Properties

Label 832.2.ba.i.673.4
Level $832$
Weight $2$
Character 832.673
Analytic conductor $6.644$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(225,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.752609431977984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.4
Root \(-1.75780 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.673
Dual form 832.2.ba.i.225.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16037 - 0.669938i) q^{3} +3.88448 q^{5} +(-2.20369 - 1.27230i) q^{7} +(-0.602365 + 1.04333i) q^{9} +(-0.571683 - 0.990185i) q^{11} +(1.00000 + 3.46410i) q^{13} +(4.50743 - 2.60236i) q^{15} +(3.44224 - 5.96214i) q^{17} +(3.93574 - 6.81691i) q^{19} -3.40946 q^{21} +(3.93574 + 6.81691i) q^{23} +10.0892 q^{25} +5.63382i q^{27} +(-2.51963 + 1.45471i) q^{29} -2.00000i q^{31} +(-1.32673 - 0.765985i) q^{33} +(-8.56021 - 4.94224i) q^{35} +(-1.78212 - 3.08672i) q^{37} +(3.48110 + 3.34969i) q^{39} +(-1.32673 + 0.765985i) q^{41} +(-7.88849 - 4.55442i) q^{43} +(-2.33988 + 4.05279i) q^{45} -2.11552i q^{47} +(-0.262488 - 0.454643i) q^{49} -9.22436i q^{51} +9.01486i q^{53} +(-2.22069 - 3.84636i) q^{55} -10.5468i q^{57} +(-2.79238 + 4.83654i) q^{59} +(-1.50000 - 0.866025i) q^{61} +(2.65486 - 1.53278i) q^{63} +(3.88448 + 13.4562i) q^{65} +(2.20369 + 3.81691i) q^{67} +(9.13382 + 5.27341i) q^{69} +(3.24702 + 1.87467i) q^{71} +11.3696i q^{73} +(11.7072 - 6.75915i) q^{75} +2.90942i q^{77} -7.90549 q^{79} +(1.96722 + 3.40732i) q^{81} -8.10557 q^{83} +(13.3713 - 23.1598i) q^{85} +(-1.94913 + 3.37599i) q^{87} +(2.51963 - 1.45471i) q^{89} +(2.20369 - 8.90612i) q^{91} +(-1.33988 - 2.32073i) q^{93} +(15.2883 - 26.4802i) q^{95} +(1.50000 + 0.866025i) q^{97} +1.37745 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{9} + 12 q^{13} + 18 q^{17} + 36 q^{21} + 36 q^{25} - 18 q^{29} + 54 q^{33} + 6 q^{37} + 54 q^{41} - 24 q^{45} + 12 q^{49} - 18 q^{61} - 18 q^{69} - 30 q^{81} + 48 q^{85} + 18 q^{89} - 12 q^{93}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16037 0.669938i 0.669938 0.386789i −0.126115 0.992016i \(-0.540251\pi\)
0.796053 + 0.605227i \(0.206917\pi\)
\(4\) 0 0
\(5\) 3.88448 1.73719 0.868597 0.495519i \(-0.165022\pi\)
0.868597 + 0.495519i \(0.165022\pi\)
\(6\) 0 0
\(7\) −2.20369 1.27230i −0.832918 0.480885i 0.0219327 0.999759i \(-0.493018\pi\)
−0.854851 + 0.518874i \(0.826351\pi\)
\(8\) 0 0
\(9\) −0.602365 + 1.04333i −0.200788 + 0.347776i
\(10\) 0 0
\(11\) −0.571683 0.990185i −0.172369 0.298552i 0.766879 0.641792i \(-0.221809\pi\)
−0.939248 + 0.343240i \(0.888475\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 4.50743 2.60236i 1.16381 0.671928i
\(16\) 0 0
\(17\) 3.44224 5.96214i 0.834866 1.44603i −0.0592730 0.998242i \(-0.518878\pi\)
0.894139 0.447789i \(-0.147788\pi\)
\(18\) 0 0
\(19\) 3.93574 6.81691i 0.902922 1.56391i 0.0792390 0.996856i \(-0.474751\pi\)
0.823683 0.567051i \(-0.191916\pi\)
\(20\) 0 0
\(21\) −3.40946 −0.744005
\(22\) 0 0
\(23\) 3.93574 + 6.81691i 0.820660 + 1.42142i 0.905192 + 0.425003i \(0.139727\pi\)
−0.0845322 + 0.996421i \(0.526940\pi\)
\(24\) 0 0
\(25\) 10.0892 2.01784
\(26\) 0 0
\(27\) 5.63382i 1.08423i
\(28\) 0 0
\(29\) −2.51963 + 1.45471i −0.467884 + 0.270133i −0.715353 0.698763i \(-0.753734\pi\)
0.247470 + 0.968896i \(0.420401\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i −0.983739 0.179605i \(-0.942518\pi\)
0.983739 0.179605i \(-0.0574821\pi\)
\(32\) 0 0
\(33\) −1.32673 0.765985i −0.230953 0.133341i
\(34\) 0 0
\(35\) −8.56021 4.94224i −1.44694 0.835391i
\(36\) 0 0
\(37\) −1.78212 3.08672i −0.292979 0.507454i 0.681534 0.731786i \(-0.261313\pi\)
−0.974513 + 0.224333i \(0.927980\pi\)
\(38\) 0 0
\(39\) 3.48110 + 3.34969i 0.557422 + 0.536380i
\(40\) 0 0
\(41\) −1.32673 + 0.765985i −0.207200 + 0.119627i −0.600009 0.799993i \(-0.704836\pi\)
0.392810 + 0.919620i \(0.371503\pi\)
\(42\) 0 0
\(43\) −7.88849 4.55442i −1.20298 0.694543i −0.241766 0.970335i \(-0.577727\pi\)
−0.961217 + 0.275792i \(0.911060\pi\)
\(44\) 0 0
\(45\) −2.33988 + 4.05279i −0.348808 + 0.604154i
\(46\) 0 0
\(47\) 2.11552i 0.308580i −0.988026 0.154290i \(-0.950691\pi\)
0.988026 0.154290i \(-0.0493090\pi\)
\(48\) 0 0
\(49\) −0.262488 0.454643i −0.0374983 0.0649490i
\(50\) 0 0
\(51\) 9.22436i 1.29167i
\(52\) 0 0
\(53\) 9.01486i 1.23829i 0.785278 + 0.619143i \(0.212520\pi\)
−0.785278 + 0.619143i \(0.787480\pi\)
\(54\) 0 0
\(55\) −2.22069 3.84636i −0.299438 0.518643i
\(56\) 0 0
\(57\) 10.5468i 1.39696i
\(58\) 0 0
\(59\) −2.79238 + 4.83654i −0.363537 + 0.629664i −0.988540 0.150958i \(-0.951764\pi\)
0.625004 + 0.780622i \(0.285098\pi\)
\(60\) 0 0
\(61\) −1.50000 0.866025i −0.192055 0.110883i 0.400889 0.916127i \(-0.368701\pi\)
−0.592944 + 0.805243i \(0.702035\pi\)
\(62\) 0 0
\(63\) 2.65486 1.53278i 0.334480 0.193112i
\(64\) 0 0
\(65\) 3.88448 + 13.4562i 0.481811 + 1.66904i
\(66\) 0 0
\(67\) 2.20369 + 3.81691i 0.269224 + 0.466310i 0.968662 0.248384i \(-0.0798994\pi\)
−0.699438 + 0.714694i \(0.746566\pi\)
\(68\) 0 0
\(69\) 9.13382 + 5.27341i 1.09958 + 0.634844i
\(70\) 0 0
\(71\) 3.24702 + 1.87467i 0.385350 + 0.222482i 0.680144 0.733079i \(-0.261917\pi\)
−0.294793 + 0.955561i \(0.595251\pi\)
\(72\) 0 0
