147727 0.989028i \(-0.547196\pi\)
0.782660 + 0.622450i \(0.213862\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.00000 3.46410i −0.234082 0.135147i
\(658\) 0 0
\(659\) −7.79423 4.50000i −0.303620 0.175295i 0.340448 0.940263i \(-0.389421\pi\)
−0.644068 + 0.764968i \(0.722755\pi\)
\(660\) 0 0
\(661\) −9.01388 15.6125i −0.350599 0.607256i 0.635755 0.771891i \(-0.280689\pi\)
−0.986355 + 0.164635i \(0.947355\pi\)
\(662\) 0 0
\(663\) 10.8167i 0.420084i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 33.7750 + 19.5000i 1.30777 + 0.755043i
\(668\) 0 0
\(669\) −9.01388 + 15.6125i −0.348497 + 0.603614i
\(670\) 0 0
\(671\) 10.8167i 0.417572i
\(672\) 0 0
\(673\) 2.50000 + 4.33013i 0.0963679 + 0.166914i 0.910179 0.414216i \(-0.135944\pi\)
−0.813811 + 0.581130i \(0.802611\pi\)
\(674\) 0 0
\(675\) 25.0000i 0.962250i
\(676\) 0 0
\(677\) 37.4700i 1.44009i −0.693928 0.720044i \(-0.744121\pi\)
0.693928 0.720044i \(-0.255879\pi\)
\(678\) 0 0
\(679\) −21.8575 37.8583i −0.838814 1.45287i
\(680\) 0 0
\(681\) 15.5885i 0.597351i
\(682\) 0 0
\(683\) −4.33013 + 7.50000i −0.165688 + 0.286980i −0.936899 0.349599i \(-0.886318\pi\)
0.771212 + 0.636579i \(0.219651\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.4900 + 7.21110i −0.476523 + 0.275121i
\(688\) 0 0
\(689\) 45.0333i 1.71563i
\(690\) 0 0
\(691\) 19.9186 + 34.5000i 0.757739 + 1.31244i 0.944001 + 0.329942i \(0.107029\pi\)
−0.186263 + 0.982500i \(0.559638\pi\)
\(692\) 0 0
\(693\) 10.8167 + 6.24500i 0.410891 + 0.237228i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.5885i 0.590455i
\(698\) 0 0
\(699\) −20.7846 + 12.0000i −0.786146 + 0.453882i
\(700\) 0 0
\(701\) 37.4700i 1.41522i 0.706602 + 0.707611i \(0.250227\pi\)
−0.706602 + 0.707611i \(0.749773\pi\)
\(702\) 0 0
\(703\) 6.24500 0.235535
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.5167 −0.846826
\(708\) 0 0
\(709\) −23.4361 + 40.5925i −0.880161 + 1.52448i −0.0289988 + 0.999579i \(0.509232\pi\)
−0.851162 + 0.524903i \(0.824101\pi\)
\(710\) 0 0
\(711\) 12.4900 21.6333i 0.468411 0.811312i
\(712\) 0 0
\(713\) −39.0000 + 22.5167i −1.46056 + 0.843256i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10.8167 18.7350i −0.403955 0.699671i
\(718\) 0 0
\(719\) 21.8575 37.8583i 0.815147 1.41188i −0.0940754 0.995565i \(-0.529989\pi\)
0.909222 0.416311i \(-0.136677\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −22.5167 −0.837404
\(724\) 0 0
\(725\) −27.0416 + 15.6125i −1.00430 + 0.579834i
\(726\) 0 0
\(727\) −49.9600 −1.85291 −0.926457 0.376402i \(-0.877161\pi\)
−0.926457 + 0.376402i \(0.877161\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −2.59808 + 1.50000i −0.0960933 + 0.0554795i
\(732\) 0 0
\(733\) −7.21110 −0.266348 −0.133174 0.991093i \(-0.542517\pi\)
−0.133174 + 0.991093i \(0.542517\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.50000 2.59808i 0.0552532 0.0957014i
\(738\) 0 0
\(739\) 18.1865 + 31.5000i 0.669002 + 1.15875i 0.978183 + 0.207743i \(0.0666118\pi\)
−0.309181 + 0.951003i \(0.600055\pi\)
\(740\) 0 0
\(741\) 6.24500i 0.229416i
\(742\) 0 0
\(743\) −9.36750 + 5.40833i −0.343660 + 0.198412i −0.661889 0.749602i \(-0.730245\pi\)
