Properties

Label 832.4.e.a.545.2
Level $832$
Weight $4$
Character 832.545
Analytic conductor $49.090$
Analytic rank $0$
Dimension $4$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(545,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.545");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 545.2
Root \(2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 832.545
Dual form 832.4.e.a.545.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{3} +21.6333 q^{5} +36.0555i q^{7} +23.0000 q^{9} -46.8722 q^{13} -43.2666i q^{15} +114.000 q^{17} +72.1110 q^{21} +343.000 q^{25} -100.000i q^{27} +295.655i q^{31} +780.000i q^{35} -295.655 q^{37} +93.7443i q^{39} -218.000i q^{43} +497.566 q^{45} -281.233i q^{47} -957.000 q^{49} -228.000i q^{51} +829.277i q^{63} -1014.00 q^{65} +1016.77i q^{71} -686.000i q^{75} +421.000 q^{81} +2466.20 q^{85} -1690.00i q^{91} +591.310 q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 92 q^{9} + 456 q^{17} + 1372 q^{25} - 3828 q^{49} - 4056 q^{65} + 1684 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.00000i − 0.384900i −0.981307 0.192450i \(-0.938357\pi\)
0.981307 0.192450i \(-0.0616434\pi\)
\(4\) 0 0
\(5\) 21.6333 1.93494 0.967471 0.252982i \(-0.0814114\pi\)
0.967471 + 0.252982i \(0.0814114\pi\)
\(6\) 0 0
\(7\) 36.0555i 1.94681i 0.229081 + 0.973407i \(0.426428\pi\)
−0.229081 + 0.973407i \(0.573572\pi\)
\(8\) 0 0
\(9\) 23.0000 0.851852
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −46.8722 −1.00000
\(14\) 0 0
\(15\) − 43.2666i − 0.744759i
\(16\) 0 0
\(17\) 114.000 1.62642 0.813208 0.581974i \(-0.197719\pi\)
0.813208 + 0.581974i \(0.197719\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 72.1110 0.749329
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 343.000 2.74400
\(26\) 0 0
\(27\) − 100.000i − 0.712778i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 295.655i 1.71294i 0.516194 + 0.856472i \(0.327348\pi\)
−0.516194 + 0.856472i \(0.672652\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 780.000i 3.76697i
\(36\) 0 0
\(37\) −295.655 −1.31366 −0.656830 0.754039i \(-0.728103\pi\)
−0.656830 + 0.754039i \(0.728103\pi\)
\(38\) 0 0
\(39\) 93.7443i 0.384900i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) − 218.000i − 0.773132i −0.922262 0.386566i \(-0.873661\pi\)
0.922262 0.386566i \(-0.126339\pi\)
\(44\) 0 0
\(45\) 497.566 1.64828
\(46\) 0 0
\(47\) − 281.233i − 0.872810i −0.899750 0.436405i \(-0.856252\pi\)
0.899750 0.436405i \(-0.143748\pi\)
\(48\) 0 0
\(49\) −957.000 −2.79009
\(50\) 0 0
\(51\) − 228.000i − 0.626008i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 829.277i 1.65840i
\(64\) 0 0
\(65\) −1014.00 −1.93494
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1016.77i 1.69955i 0.527148 + 0.849774i \(0.323261\pi\)
−0.527148 + 0.849774i \(0.676739\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) − 686.000i − 1.05617i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2466.20 3.14702
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 1690.00i − 1.94681i
\(92\) 0 0
\(93\) 591.310 0.659312
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 1560.00 1.44991
\(106\) 0 0
\(107\) 54.0000i 0.0487886i 0.999702 + 0.0243943i \(0.00776571\pi\)
−0.999702 + 0.0243943i \(0.992234\pi\)
\(108\) 0 0
\(109\) −93.7443 −0.0823769 −0.0411884 0.999151i \(-0.513114\pi\)
−0.0411884 + 0.999151i \(0.513114\pi\)
\(110\) 0 0
\(111\) 591.310i 0.505628i
\(112\) 0 0
\(113\) 1818.00 1.51348 0.756739 0.653717i \(-0.226791\pi\)
0.756739 + 0.653717i \(0.226791\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1078.06 −0.851852
\(118\) 0 0
\(119\) 4110.33i 3.16633i
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4716.06 3.37454
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −436.000 −0.297579
\(130\) 0 0
\(131\) 2910.00i 1.94082i 0.241456 + 0.970412i \(0.422375\pi\)
−0.241456 + 0.970412i \(0.577625\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 2163.33i − 1.37918i
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 3274.00i − 1.99782i −0.0466719 0.998910i \(-0.514862\pi\)
0.0466719 0.998910i \(-0.485138\pi\)
\(140\) 0 0
\(141\) −562.466 −0.335945
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1914.00i 1.07391i
\(148\) 0 0