\(73\) 11.3696i 1.33071i 0.746527 + 0.665355i \(0.231720\pi\)
−0.746527 + 0.665355i \(0.768280\pi\)
\(74\) 0 0
\(75\) 11.7072 6.75915i 1.35183 0.780480i
\(76\) 0 0
\(77\) 2.90942i 0.331559i
\(78\) 0 0
\(79\) −7.90549 −0.889437 −0.444719 0.895670i \(-0.646696\pi\)
−0.444719 + 0.895670i \(0.646696\pi\)
\(80\) 0 0
\(81\) 1.96722 + 3.40732i 0.218580 + 0.378591i
\(82\) 0 0
\(83\) −8.10557 −0.889702 −0.444851 0.895605i \(-0.646743\pi\)
−0.444851 + 0.895605i \(0.646743\pi\)
\(84\) 0 0
\(85\) 13.3713 23.1598i 1.45032 2.51204i
\(86\) 0 0
\(87\) −1.94913 + 3.37599i −0.208969 + 0.361945i
\(88\) 0 0
\(89\) 2.51963 1.45471i 0.267080 0.154199i −0.360480 0.932767i \(-0.617387\pi\)
0.627560 + 0.778568i \(0.284054\pi\)
\(90\) 0 0
\(91\) 2.20369 8.90612i 0.231010 0.933615i
\(92\) 0 0
\(93\) −1.33988 2.32073i −0.138939 0.240649i
\(94\) 0 0
\(95\) 15.2883 26.4802i 1.56855 2.71681i
\(96\) 0 0
\(97\) 1.50000 + 0.866025i 0.152302 + 0.0879316i 0.574214 0.818705i \(-0.305308\pi\)
−0.421912 + 0.906637i \(0.638641\pi\)
\(98\) 0 0
\(99\) 1.37745 0.138439
\(100\) 0 0
\(101\) −3.30709 + 1.90935i −0.329068 + 0.189988i −0.655427 0.755258i \(-0.727511\pi\)
0.326359 + 0.945246i \(0.394178\pi\)
\(102\) 0 0
\(103\) −6.92820 −0.682656 −0.341328 0.939944i \(-0.610877\pi\)
−0.341328 + 0.939944i \(0.610877\pi\)
\(104\) 0 0
\(105\) −13.2440 −1.29248
\(106\) 0 0
\(107\) −1.71505 + 0.990185i −0.165800 + 0.0957248i −0.580604 0.814186i \(-0.697184\pi\)
0.414804 + 0.909911i \(0.363850\pi\)
\(108\) 0 0
\(109\) −10.5250 −1.00811 −0.504055 0.863672i \(-0.668159\pi\)
−0.504055 + 0.863672i \(0.668159\pi\)
\(110\) 0 0
\(111\) −4.13583 2.38782i −0.392555 0.226642i
\(112\) 0 0
\(113\) 6.30709 10.9242i 0.593322 1.02766i −0.400460 0.916314i \(-0.631150\pi\)
0.993781 0.111349i \(-0.0355171\pi\)
\(114\) 0 0
\(115\) 15.2883 + 26.4802i 1.42564 + 2.46929i
\(116\) 0 0
\(117\) −4.21655 1.04333i −0.389821 0.0964556i
\(118\) 0 0
\(119\) −15.1713 + 8.75915i −1.39075 + 0.802950i
\(120\) 0 0
\(121\) 4.84636 8.39414i 0.440578 0.763103i
\(122\) 0 0
\(123\) −1.02633 + 1.77765i −0.0925407 + 0.160285i
\(124\) 0 0
\(125\) 19.7690 1.76819
\(126\) 0 0
\(127\) 1.74905 + 3.02945i 0.155203 + 0.268820i 0.933133 0.359531i \(-0.117063\pi\)
−0.777930 + 0.628351i \(0.783730\pi\)
\(128\) 0 0
\(129\) −12.2047 −1.07457
\(130\) 0 0
\(131\) 13.7690i 1.20300i 0.798873 + 0.601500i \(0.205430\pi\)
−0.798873 + 0.601500i \(0.794570\pi\)
\(132\) 0 0
\(133\) −17.3464 + 10.0149i −1.50412 + 0.868404i
\(134\) 0 0
\(135\) 21.8845i 1.88352i
\(136\) 0 0
\(137\) −9.13382 5.27341i −0.780355 0.450538i 0.0562011 0.998419i \(-0.482101\pi\)
−0.836556 + 0.547881i \(0.815435\pi\)
\(138\) 0 0
\(139\) 2.99246 + 1.72770i 0.253817 + 0.146541i 0.621511 0.783406i \(-0.286519\pi\)
−0.367694 + 0.929947i \(0.619853\pi\)
\(140\) 0 0
\(141\) −1.41727 2.45478i −0.119355 0.206729i
\(142\) 0 0
\(143\) 2.85842 2.97055i 0.239033 0.248410i
\(144\) 0 0
\(145\) −9.78746 + 5.65080i −0.812805 + 0.469273i
\(146\) 0 0
\(147\) −0.609165 0.351702i −0.0502431 0.0290079i
\(148\) 0 0
\(149\) 0.480369 0.832024i 0.0393534 0.0681621i −0.845678 0.533694i \(-0.820804\pi\)
0.885031 + 0.465532i \(0.154137\pi\)
\(150\) 0 0
\(151\) 19.1285i 1.55665i 0.627860 + 0.778327i \(0.283931\pi\)
−0.627860 + 0.778327i \(0.716069\pi\)
\(152\) 0 0
\(153\) 4.14697 + 7.18277i 0.335263 + 0.580692i
\(154\) 0 0
\(155\) 7.76897i 0.624018i
\(156\) 0 0
\(157\) 7.83749i 0.625500i −0.949836 0.312750i \(-0.898750\pi\)
0.949836 0.312750i \(-0.101250\pi\)
\(158\) 0 0
\(159\) 6.03940 + 10.4605i 0.478955 + 0.829575i
\(160\) 0 0
\(161\) 20.0298i 1.57857i
\(162\) 0 0
\(163\) −0.0170007 + 0.0294460i −0.00133159 + 0.00230639i −0.866690 0.498846i \(-0.833757\pi\)
0.865359 + 0.501153i \(0.167091\pi\)
\(164\) 0 0
\(165\) −5.15364 2.97546i −0.401211 0.231639i
\(166\) 0 0
\(167\) 13.5733 7.83654i 1.05033 0.606410i 0.127590 0.991827i \(-0.459276\pi\)
0.922742 + 0.385417i \(0.125942\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 4.74151 + 8.21254i 0.362592 + 0.628028i
\(172\) 0 0
\(173\) −7.15345 4.13005i −0.543867 0.314002i 0.202778 0.979225i \(-0.435003\pi\)
−0.746645 + 0.665223i \(0.768336\pi\)
\(174\) 0 0
\(175\) −22.2335 12.8365i −1.68070 0.970351i
\(176\) 0 0
\(177\) 7.48289i 0.562448i
\(178\) 0 0
\(179\) −18.8355 + 10.8747i −1.40783 + 0.812811i −0.995179 0.0980783i \(-0.968730\pi\)
−0.412651 + 0.910889i \(0.635397\pi\)
\(180\) 0 0
\(181\) 9.79206i 0.727838i 0.931431 + 0.363919i \(0.118562\pi\)
−0.931431 + 0.363919i \(0.881438\pi\)
\(182\) 0 0
\(183\) −2.32073 −0.171554
\(184\) 0 0
\(185\) −6.92261 11.9903i −0.508960 0.881545i
\(186\) 0 0
\(187\) −7.87149 −0.575620
\(188\) 0 0
\(189\) 7.16793 12.4152i 0.521390 0.903074i
\(190\) 0 0
\(191\) −10.6639 + 18.4704i −0.771610 + 1.33647i 0.165070 + 0.986282i \(0.447215\pi\)
−0.936680 + 0.350187i \(0.886118\pi\)
\(192\) 0 0
\(193\) −14.3464 + 8.28287i −1.03267 + 0.596214i −0.917749 0.397160i \(-0.869996\pi\)
−0.114924 + 0.993374i \(0.536662\pi\)
\(194\) 0 0
\(195\) 13.5223 + 13.0118i 0.968351 + 0.931796i
\(196\) 0 0
\(197\) −6.26897 10.8582i −0.446645 0.773613i 0.551520 0.834162i \(-0.314048\pi\)
−0.998165 + 0.0605492i \(0.980715\pi\)
\(198\) 0 0
\(199\) −6.12244 + 10.6044i −0.434008 + 0.751724i −0.997214 0.0745924i \(-0.976234\pi\)