0.318229 + 0.948014i \(0.396912\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.92820 12.0000i 0.253490 0.439057i
\(748\) 0 0
\(749\) −54.0833 −1.97616
\(750\) 0 0
\(751\) 15.6125 + 27.0416i 0.569708 + 0.986763i 0.996595 + 0.0824580i \(0.0262770\pi\)
−0.426887 + 0.904305i \(0.640390\pi\)
\(752\) 0 0
\(753\) 3.00000 0.109326
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.40833 + 3.12250i −0.196569 + 0.113489i −0.595054 0.803686i \(-0.702869\pi\)
0.398485 + 0.917175i \(0.369536\pi\)
\(758\) 0 0
\(759\) 10.8167i 0.392620i
\(760\) 0 0
\(761\) −25.5000 14.7224i −0.924374 0.533688i −0.0393463 0.999226i \(-0.512528\pi\)
−0.885028 + 0.465538i \(0.845861\pi\)
\(762\) 0 0
\(763\) −45.0333 26.0000i −1.63032 0.941263i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.8575 37.8583i 0.789228 1.36698i
\(768\) 0 0
\(769\) −7.50000 + 4.33013i −0.270457 + 0.156148i −0.629095 0.777328i \(-0.716574\pi\)
0.358638 + 0.933477i \(0.383241\pi\)
\(770\) 0 0
\(771\) 2.59808 + 1.50000i 0.0935674 + 0.0540212i
\(772\) 0 0
\(773\) −16.2250 + 28.1025i −0.583572 + 1.01078i 0.411480 + 0.911419i \(0.365012\pi\)
−0.995052 + 0.0993575i \(0.968321\pi\)
\(774\) 0 0
\(775\) 36.0555i 1.29515i
\(776\) 0 0
\(777\) −6.50000 11.2583i −0.233186 0.403890i
\(778\) 0 0
\(779\) 9.00000i 0.322458i
\(780\) 0 0
\(781\) 18.7350i 0.670391i
\(782\) 0 0
\(783\) 15.6125 + 27.0416i 0.557945 + 0.966389i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.7224 25.5000i 0.524798 0.908977i −0.474785 0.880102i \(-0.657474\pi\)
0.999583 0.0288750i \(-0.00919248\pi\)
\(788\) 0 0
\(789\) 5.40833 + 3.12250i 0.192542 + 0.111164i
\(790\) 0 0
\(791\) −28.1025 + 16.2250i −0.999210 + 0.576894i
\(792\) 0 0
\(793\) 19.5000 + 11.2583i 0.692465 + 0.399795i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.0416 + 15.6125i 0.957864 + 0.553023i 0.895515 0.445031i \(-0.146808\pi\)
0.0623489 + 0.998054i \(0.480141\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 17.3205i 0.611990i
\(802\) 0 0
\(803\) 5.19615 3.00000i 0.183368 0.105868i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −31.2250 −1.09917
\(808\) 0 0
\(809\) 7.50000 + 12.9904i 0.263686 + 0.456717i 0.967219 0.253946i \(-0.0817284\pi\)
−0.703533 + 0.710663i \(0.748395\pi\)
\(810\) 0 0
\(811\) −3.46410 −0.121641 −0.0608205 0.998149i \(-0.519372\pi\)
−0.0608205 + 0.998149i \(0.519372\pi\)
\(812\) 0 0
\(813\) −1.80278 + 3.12250i −0.0632261 + 0.109511i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.50000 0.866025i 0.0524784 0.0302984i
\(818\) 0 0
\(819\) −22.5167 + 13.0000i −0.786796 + 0.454257i
\(820\) 0 0
\(821\) 16.2250 + 28.1025i 0.566256 + 0.980784i 0.996932 + 0.0782770i \(0.0249419\pi\)
−0.430676 + 0.902507i \(0.641725\pi\)
\(822\) 0 0
\(823\) 3.12250 5.40833i 0.108843 0.188522i −0.806459 0.591291i \(-0.798619\pi\)
0.915302 + 0.402768i \(0.131952\pi\)
\(824\) 0 0
\(825\) 7.50000 + 4.33013i 0.261116 + 0.150756i
\(826\) 0 0
\(827\) 48.4974 1.68642 0.843210 0.537584i \(-0.180663\pi\)
0.843210 + 0.537584i \(0.180663\pi\)
\(828\) 0 0
\(829\) −37.8583 + 21.8575i −1.31487 + 0.759142i −0.982899 0.184146i \(-0.941048\pi\)
−0.331974 + 0.943289i \(0.607715\pi\)