0.563206 + 0.826317i \(0.309568\pi\)
\(200\) 0 0
\(201\) 5.11419 + 2.95268i 0.360727 + 0.208266i
\(202\) 0 0
\(203\) 7.40333 0.519612
\(204\) 0 0
\(205\) −5.15364 + 2.97546i −0.359946 + 0.207815i
\(206\) 0 0
\(207\) −9.48302 −0.659115
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −0.926286 + 0.534791i −0.0637682 + 0.0368166i −0.531545 0.847030i \(-0.678388\pi\)
0.467777 + 0.883847i \(0.345055\pi\)
\(212\) 0 0
\(213\) 5.02365 0.344215
\(214\) 0 0
\(215\) −30.6427 17.6916i −2.08982 1.20656i
\(216\) 0 0
\(217\) −2.54461 + 4.40739i −0.172739 + 0.299193i
\(218\) 0 0
\(219\) 7.61693 + 13.1929i 0.514704 + 0.891494i
\(220\) 0 0
\(221\) 24.0957 + 5.96214i 1.62085 + 0.401057i
\(222\) 0 0
\(223\) 24.9429 14.4008i 1.67030 0.964347i 0.702830 0.711358i \(-0.251920\pi\)
0.967469 0.252989i \(-0.0814137\pi\)
\(224\) 0 0
\(225\) −6.07739 + 10.5263i −0.405159 + 0.701756i
\(226\) 0 0
\(227\) 6.61108 11.4507i 0.438793 0.760012i −0.558804 0.829300i \(-0.688739\pi\)
0.997597 + 0.0692883i \(0.0220728\pi\)
\(228\) 0 0
\(229\) −0.564237 −0.0372859 −0.0186429 0.999826i \(-0.505935\pi\)
−0.0186429 + 0.999826i \(0.505935\pi\)
\(230\) 0 0
\(231\) 1.94913 + 3.37599i 0.128243 + 0.222124i
\(232\) 0 0
\(233\) 8.11552 0.531665 0.265833 0.964019i \(-0.414353\pi\)
0.265833 + 0.964019i \(0.414353\pi\)
\(234\) 0 0
\(235\) 8.21769i 0.536063i
\(236\) 0 0
\(237\) −9.17327 + 5.29619i −0.595868 + 0.344025i
\(238\) 0 0
\(239\) 9.53793i 0.616958i −0.951231 0.308479i \(-0.900180\pi\)
0.951231 0.308479i \(-0.0998199\pi\)
\(240\) 0 0
\(241\) 17.3464 + 10.0149i 1.11738 + 0.645118i 0.940730 0.339156i \(-0.110142\pi\)
0.176647 + 0.984274i \(0.443475\pi\)
\(242\) 0 0
\(243\) −10.0717 5.81490i −0.646100 0.373026i
\(244\) 0 0
\(245\) −1.01963 1.76605i −0.0651418 0.112829i
\(246\) 0 0
\(247\) 27.5502 + 6.81691i 1.75298 + 0.433750i
\(248\) 0 0
\(249\) −9.40544 + 5.43023i −0.596046 + 0.344127i
\(250\) 0 0
\(251\) 11.5071 + 6.64364i 0.726323 + 0.419343i 0.817075 0.576531i \(-0.195594\pi\)
−0.0907527 + 0.995873i \(0.528927\pi\)
\(252\) 0 0
\(253\) 4.50000 7.79423i 0.282913 0.490019i
\(254\) 0 0
\(255\) 35.8319i 2.24388i
\(256\) 0 0
\(257\) 5.21121 + 9.02608i 0.325066 + 0.563031i 0.981526 0.191330i \(-0.0612800\pi\)
−0.656459 + 0.754361i \(0.727947\pi\)
\(258\) 0 0
\(259\) 9.06958i 0.563556i
\(260\) 0 0
\(261\) 3.50506i 0.216958i
\(262\) 0 0
\(263\) −9.52050 16.4900i −0.587059 1.01682i −0.994615 0.103636i \(-0.966952\pi\)
0.407556 0.913180i \(-0.366381\pi\)
\(264\) 0 0
\(265\) 35.0181i 2.15114i
\(266\) 0 0
\(267\) 1.94913 3.37599i 0.119285 0.206608i
\(268\) 0 0
\(269\) −14.2875 8.24887i −0.871122 0.502943i −0.00340112 0.999994i \(-0.501083\pi\)
−0.867721 + 0.497052i \(0.834416\pi\)
\(270\) 0 0
\(271\) 10.8299 6.25267i 0.657872 0.379823i −0.133593 0.991036i \(-0.542652\pi\)
0.791466 + 0.611213i \(0.209318\pi\)
\(272\) 0 0
\(273\) −3.40946 11.8107i −0.206350 0.714817i
\(274\) 0 0
\(275\) −5.76784 9.99018i −0.347814 0.602431i
\(276\) 0 0
\(277\) 5.28746 + 3.05272i 0.317693 + 0.183420i 0.650364 0.759623i \(-0.274616\pi\)
−0.332671 + 0.943043i \(0.607950\pi\)
\(278\) 0 0
\(279\) 2.08665 + 1.20473i 0.124925 + 0.0721253i
\(280\) 0 0
\(281\) 9.01486i 0.537781i −0.963171 0.268891i \(-0.913343\pi\)
0.963171 0.268891i \(-0.0866570\pi\)
\(282\) 0 0
\(283\) −16.7373 + 9.66327i −0.994927 + 0.574422i −0.906743 0.421683i \(-0.861440\pi\)
−0.0881839 + 0.996104i \(0.528106\pi\)
\(284\) 0 0
\(285\) 40.9690i 2.42679i
\(286\) 0 0
\(287\) 3.89826 0.230107
\(288\) 0 0
\(289\) −15.1981 26.3238i −0.894003 1.54846i
\(290\) 0 0
\(291\) 2.32073 0.136044
\(292\) 0 0
\(293\) 3.61552 6.26226i 0.211221 0.365845i −0.740876 0.671642i \(-0.765589\pi\)
0.952097 + 0.305797i \(0.0989228\pi\)
\(294\) 0 0
\(295\) −10.8469 + 18.7875i −0.631534 + 1.09385i
\(296\) 0 0
\(297\) 5.57852 3.22076i 0.323699 0.186888i
\(298\) 0 0
\(299\) −19.6787 + 20.4507i −1.13805 + 1.18270i
\(300\) 0 0
\(301\) 11.5892 + 20.0731i 0.667991 + 1.15699i
\(302\) 0 0
\(303\) −2.55830 + 4.43110i −0.146970 + 0.254560i
\(304\) 0 0
\(305\) −5.82673 3.36406i −0.333637 0.192626i
\(306\) 0 0
\(307\) 19.2071 1.09621 0.548103 0.836411i \(-0.315350\pi\)
0.548103 + 0.836411i \(0.315350\pi\)
\(308\) 0 0
\(309\) −8.03926 + 4.64147i −0.457338 + 0.264044i
\(310\) 0 0
\(311\) −2.75490 −0.156216 −0.0781079 0.996945i \(-0.524888\pi\)
−0.0781079 + 0.996945i \(0.524888\pi\)
\(312\) 0 0
\(313\) −0.564237 −0.0318926 −0.0159463 0.999873i \(-0.505076\pi\)
−0.0159463 + 0.999873i \(0.505076\pi\)
\(314\) 0 0
\(315\) 10.3127 5.95407i 0.581057 0.335474i
\(316\) 0 0
\(317\) −15.2676 −0.857516 −0.428758 0.903419i \(-0.641049\pi\)
−0.428758 + 0.903419i \(0.641049\pi\)
\(318\) 0 0
\(319\) 2.88086 + 1.66327i 0.161297 + 0.0931250i
\(320\) 0 0
\(321\) −1.32673 + 2.29796i −0.0740506 + 0.128259i
\(322\) 0 0
\(323\) −27.0956 46.9309i −1.50764 2.61131i
\(324\) 0 0
\(325\) 10.0892 + 34.9501i 0.559649 + 1.93868i
\(326\) 0 0
\(327\) −12.2128 + 7.05109i −0.675372 + 0.389926i
\(328\) 0 0
\(329\) −2.69158 + 4.66195i −0.148392 + 0.257022i
\(330\) 0 0
\(331\) −5.36768 + 9.29709i −0.295034 + 0.511014i −0.974993 0.222236i \(-0.928664\pi\)
0.679959 + 0.733250i \(0.261998\pi\)
\(332\) 0 0
\(333\) 4.29394 0.235307
\(334\) 0 0
\(335\) 8.56021 + 14.8267i 0.467694 + 0.810071i
\(336\) 0 0
\(337\) 18.6641 1.01670 0.508350 0.861150i \(-0.330256\pi\)
0.508350 + 0.861150i \(0.330256\pi\)
\(338\) 0 0
\(339\) 16.9015i 0.917961i
\(340\) 0 0
\(341\) −1.98037 + 1.14337i −0.107243 + 0.0619168i
\(342\) 0 0
\(343\) 19.1481i 1.03390i
\(344\) 0 0
\(345\) 35.4802 + 20.4845i 1.91019 + 1.10285i
\(346\) 0 0
\(347\) −10.5754 6.10570i −0.567716 0.327771i 0.188520 0.982069i \(-0.439631\pi\)
−0.756237 + 0.654298i \(0.772964\pi\)
\(348\) 0 0
\(349\) 4.78212 + 8.28287i 0.255981 + 0.443372i 0.965161 0.261655i \(-0.0842682\pi\)
−0.709181 + 0.705027i \(0.750935\pi\)
\(350\) 0 0
\(351\) −19.5161 + 5.63382i −1.04169 + 0.300711i
\(352\) 0 0
\(353\) 32.1731 18.5751i 1.71240 0.988655i 0.781097 0.624409i \(-0.214660\pi\)
0.931303 0.364246i \(-0.118673\pi\)
\(354\) 0 0
\(355\) 12.6130 + 7.28212i 0.669429 + 0.386495i
\(356\) 0 0
\(357\) −11.7362 + 20.3277i −0.621145 + 1.07585i
\(358\) 0 0
\(359\) 15.9607i 0.842376i −0.906973 0.421188i \(-0.861613\pi\)
0.906973 0.421188i \(-0.138387\pi\)
\(360\) 0 0
\(361\) −21.4802 37.2048i −1.13054 1.95815i
\(362\) 0 0
\(363\) 12.9870i 0.681643i
\(364\) 0 0
\(365\) 44.1650i 2.31170i
\(366\) 0 0
\(367\) 13.5393 + 23.4507i 0.706745 + 1.22412i 0.966058 + 0.258325i \(0.0831705\pi\)
−0.259313 + 0.965793i \(0.583496\pi\)
\(368\) 0 0
\(369\) 1.84561i 0.0960787i
\(370\) 0 0
\(371\) 11.4696 19.8660i 0.595474 1.03139i
\(372\) 0 0
\(373\) −27.9802 16.1544i −1.44876 0.836441i −0.450351 0.892852i \(-0.648701\pi\)
−0.998408 + 0.0564104i \(0.982034\pi\)
\(374\) 0 0
\(375\) 22.9393 13.2440i 1.18458 0.683917i
\(376\) 0 0
\(377\) −7.55889 7.27355i −0.389303 0.374607i
\(378\) 0 0
\(379\) 8.64325 + 14.9706i 0.443974 + 0.768986i 0.997980 0.0635270i \(-0.0202349\pi\)
−0.554006 + 0.832513i \(0.686902\pi\)
\(380\) 0 0
\(381\) 4.05908 + 2.34351i 0.207953 + 0.120062i
\(382\) 0 0
\(383\) 10.2753 + 5.93243i 0.525041 + 0.303133i 0.738995 0.673711i \(-0.235301\pi\)
−0.213953 + 0.976844i \(0.568634\pi\)
\(384\) 0 0
\(385\) 11.3016i 0.575982i
\(386\) 0 0
\(387\) 9.50350 5.48685i 0.483090 0.278912i
\(388\) 0 0
\(389\) 26.9125i 1.36452i −0.731111 0.682259i \(-0.760998\pi\)
0.731111 0.682259i \(-0.239002\pi\)
\(390\) 0 0
\(391\) 54.1911 2.74056
\(392\) 0 0
\(393\) 9.22436 + 15.9771i 0.465307 + 0.805936i
\(394\) 0 0
\(395\) −30.7088 −1.54512
\(396\) 0 0
\(397\) −4.34636 + 7.52811i −0.218137 + 0.377825i −0.954239 0.299047i \(-0.903331\pi\)
0.736101 + 0.676872i \(0.236665\pi\)
\(398\) 0 0
\(399\) −13.4188 + 23.2420i −0.671778 + 1.16355i
\(400\) 0 0
\(401\) 5.69291 3.28680i 0.284290 0.164135i −0.351074 0.936348i \(-0.614183\pi\)
0.635364 + 0.772213i \(0.280850\pi\)
\(402\) 0 0
\(403\) 6.92820 2.00000i 0.345118 0.0996271i
\(404\) 0 0
\(405\) 7.64163 + 13.2357i 0.379715 + 0.657686i
\(406\) 0 0
\(407\) −2.03762 + 3.52925i −0.101001 + 0.174939i
\(408\) 0 0
\(409\) −18.9802 10.9582i −0.938509 0.541849i −0.0490166 0.998798i \(-0.515609\pi\)
−0.889493 + 0.456949i \(0.848942\pi\)
\(410\) 0 0
\(411\) −14.1315 −0.697053
\(412\) 0 0
\(413\) 12.3071 7.10550i 0.605593 0.349639i
\(414\) 0 0
\(415\) −31.4860 −1.54558
\(416\) 0 0
\(417\) 4.62980 0.226722
\(418\) 0 0
\(419\) −5.07911 + 2.93243i −0.248131 + 0.143258i −0.618908 0.785463i \(-0.712425\pi\)
0.370777 + 0.928722i \(0.379091\pi\)
\(420\) 0 0
\(421\) −30.6641 −1.49448 −0.747239 0.664555i \(-0.768621\pi\)
−0.747239 + 0.664555i \(0.768621\pi\)
\(422\) 0 0
\(423\) 2.20717 + 1.27431i 0.107317 + 0.0619592i
\(424\) 0 0
\(425\) 34.7295 60.1533i 1.68463 2.91786i
\(426\) 0 0
\(427\) 2.20369 + 3.81691i 0.106644 + 0.184713i
\(428\) 0 0
\(429\) 1.32673 5.36190i 0.0640549 0.258875i
\(430\) 0 0
\(431\) 20.6015 11.8943i 0.992341 0.572928i 0.0863676 0.996263i \(-0.472474\pi\)
0.905973 + 0.423335i \(0.139141\pi\)
\(432\) 0 0
\(433\) −10.8910 + 18.8637i −0.523386 + 0.906532i 0.476243 + 0.879314i \(0.341998\pi\)
−0.999630 + 0.0272180i \(0.991335\pi\)
\(434\) 0 0
\(435\) −7.57137 + 13.1140i −0.363019 + 0.628768i
\(436\) 0 0
\(437\) 61.9604 2.96397
\(438\) 0 0
\(439\) −5.36768 9.29709i −0.256185 0.443726i 0.709032 0.705177i \(-0.249132\pi\)
−0.965217 + 0.261451i \(0.915799\pi\)
\(440\) 0 0
\(441\) 0.632454 0.0301169
\(442\) 0 0
\(443\) 23.7297i 1.12743i −0.825969 0.563716i \(-0.809371\pi\)
0.825969 0.563716i \(-0.190629\pi\)
\(444\) 0 0
\(445\) 9.78746 5.65080i 0.463970 0.267873i
\(446\) 0 0
\(447\) 1.28727i 0.0608859i
\(448\) 0 0
\(449\) 30.5747 + 17.6523i 1.44291 + 0.833065i 0.998043 0.0625311i \(-0.0199173\pi\)
0.444868 + 0.895596i \(0.353251\pi\)
\(450\) 0 0
\(451\) 1.51693 + 0.875802i 0.0714296 + 0.0412399i
\(452\) 0 0
\(453\) 12.8149 + 22.1961i 0.602097 + 1.04286i
\(454\) 0 0
\(455\) 8.56021 34.5957i 0.401309 1.62187i
\(456\) 0 0
\(457\) 28.7676 16.6090i 1.34569 0.776936i 0.358057 0.933700i \(-0.383439\pi\)
0.987636 + 0.156763i \(0.0501059\pi\)
\(458\) 0 0
\(459\) 33.5896 + 19.3930i 1.56783 + 0.905186i
\(460\) 0 0
\(461\) 5.07606 8.79200i 0.236416 0.409484i −0.723267 0.690568i \(-0.757361\pi\)
0.959683 + 0.281084i \(0.0906939\pi\)
\(462\) 0 0
\(463\) 2.00000i 0.0929479i −0.998920 0.0464739i \(-0.985202\pi\)