\(830\) 0 0
\(831\) 18.7350 0.649910
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −36.0555 −1.24626
\(838\) 0 0
\(839\) −28.1025 16.2250i −0.970206 0.560149i −0.0709068 0.997483i \(-0.522589\pi\)
−0.899299 + 0.437334i \(0.855923\pi\)
\(840\) 0 0
\(841\) 5.00000 8.66025i 0.172414 0.298629i
\(842\) 0 0
\(843\) −8.66025 15.0000i −0.298275 0.516627i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.9800 14.4222i 0.858323 0.495553i
\(848\) 0 0
\(849\) −11.5000 + 19.9186i −0.394679 + 0.683604i
\(850\) 0 0
\(851\) 11.2583 19.5000i 0.385931 0.668451i
\(852\) 0 0
\(853\) 28.8444 0.987614 0.493807 0.869572i \(-0.335605\pi\)
0.493807 + 0.869572i \(0.335605\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.0000 0.409912 0.204956 0.978771i \(-0.434295\pi\)
0.204956 + 0.978771i \(0.434295\pi\)
\(858\) 0 0
\(859\) 10.0000i 0.341196i −0.985341 0.170598i \(-0.945430\pi\)
0.985341 0.170598i \(-0.0545699\pi\)
\(860\) 0 0
\(861\) 16.2250 9.36750i 0.552946 0.319243i
\(862\) 0 0
\(863\) 21.6333i 0.736406i 0.929745 + 0.368203i \(0.120027\pi\)
−0.929745 + 0.368203i \(0.879973\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6.92820 + 4.00000i 0.235294 + 0.135847i
\(868\) 0 0
\(869\) 10.8167 + 18.7350i 0.366930 + 0.635541i
\(870\) 0 0
\(871\) 3.12250 + 5.40833i 0.105802 + 0.183254i
\(872\) 0 0
\(873\) 21.0000 12.1244i 0.710742 0.410347i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −12.6194 + 21.8575i −0.426128 + 0.738075i −0.996525 0.0832939i \(-0.973456\pi\)
0.570397 + 0.821369i \(0.306789\pi\)
\(878\) 0 0
\(879\) 32.4500i 1.09451i
\(880\) 0 0
\(881\) −4.50000 7.79423i −0.151609 0.262594i 0.780210 0.625517i \(-0.215112\pi\)
−0.931819 + 0.362923i \(0.881779\pi\)
\(882\) 0 0
\(883\) 38.0000i 1.27880i −0.768874 0.639401i \(-0.779182\pi\)
0.768874 0.639401i \(-0.220818\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.12250 5.40833i −0.104843 0.181594i 0.808831 0.588041i \(-0.200101\pi\)
−0.913674 + 0.406447i \(0.866767\pi\)
\(888\) 0 0
\(889\) 22.5167i 0.755185i
\(890\) 0 0
\(891\) −0.866025 + 1.50000i −0.0290129 + 0.0502519i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 19.5000 + 11.2583i 0.651086 + 0.375905i
\(898\) 0 0
\(899\) 22.5167 + 39.0000i 0.750973 + 1.30072i
\(900\) 0 0
\(901\) −32.4500 18.7350i −1.08106 0.624153i
\(902\) 0 0
\(903\) −3.12250 1.80278i −0.103910 0.0599926i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −26.8468 + 15.5000i −0.891433 + 0.514669i −0.874411 0.485186i \(-0.838752\pi\)
−0.0170220 + 0.999855i \(0.505419\pi\)
\(908\) 0 0
\(909\) 12.4900i 0.414267i
\(910\) 0 0
\(911\) −24.9800 −0.827624 −0.413812 0.910362i \(-0.635803\pi\)
−0.413812 + 0.910362i \(0.635803\pi\)
\(912\) 0 0
\(913\) 6.00000 + 10.3923i 0.198571 + 0.343935i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.8167 + 18.7350i −0.357197 + 0.618684i
\(918\) 0 0
\(919\) 9.36750 16.2250i 0.309005 0.535213i −0.669140 0.743137i \(-0.733337\pi\)
0.978145 + 0.207924i \(0.0666706\pi\)
\(920\) 0 0
\(921\) 24.0000 13.8564i 0.790827 0.456584i
\(922\) 0 0
\(923\) 33.7750 + 19.5000i 1.11172 + 0.641850i
\(924\) 0 0