0.998920 0.0464739i \(-0.0147984\pi\)
\(464\) 0 0
\(465\) −5.20473 9.01486i −0.241364 0.418054i
\(466\) 0 0
\(467\) 5.65345i 0.261611i 0.991408 + 0.130805i \(0.0417563\pi\)
−0.991408 + 0.130805i \(0.958244\pi\)
\(468\) 0 0
\(469\) 11.2151i 0.517864i
\(470\) 0 0
\(471\) −5.25063 9.09437i −0.241936 0.419046i
\(472\) 0 0
\(473\) 10.4147i 0.478871i
\(474\) 0 0
\(475\) 39.7086 68.7773i 1.82195 3.15572i
\(476\) 0 0
\(477\) −9.40544 5.43023i −0.430646 0.248633i
\(478\) 0 0
\(479\) −3.71518 + 2.14496i −0.169751 + 0.0980058i −0.582468 0.812853i \(-0.697913\pi\)
0.412717 + 0.910859i \(0.364580\pi\)
\(480\) 0 0
\(481\) 8.91059 9.26016i 0.406288 0.422227i
\(482\) 0 0
\(483\) −13.4188 23.2420i −0.610575 1.05755i
\(484\) 0 0
\(485\) 5.82673 + 3.36406i 0.264578 + 0.152754i
\(486\) 0 0
\(487\) −14.9032 8.60437i −0.675329 0.389901i 0.122764 0.992436i \(-0.460824\pi\)
−0.798093 + 0.602534i \(0.794158\pi\)
\(488\) 0 0
\(489\) 0.0455576i 0.00206018i
\(490\) 0 0
\(491\) 12.0413 6.95206i 0.543417 0.313742i −0.203046 0.979169i \(-0.565084\pi\)
0.746463 + 0.665427i \(0.231751\pi\)
\(492\) 0 0
\(493\) 20.0298i 0.902099i
\(494\) 0 0
\(495\) 5.35067 0.240495
\(496\) 0 0
\(497\) −4.77029 8.26239i −0.213977 0.370619i
\(498\) 0 0
\(499\) 31.4860 1.40951 0.704753 0.709453i \(-0.251058\pi\)
0.704753 + 0.709453i \(0.251058\pi\)
\(500\) 0 0
\(501\) 10.5000 18.1865i 0.469105 0.812514i
\(502\) 0 0
\(503\) 10.8979 18.8758i 0.485916 0.841630i −0.513953 0.857818i \(-0.671820\pi\)
0.999869 + 0.0161877i \(0.00515292\pi\)
\(504\) 0 0
\(505\) −12.8464 + 7.41685i −0.571655 + 0.330045i
\(506\) 0 0
\(507\) −8.12257 + 15.4086i −0.360736 + 0.684319i
\(508\) 0 0
\(509\) 4.32673 + 7.49411i 0.191779 + 0.332171i 0.945840 0.324634i \(-0.105241\pi\)
−0.754061 + 0.656804i \(0.771908\pi\)
\(510\) 0 0
\(511\) 14.4656 25.0551i 0.639919 1.10837i
\(512\) 0 0
\(513\) 38.4052 + 22.1733i 1.69563 + 0.978974i
\(514\) 0 0
\(515\) −26.9125 −1.18591
\(516\) 0 0
\(517\) −2.09475 + 1.20941i −0.0921271 + 0.0531896i
\(518\) 0 0
\(519\) −11.0675 −0.485810
\(520\) 0 0
\(521\) 19.4224 0.850912 0.425456 0.904979i \(-0.360114\pi\)
0.425456 + 0.904979i \(0.360114\pi\)
\(522\) 0 0
\(523\) −25.6636 + 14.8169i −1.12219 + 0.647898i −0.941960 0.335726i \(-0.891018\pi\)
−0.180233 + 0.983624i \(0.557685\pi\)
\(524\) 0 0
\(525\) −34.3988 −1.50129
\(526\) 0 0
\(527\) −11.9243 6.88448i −0.519430 0.299893i
\(528\) 0 0
\(529\) −19.4802 + 33.7407i −0.846964 + 1.46699i
\(530\) 0 0
\(531\) −3.36406 5.82673i −0.145988 0.252858i
\(532\) 0 0
\(533\) −3.98018 3.82993i −0.172401 0.165893i
\(534\) 0 0
\(535\) −6.66208 + 3.84636i −0.288027 + 0.166292i
\(536\) 0 0
\(537\) −14.5707 + 25.2372i −0.628773 + 1.08907i
\(538\) 0 0
\(539\) −0.300120 + 0.519823i −0.0129271 + 0.0223904i
\(540\) 0 0
\(541\) −14.3569 −0.617249 −0.308625 0.951184i \(-0.599869\pi\)
−0.308625 + 0.951184i \(0.599869\pi\)
\(542\) 0 0
\(543\) 6.56008 + 11.3624i 0.281520 + 0.487607i
\(544\) 0 0
\(545\) −40.8841 −1.75128
\(546\) 0 0
\(547\) 7.12847i 0.304792i −0.988320 0.152396i \(-0.951301\pi\)
0.988320 0.152396i \(-0.0486988\pi\)
\(548\) 0 0
\(549\) 1.80709 1.04333i 0.0771249 0.0445281i
\(550\) 0 0
\(551\) 22.9015i 0.975635i
\(552\) 0 0
\(553\) 17.4213 + 10.0582i 0.740828 + 0.427717i
\(554\) 0 0
\(555\) −16.0655 9.27545i −0.681944 0.393721i
\(556\) 0 0
\(557\) 18.4041 + 31.8769i 0.779807 + 1.35067i 0.932053 + 0.362323i \(0.118016\pi\)
−0.152245 + 0.988343i \(0.548650\pi\)
\(558\) 0 0
\(559\) 7.88849 31.8810i 0.333648 1.34842i
\(560\) 0 0
\(561\) −9.13382 + 5.27341i −0.385630 + 0.222644i
\(562\) 0 0
\(563\) 14.8712 + 8.58588i 0.626745 + 0.361852i 0.779491 0.626414i \(-0.215478\pi\)
−0.152745 + 0.988266i \(0.548811\pi\)
\(564\) 0 0
\(565\) 24.4998 42.4349i 1.03071 1.78525i
\(566\) 0 0
\(567\) 10.0116i 0.420447i
\(568\) 0 0
\(569\) 5.24934 + 9.09212i 0.220064 + 0.381161i 0.954827 0.297162i \(-0.0960402\pi\)
−0.734763 + 0.678323i \(0.762707\pi\)
\(570\) 0 0
\(571\) 30.2177i 1.26457i −0.774736 0.632285i \(-0.782117\pi\)
0.774736 0.632285i \(-0.217883\pi\)
\(572\) 0 0
\(573\) 28.5765i 1.19380i
\(574\) 0 0
\(575\) 39.7086 + 68.7773i 1.65596 + 2.86821i
\(576\) 0 0
\(577\) 25.2260i 1.05017i −0.851049 0.525086i \(-0.824033\pi\)
0.851049 0.525086i \(-0.175967\pi\)
\(578\) 0 0
\(579\) −11.0980 + 19.2224i −0.461218 + 0.798854i
\(580\) 0 0
\(581\) 17.8622 + 10.3127i 0.741049 + 0.427845i
\(582\) 0 0
\(583\) 8.92637 5.15364i 0.369693 0.213442i
\(584\) 0 0
\(585\) −16.3791 4.05279i −0.677194 0.167562i
\(586\) 0 0
\(587\) 2.40377 + 4.16346i 0.0992144 + 0.171844i 0.911360 0.411611i \(-0.135034\pi\)
−0.812145 + 0.583455i \(0.801700\pi\)
\(588\) 0 0
\(589\) −13.6338 7.87149i −0.561772 0.324339i
\(590\) 0 0
\(591\) −14.5486 8.39964i −0.598450 0.345515i
\(592\) 0 0
\(593\) 32.3952i 1.33031i −0.746704 0.665157i \(-0.768365\pi\)
0.746704 0.665157i \(-0.231635\pi\)
\(594\) 0 0
\(595\) −58.9327 + 34.0248i −2.41600 + 1.39488i
\(596\) 0 0
\(597\) 16.4066i 0.671479i
\(598\) 0 0
\(599\) 10.2602 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(600\) 0 0
\(601\) 8.23751 + 14.2678i 0.336015 + 0.581995i 0.983679 0.179931i \(-0.0575873\pi\)
−0.647664 + 0.761926i \(0.724254\pi\)
\(602\) 0 0
\(603\) −5.30971 −0.216228
\(604\) 0 0
\(605\) 18.8256 32.6069i 0.765369 1.32566i
\(606\) 0 0
\(607\) −19.9788 + 34.6044i −0.810916 + 1.40455i 0.101307 + 0.994855i \(0.467698\pi\)
−0.912223 + 0.409693i \(0.865636\pi\)
\(608\) 0 0
\(609\) 8.59058 4.95977i 0.348108 0.200980i
\(610\) 0 0
\(611\) 7.32836 2.11552i 0.296474 0.0855846i
\(612\) 0 0
\(613\) 0.287464 + 0.497903i 0.0116106 + 0.0201101i 0.871772 0.489911i \(-0.162971\pi\)
−0.860162 + 0.510021i \(0.829637\pi\)
\(614\) 0 0
\(615\) −3.98675 + 6.90525i −0.160761 + 0.278446i
\(616\) 0 0
\(617\) −16.1535 9.32620i −0.650313 0.375459i 0.138263 0.990396i \(-0.455848\pi\)
−0.788576 + 0.614937i \(0.789181\pi\)
\(618\) 0 0
\(619\) 13.8564 0.556936 0.278468 0.960446i \(-0.410173\pi\)
0.278468 + 0.960446i \(0.410173\pi\)
\(620\) 0 0
\(621\) −38.4052 + 22.1733i −1.54115 + 0.889783i
\(622\) 0 0
\(623\) −7.40333 −0.296608
\(624\) 0 0
\(625\) 26.3462 1.05385
\(626\) 0 0
\(627\) −10.4433 + 6.02945i −0.417066 + 0.240793i
\(628\) 0 0
\(629\) −24.5379 −0.978392
\(630\) 0 0
\(631\) −41.8953 24.1882i −1.66782 0.962919i −0.968808 0.247813i \(-0.920288\pi\)
−0.699016 0.715106i \(-0.746379\pi\)
\(632\) 0 0
\(633\) −0.716555 + 1.24111i −0.0284805 + 0.0493297i
\(634\) 0 0
\(635\) 6.79416 + 11.7678i 0.269618 + 0.466992i
\(636\) 0 0
\(637\) 1.31244 1.36393i 0.0520008 0.0540408i
\(638\) 0 0
\(639\) −3.91178 + 2.25847i −0.154748 + 0.0893437i
\(640\) 0 0
\(641\) −11.3464 + 19.6525i −0.448154 + 0.776226i −0.998266 0.0588653i \(-0.981252\pi\)
0.550112 + 0.835091i \(0.314585\pi\)
\(642\) 0 0
\(643\) 0.771763 1.33673i 0.0304354 0.0527156i −0.850407 0.526126i \(-0.823644\pi\)
0.880842 + 0.473411i \(0.156977\pi\)
\(644\) 0 0
\(645\) −47.4091 −1.86673
\(646\) 0 0
\(647\) −16.1601 27.9902i −0.635321 1.10041i −0.986447 0.164080i \(-0.947535\pi\)
0.351126 0.936328i \(-0.385799\pi\)
\(648\) 0 0
\(649\) 6.38542 0.250650
\(650\) 0 0
\(651\) 6.81892i 0.267255i
\(652\) 0 0
\(653\) −25.2678 + 14.5884i −0.988807 + 0.570888i −0.904917 0.425587i \(-0.860068\pi\)
−0.0838893 + 0.996475i \(0.526734\pi\)
\(654\) 0 0
\(655\) 53.4853i 2.08984i
\(656\) 0 0
\(657\) −11.8622 6.84864i −0.462788 0.267191i
\(658\) 0 0
\(659\) 7.97501 + 4.60437i 0.310662 + 0.179361i 0.647223 0.762301i \(-0.275930\pi\)
−0.336561 + 0.941662i \(0.609264\pi\)
\(660\) 0 0
\(661\) 2.71254 + 4.69825i 0.105505 + 0.182741i 0.913945 0.405839i \(-0.133021\pi\)
−0.808439 + 0.588580i \(0.799687\pi\)
\(662\) 0 0
\(663\) 31.9541 9.22436i 1.24100 0.358244i
\(664\) 0 0
\(665\) −67.3816 + 38.9028i −2.61295 + 1.50859i
\(666\) 0 0
\(667\) −19.8332 11.4507i −0.767946 0.443374i
\(668\) 0 0
\(669\) 19.2953 33.4204i 0.745998 1.29211i
\(670\) 0 0
\(671\) 1.98037i 0.0764513i
\(672\) 0 0
\(673\) −13.2623 22.9710i −0.511224 0.885466i −0.999915 0.0130091i \(-0.995859\pi\)
0.488691 0.872457i \(-0.337474\pi\)
\(674\) 0 0
\(675\) 56.8408i 2.18780i
\(676\) 0 0
\(677\) 20.6525i 0.793741i −0.917875 0.396871i \(-0.870096\pi\)
0.917875 0.396871i \(-0.129904\pi\)
\(678\) 0 0
\(679\) −2.20369 3.81691i −0.0845700 0.146480i
\(680\) 0 0
\(681\) 17.7161i 0.678881i
\(682\) 0 0
\(683\) 14.3280 24.8169i 0.548248 0.949593i −0.450147 0.892954i \(-0.648628\pi\)
0.998395 0.0566383i \(-0.0180382\pi\)
\(684\) 0 0
\(685\) −35.4802 20.4845i −1.35563 0.782672i
\(686\) 0 0
\(687\) −0.654723 + 0.378004i −0.0249792 + 0.0144218i
\(688\) 0 0
\(689\) −31.2284 + 9.01486i −1.18971 + 0.343439i
\(690\) 0 0
\(691\) −21.8654 37.8720i −0.831800 1.44072i −0.896610 0.442822i \(-0.853977\pi\)
0.0648100 0.997898i \(-0.479356\pi\)
\(692\) 0 0
\(693\) −3.03547 1.75253i −0.115308 0.0665732i
\(694\) 0 0
\(695\) 11.6242 + 6.71121i 0.440929 + 0.254571i
\(696\) 0 0
\(697\) 10.5468i 0.399490i
\(698\) 0 0
\(699\) 9.41698 5.43690i 0.356183 0.205642i
\(700\) 0 0
\(701\) 30.5767i 1.15487i −0.816438 0.577433i \(-0.804055\pi\)
0.816438 0.577433i \(-0.195945\pi\)
\(702\) 0 0
\(703\) −28.0559 −1.05815
\(704\) 0 0
\(705\) −5.50535 9.53554i −0.207343 0.359129i
\(706\) 0 0
\(707\) 9.71710 0.365449
\(708\) 0 0
\(709\) −10.3464 + 17.9204i −0.388566 + 0.673015i −0.992257 0.124203i \(-0.960363\pi\)
0.603691 + 0.797218i \(0.293696\pi\)
\(710\) 0 0
\(711\) 4.76199 8.24801i 0.178589 0.309325i
\(712\) 0 0
\(713\) 13.6338 7.87149i 0.510591 0.294790i
\(714\) 0 0
\(715\) 11.1035 11.5391i 0.415246 0.431537i
\(716\) 0 0
\(717\) −6.38983 11.0675i −0.238633 0.413324i
\(718\) 0 0
\(719\) −23.3429 + 40.4311i −0.870544 + 1.50783i −0.00910807 + 0.999959i \(0.502899\pi\)
−0.861435 + 0.507867i \(0.830434\pi\)
\(720\) 0 0
\(721\) 15.2676 + 8.81478i 0.568597 + 0.328279i
\(722\) 0 0
\(723\) 26.8375 0.998098
\(724\) 0 0
\(725\) −25.4211 + 14.6769i −0.944116 + 0.545085i
\(726\) 0 0
\(727\) 24.5578 0.910797 0.455398 0.890288i \(-0.349497\pi\)
0.455398 + 0.890288i \(0.349497\pi\)
\(728\) 0 0
\(729\) −27.3858 −1.01429
\(730\) 0 0
\(731\) −54.3082 + 31.3548i −2.00866 + 1.15970i
\(732\) 0 0
\(733\) 37.4461 1.38310 0.691551 0.722328i \(-0.256928\pi\)
0.691551 + 0.722328i \(0.256928\pi\)
\(734\) 0 0
\(735\) −2.36629 1.36618i −0.0872820 0.0503923i
\(736\) 0 0
\(737\) 2.51963 4.36413i 0.0928118 0.160755i
\(738\) 0 0
\(739\) 23.1088 + 40.0257i 0.850072 + 1.47237i 0.881143 + 0.472850i \(0.156775\pi\)
−0.0310708 + 0.999517i \(0.509892\pi\)