\(925\) 9.01388 + 15.6125i 0.296374 + 0.513336i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.50000 0.866025i −0.0492134 0.0284134i 0.475191 0.879882i \(-0.342379\pi\)
−0.524405 + 0.851469i \(0.675712\pi\)
\(930\) 0 0
\(931\) −10.3923 −0.340594
\(932\) 0 0
\(933\) 21.6333 12.4900i 0.708243 0.408904i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 0 0
\(939\) 6.92820 4.00000i 0.226093 0.130535i
\(940\) 0 0
\(941\) −21.6333 −0.705226 −0.352613 0.935769i \(-0.614707\pi\)
−0.352613 + 0.935769i \(0.614707\pi\)
\(942\) 0 0
\(943\) 28.1025 + 16.2250i 0.915143 + 0.528358i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.52628 + 16.5000i 0.309562 + 0.536178i 0.978267 0.207351i \(-0.0664841\pi\)
−0.668704 + 0.743529i \(0.733151\pi\)
\(948\) 0 0
\(949\) 12.4900i 0.405442i
\(950\) 0 0
\(951\) 18.7350 10.8167i 0.607524 0.350754i
\(952\) 0 0
\(953\) −25.5000 + 44.1673i −0.826026 + 1.43072i 0.0751066 + 0.997176i \(0.476070\pi\)
−0.901133 + 0.433544i \(0.857263\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −10.8167 −0.349653
\(958\) 0 0
\(959\) −21.8575 37.8583i −0.705815 1.22251i
\(960\) 0 0
\(961\) −21.0000 −0.677419
\(962\) 0 0
\(963\) 30.0000i 0.966736i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 7.21110i 0.231893i 0.993255 + 0.115947i \(0.0369902\pi\)
−0.993255 + 0.115947i \(0.963010\pi\)
\(968\) 0 0
\(969\) 4.50000 + 2.59808i 0.144561 + 0.0834622i
\(970\) 0 0
\(971\) −18.1865 10.5000i −0.583634 0.336961i 0.178942 0.983860i \(-0.442732\pi\)
−0.762576 + 0.646899i \(0.776066\pi\)
\(972\) 0 0
\(973\) −19.8305 34.3475i −0.635738 1.10113i
\(974\) 0 0
\(975\) −15.6125 + 9.01388i −0.500000 + 0.288675i
\(976\) 0 0
\(977\) −34.5000 + 19.9186i −1.10375 + 0.637252i −0.937204 0.348781i \(-0.886596\pi\)
−0.166549 + 0.986033i \(0.553262\pi\)
\(978\) 0 0
\(979\) −12.9904 7.50000i −0.415174 0.239701i
\(980\) 0 0
\(981\) 14.4222 24.9800i 0.460466 0.797550i
\(982\) 0 0
\(983\) 21.6333i 0.689995i 0.938604 + 0.344998i \(0.112120\pi\)
−0.938604 + 0.344998i \(0.887880\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.24500i 0.198579i
\(990\) 0 0
\(991\) −15.6125 27.0416i −0.495947 0.859006i 0.504042 0.863679i \(-0.331846\pi\)
−0.999989 + 0.00467341i \(0.998512\pi\)
\(992\) 0 0
\(993\) 22.5167i 0.714545i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 5.40833 + 3.12250i 0.171283 + 0.0988905i 0.583191 0.812335i \(-0.301804\pi\)
−0.411907 + 0.911226i \(0.635137\pi\)
\(998\) 0 0
\(999\) 15.6125 9.01388i 0.493957 0.285186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.g.673.4 yes 8
4.3 odd 2 inner 832.2.ba.g.673.1 yes 8
8.3 odd 2 inner 832.2.ba.g.673.3 yes 8
8.5 even 2 inner 832.2.ba.g.673.2 yes 8
13.4 even 6 inner 832.2.ba.g.225.2 yes 8
52.43 odd 6 inner 832.2.ba.g.225.3 yes 8
104.43 odd 6 inner 832.2.ba.g.225.1 8
104.69 even 6 inner 832.2.ba.g.225.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.g.225.1 8 104.43 odd 6 inner
832.2.ba.g.225.2 yes 8 13.4 even 6 inner
832.2.ba.g.225.3 yes 8 52.43 odd 6 inner
832.2.ba.g.225.4 yes 8 104.69 even 6 inner
832.2.ba.g.673.1 yes 8 4.3 odd 2 inner
832.2.ba.g.673.2 yes 8 8.5 even 2 inner
832.2.ba.g.673.3 yes 8 8.3 odd 2 inner
832.2.ba.g.673.4 yes 8 1.1 even 1 trivial