\(740\) 0 0
\(741\) 36.5353 10.5468i 1.34216 0.387447i
\(742\) 0 0
\(743\) 33.5896 19.3930i 1.23228 0.711459i 0.264778 0.964309i \(-0.414701\pi\)
0.967505 + 0.252850i \(0.0813680\pi\)
\(744\) 0 0
\(745\) 1.86599 3.23198i 0.0683645 0.118411i
\(746\) 0 0
\(747\) 4.88251 8.45676i 0.178642 0.309417i
\(748\) 0 0
\(749\) 5.03926 0.184131
\(750\) 0 0
\(751\) 1.26041 + 2.18309i 0.0459929 + 0.0796621i 0.888105 0.459640i \(-0.152021\pi\)
−0.842112 + 0.539302i \(0.818688\pi\)
\(752\) 0 0
\(753\) 17.8033 0.648789
\(754\) 0 0
\(755\) 74.3042i 2.70421i
\(756\) 0 0
\(757\) 34.0391 19.6525i 1.23717 0.714281i 0.268656 0.963236i \(-0.413421\pi\)
0.968515 + 0.248955i \(0.0800872\pi\)
\(758\) 0 0
\(759\) 12.0589i 0.437710i
\(760\) 0 0
\(761\) 0.248203 + 0.143300i 0.00899735 + 0.00519462i 0.504492 0.863416i \(-0.331680\pi\)
−0.495495 + 0.868611i \(0.665013\pi\)
\(762\) 0 0
\(763\) 23.1938 + 13.3910i 0.839673 + 0.484785i
\(764\) 0 0
\(765\) 16.1088 + 27.9013i 0.582416 + 1.00877i
\(766\) 0 0
\(767\) −19.5466 4.83654i −0.705789 0.174637i
\(768\) 0 0
\(769\) 8.61400 4.97329i 0.310629 0.179342i −0.336579 0.941655i \(-0.609270\pi\)
0.647208 + 0.762314i \(0.275937\pi\)
\(770\) 0 0
\(771\) 12.0938 + 6.98238i 0.435549 + 0.251464i
\(772\) 0 0
\(773\) −10.1916 + 17.6523i −0.366566 + 0.634910i −0.989026 0.147741i \(-0.952800\pi\)
0.622460 + 0.782651i \(0.286133\pi\)
\(774\) 0 0
\(775\) 20.1784i 0.724831i
\(776\) 0 0
\(777\) 6.07606 + 10.5240i 0.217978 + 0.377548i
\(778\) 0 0
\(779\) 12.0589i 0.432055i
\(780\) 0 0
\(781\) 4.28687i 0.153396i
\(782\) 0 0
\(783\) −8.19557 14.1951i −0.292886 0.507293i
\(784\) 0 0
\(785\) 30.4446i 1.08661i
\(786\) 0 0
\(787\) −3.41310 + 5.91166i −0.121664 + 0.210728i −0.920424 0.390922i \(-0.872156\pi\)
0.798760 + 0.601650i \(0.205490\pi\)
\(788\) 0 0
\(789\) −22.0946 12.7563i −0.786587 0.454136i
\(790\) 0 0
\(791\) −27.7978 + 16.0491i −0.988377 + 0.570639i
\(792\) 0 0
\(793\) 1.50000 6.06218i 0.0532666 0.215274i
\(794\) 0 0
\(795\) 23.4599 + 40.6338i 0.832039 + 1.44113i
\(796\) 0 0
\(797\) 25.4211 + 14.6769i 0.900461 + 0.519882i 0.877350 0.479851i \(-0.159309\pi\)
0.0231115 + 0.999733i \(0.492643\pi\)
\(798\) 0 0
\(799\) −12.6130 7.28212i −0.446216 0.257623i
\(800\) 0 0
\(801\) 3.50506i 0.123845i
\(802\) 0 0
\(803\) 11.2580 6.49981i 0.397286 0.229373i
\(804\) 0 0
\(805\) 77.8056i 2.74229i
\(806\) 0 0
\(807\) −22.1049 −0.778131
\(808\) 0 0
\(809\) −0.788791 1.36623i −0.0277324 0.0480339i 0.851826 0.523825i \(-0.175495\pi\)
−0.879559 + 0.475791i \(0.842162\pi\)
\(810\) 0 0
\(811\) 18.6068 0.653375 0.326687 0.945132i \(-0.394068\pi\)
0.326687 + 0.945132i \(0.394068\pi\)
\(812\) 0 0
\(813\) 8.37781 14.5108i 0.293823 0.508916i
\(814\) 0 0
\(815\) −0.0660387 + 0.114382i −0.00231324 + 0.00400664i
\(816\) 0 0
\(817\) −62.0942 + 35.8501i −2.17240 + 1.25424i
\(818\) 0 0
\(819\) 7.96457 + 7.66391i 0.278305 + 0.267799i
\(820\) 0 0
\(821\) 4.36485 + 7.56015i 0.152334 + 0.263851i 0.932085 0.362239i \(-0.117988\pi\)
−0.779751 + 0.626090i \(0.784654\pi\)
\(822\) 0 0
\(823\) 16.5487 28.6633i 0.576853 0.999139i −0.418985 0.907993i \(-0.637614\pi\)
0.995838 0.0911453i \(-0.0290528\pi\)
\(824\) 0 0
\(825\) −13.3856 7.72819i −0.466027 0.269061i
\(826\) 0 0
\(827\) 35.0181 1.21770 0.608849 0.793286i \(-0.291632\pi\)
0.608849 + 0.793286i \(0.291632\pi\)
\(828\) 0 0
\(829\) 40.8265 23.5712i 1.41796 0.818662i 0.421844 0.906668i \(-0.361383\pi\)
0.996120 + 0.0880064i \(0.0280496\pi\)
\(830\) 0 0
\(831\) 8.18053 0.283780
\(832\) 0 0
\(833\) −3.61419 −0.125224
\(834\) 0 0
\(835\) 52.7252 30.4409i 1.82463 1.05345i
\(836\) 0 0
\(837\) 11.2676 0.389467
\(838\) 0 0
\(839\) −34.6580 20.0098i −1.19653 0.690816i −0.236748 0.971571i \(-0.576082\pi\)
−0.959779 + 0.280755i \(0.909415\pi\)
\(840\) 0 0
\(841\) −10.2676 + 17.7841i −0.354057 + 0.613244i
\(842\) 0 0
\(843\) −6.03940 10.4605i −0.208008 0.360280i
\(844\) 0 0
\(845\) −42.7293 + 26.9125i −1.46993 + 0.925818i
\(846\) 0 0
\(847\) −21.3598 + 12.3321i −0.733931 + 0.423735i
\(848\) 0 0
\(849\) −12.9476 + 22.4259i −0.444360 + 0.769654i
\(850\) 0 0
\(851\) 14.0279 24.2971i 0.480871 0.832893i
\(852\) 0 0
\(853\) 22.7427 0.778694 0.389347 0.921091i \(-0.372701\pi\)
0.389347 + 0.921091i \(0.372701\pi\)
\(854\) 0 0
\(855\) 18.4183 + 31.9015i 0.629893 + 1.09101i
\(856\) 0 0
\(857\) 36.9996 1.26388 0.631941 0.775016i \(-0.282258\pi\)
0.631941 + 0.775016i \(0.282258\pi\)
\(858\) 0 0
\(859\) 49.3854i 1.68501i 0.538689 + 0.842504i \(0.318920\pi\)
−0.538689 + 0.842504i \(0.681080\pi\)
\(860\) 0 0
\(861\) 4.52342 2.61160i 0.154158 0.0890030i
\(862\) 0 0
\(863\) 0.963392i 0.0327942i 0.999866 + 0.0163971i \(0.00521960\pi\)
−0.999866 + 0.0163971i \(0.994780\pi\)
\(864\) 0 0
\(865\) −27.7875 16.0431i −0.944802 0.545482i
\(866\) 0 0
\(867\) −35.2707 20.3635i −1.19785 0.691582i
\(868\) 0 0
\(869\) 4.51944 + 7.82790i 0.153311 + 0.265543i
\(870\) 0 0
\(871\) −11.0185 + 11.4507i −0.373347 + 0.387993i
\(872\) 0 0
\(873\) −1.80709 + 1.04333i −0.0611609 + 0.0353113i
\(874\) 0 0
\(875\) −43.5648 25.1521i −1.47276 0.850297i
\(876\) 0 0
\(877\) −14.5696 + 25.2353i −0.491980 + 0.852134i −0.999957 0.00923623i \(-0.997060\pi\)
0.507977 + 0.861370i \(0.330393\pi\)
\(878\) 0 0
\(879\) 9.68869i 0.326792i
\(880\) 0 0
\(881\) 7.59702 + 13.1584i 0.255950 + 0.443319i 0.965153 0.261686i \(-0.0842784\pi\)
−0.709203 + 0.705004i \(0.750945\pi\)
\(882\) 0 0
\(883\) 41.5246i 1.39741i −0.715408 0.698707i \(-0.753759\pi\)
0.715408 0.698707i \(-0.246241\pi\)
\(884\) 0 0
\(885\) 29.0671i 0.977082i
\(886\) 0 0
\(887\) −10.7299 18.5847i −0.360275 0.624015i 0.627731 0.778430i \(-0.283984\pi\)
−0.988006 + 0.154416i \(0.950650\pi\)
\(888\) 0 0
\(889\) 8.90130i 0.298540i
\(890\) 0 0
\(891\) 2.24925 3.89582i 0.0753528 0.130515i
\(892\) 0 0
\(893\) −14.4213 8.32613i −0.482590 0.278623i
\(894\) 0 0
\(895\) −73.1661 + 42.2425i −2.44567 + 1.41201i
\(896\) 0 0
\(897\) −9.13382 + 36.9139i −0.304969 + 1.23252i
\(898\) 0 0
\(899\) 2.90942 + 5.03926i 0.0970346 + 0.168069i
\(900\) 0 0
\(901\) 53.7478 + 31.0313i 1.79060 + 1.03380i
\(902\) 0 0
\(903\) 26.8955 + 15.5281i 0.895026 + 0.516743i
\(904\) 0 0
\(905\) 38.0371i 1.26440i
\(906\) 0 0
\(907\) 16.3262 9.42595i 0.542103 0.312983i −0.203828 0.979007i \(-0.565338\pi\)
0.745931 + 0.666023i \(0.232005\pi\)
\(908\) 0 0
\(909\) 4.60051i 0.152589i
\(910\) 0 0
\(911\) 50.4520 1.67155 0.835775 0.549073i \(-0.185019\pi\)
0.835775 + 0.549073i \(0.185019\pi\)
\(912\) 0 0
\(913\) 4.63382 + 8.02601i 0.153357 + 0.265622i
\(914\) 0 0
\(915\) −9.01486 −0.298022
\(916\) 0 0
\(917\) 17.5183 30.3426i 0.578505 1.00200i
\(918\) 0 0
\(919\) −5.70180 + 9.87580i −0.188085 + 0.325773i −0.944612 0.328190i \(-0.893561\pi\)
0.756527 + 0.653963i \(0.226895\pi\)
\(920\) 0 0
\(921\) 22.2873 12.8676i 0.734391 0.424001i
\(922\) 0 0
\(923\) −3.24702 + 13.1227i −0.106877 + 0.431938i
\(924\) 0 0
\(925\) −17.9802 31.1426i −0.591185 1.02396i
\(926\) 0 0
\(927\) 4.17331 7.22838i 0.137069 0.237411i
\(928\) 0 0
\(929\) −29.4962 17.0296i −0.967739 0.558725i −0.0691930 0.997603i \(-0.522042\pi\)
−0.898546 + 0.438879i \(0.855376\pi\)
\(930\) 0 0
\(931\) −4.13234 −0.135432
\(932\) 0 0
\(933\) −3.19669 + 1.84561i −0.104655 + 0.0604226i
\(934\) 0 0
\(935\) −30.5767 −0.999964
\(936\) 0 0
\(937\) −5.69271 −0.185973 −0.0929864 0.995667i \(-0.529641\pi\)
−0.0929864 + 0.995667i \(0.529641\pi\)
\(938\) 0 0
\(939\) −0.654723 + 0.378004i −0.0213661 + 0.0123357i
\(940\) 0 0
\(941\) 21.5379 0.702117 0.351058 0.936354i \(-0.385822\pi\)
0.351058 + 0.936354i \(0.385822\pi\)
\(942\) 0 0
\(943\) −10.4433 6.02945i −0.340081 0.196346i
\(944\) 0 0
\(945\) 27.8437 48.2267i 0.905756 1.56881i
\(946\) 0 0
\(947\) −10.9640 18.9902i −0.356282 0.617098i 0.631055 0.775738i \(-0.282622\pi\)
−0.987336 + 0.158640i \(0.949289\pi\)
\(948\) 0 0
\(949\) −39.3854 + 11.3696i −1.27850 + 0.369073i
\(950\) 0 0
\(951\) −17.7161 + 10.2284i −0.574483 + 0.331678i
\(952\) 0 0
\(953\) 19.0183 32.9407i 0.616063 1.06705i −0.374134 0.927375i \(-0.622060\pi\)
0.990197 0.139678i \(-0.0446068\pi\)
\(954\) 0 0
\(955\) −41.4236 + 71.7478i −1.34044 + 2.32170i
\(956\) 0 0
\(957\) 4.45714 0.144079
\(958\) 0 0
\(959\) 13.4188 + 23.2420i 0.433315 + 0.750523i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 2.38581i 0.0768817i
\(964\) 0 0
\(965\) −55.7282 + 32.1747i −1.79395 + 1.03574i
\(966\) 0 0
\(967\) 30.4354i 0.978736i −0.872077 0.489368i \(-0.837228\pi\)
0.872077 0.489368i \(-0.162772\pi\)
\(968\) 0 0
\(969\) −62.8816 36.3047i −2.02005 1.16628i
\(970\) 0 0
\(971\) 34.1899 + 19.7395i 1.09720 + 0.633471i 0.935485 0.353365i \(-0.114963\pi\)
0.161719 + 0.986837i \(0.448296\pi\)
\(972\) 0 0
\(973\) −4.39631 7.61463i −0.140939 0.244114i
\(974\) 0 0
\(975\) 35.1216 + 33.7958i 1.12479 + 1.08233i
\(976\) 0 0
\(977\) 6.48037 3.74144i 0.207325 0.119699i −0.392742 0.919649i \(-0.628474\pi\)
0.600068 + 0.799949i \(0.295140\pi\)
\(978\) 0 0
\(979\) −2.88086 1.66327i −0.0920727 0.0531582i
\(980\) 0 0
\(981\) 6.33988 10.9810i 0.202417 0.350596i
\(982\) 0 0
\(983\) 36.6878i 1.17016i −0.810976 0.585079i \(-0.801063\pi\)
0.810976 0.585079i \(-0.198937\pi\)
\(984\) 0 0
\(985\) −24.3517 42.1784i −0.775910 1.34392i
\(986\) 0 0
\(987\) 7.21277i 0.229585i
\(988\) 0 0
\(989\) 71.7002i 2.27993i
\(990\) 0 0
\(991\) −11.1981 19.3956i −0.355718 0.616122i 0.631522 0.775358i \(-0.282430\pi\)
−0.987241 + 0.159235i \(0.949097\pi\)
\(992\) 0 0
\(993\) 14.3840i 0.456464i
\(994\) 0 0
\(995\) −23.7825 + 41.1925i −0.753956 + 1.30589i
\(996\) 0 0
\(997\) −42.4604 24.5145i −1.34473 0.776382i −0.357235 0.934015i \(-0.616280\pi\)
−0.987498 + 0.157633i \(0.949614\pi\)
\(998\) 0 0
\(999\) 17.3900 10.0401i 0.550196 0.317656i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.ba.i.673.4 yes 12
4.3 odd 2 inner 832.2.ba.i.673.3 yes 12
8.3 odd 2 832.2.ba.h.673.4 yes 12
8.5 even 2 832.2.ba.h.673.3 yes 12
13.4 even 6 832.2.ba.h.225.3 12
52.43 odd 6 832.2.ba.h.225.4 yes 12
104.43 odd 6 inner 832.2.ba.i.225.3 yes 12
104.69 even 6 inner 832.2.ba.i.225.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.2.ba.h.225.3 12 13.4 even 6
832.2.ba.h.225.4 yes 12 52.43 odd 6
832.2.ba.h.673.3 yes 12 8.5 even 2
832.2.ba.h.673.4 yes 12 8.3 odd 2
832.2.ba.i.225.3 yes 12 104.43 odd 6 inner
832.2.ba.i.225.4 yes 12 104.69 even 6 inner
832.2.ba.i.673.3 yes 12 4.3 odd 2 inner
832.2.ba.i.673.4 yes 12 1.1 even 1 trivial