\(149\) 454.299 0.249783 0.124891 0.992170i \(-0.460142\pi\)
0.124891 + 0.992170i \(0.460142\pi\)
\(150\) 0 0
\(151\) − 3540.65i − 1.90817i −0.299531 0.954086i \(-0.596830\pi\)
0.299531 0.954086i \(-0.403170\pi\)
\(152\) 0 0
\(153\) 2622.00 1.38546
\(154\) 0 0
\(155\) 6396.00i 3.31445i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 713.899i − 0.330797i −0.986227 0.165399i \(-0.947109\pi\)
0.986227 0.165399i \(-0.0528911\pi\)
\(168\) 0 0
\(169\) 2197.00 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 12367.0i 5.34206i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 510.000i 0.212956i 0.994315 + 0.106478i \(0.0339574\pi\)
−0.994315 + 0.106478i \(0.966043\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6396.00 −2.54186
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 3605.55 1.38765
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 2028.00i 0.744759i
\(196\) 0 0
\(197\) 4434.83 1.60390 0.801950 0.597391i \(-0.203796\pi\)
0.801950 + 0.597391i \(0.203796\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 6082.00i − 1.98437i −0.124774 0.992185i \(-0.539821\pi\)
0.124774 0.992185i \(-0.460179\pi\)
\(212\) 0 0
\(213\) 2033.53 0.654156
\(214\) 0 0
\(215\) − 4716.06i − 1.49597i
\(216\) 0 0
\(217\) −10660.0 −3.33478
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5343.43 −1.62642
\(222\) 0 0
\(223\) 5026.14i 1.50931i 0.656124 + 0.754653i \(0.272195\pi\)
−0.656124 + 0.754653i \(0.727805\pi\)
\(224\) 0 0
\(225\) 7889.00 2.33748
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 4059.85 1.17154 0.585770 0.810478i \(-0.300792\pi\)
0.585770 + 0.810478i \(0.300792\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3858.00 1.08475 0.542373 0.840138i \(-0.317526\pi\)
0.542373 + 0.840138i \(0.317526\pi\)
\(234\) 0 0
\(235\) − 6084.00i − 1.68884i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 3223.36i − 0.872393i −0.899851 0.436197i \(-0.856325\pi\)
0.899851 0.436197i \(-0.143675\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) − 3542.00i − 0.935059i
\(244\) 0 0
\(245\) −20703.1 −5.39866
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 4410.00i − 1.10899i −0.832187 0.554495i \(-0.812911\pi\)
0.832187 0.554495i \(-0.187089\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) − 4932.39i − 1.21129i
\(256\) 0 0
\(257\) −4254.00 −1.03252 −0.516259 0.856432i \(-0.672676\pi\)
−0.516259 + 0.856432i \(0.672676\pi\)
\(258\) 0 0
\(259\) − 10660.0i − 2.55745i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 7492.34i − 1.67944i −0.543023 0.839718i \(-0.682720\pi\)
0.543023 0.839718i \(-0.317280\pi\)
\(272\) 0 0
\(273\) −3380.00 −0.749329
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 6800.07i 1.45917i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 9142.00i 1.92027i 0.279542 + 0.960133i \(0.409817\pi\)
−0.279542 + 0.960133i \(0.590183\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8083.00 1.64523
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9972.95 1.98849 0.994243 0.107151i \(-0.0341729\pi\)
0.994243 + 0.107151i \(0.0341729\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7860.10 1.50515
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 2.00000 0.000361172 0 0.000180586 1.00000i \(-0.499943\pi\)
0.000180586 1.00000i \(0.499943\pi\)
\(314\) 0 0
\(315\) 17940.0i 3.20890i
\(316\) 0 0
\(317\) −10448.9 −1.85132 −0.925659 0.378358i \(-0.876489\pi\)
−0.925659 + 0.378358i \(0.876489\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 108.000 0.0187787
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −16077.2 −2.74400
\(326\) 0 0
\(327\) 187.489i 0.0317069i
\(328\) 0 0
\(329\) 10140.0 1.69920
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) −6800.07 −1.11904
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6406.00 −1.03548 −0.517740 0.855538i \(-0.673227\pi\)
−0.517740 + 0.855538i \(0.673227\pi\)
\(338\) 0 0
\(339\) − 3636.00i − 0.582538i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 22138.1i − 3.48497i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10086.0i 1.56036i 0.625555 + 0.780180i \(0.284872\pi\)
−0.625555 + 0.780180i \(0.715128\pi\)
\(348\) 0 0
\(349\) −5026.14 −0.770897 −0.385448 0.922729i \(-0.625953\pi\)
−0.385448 + 0.922729i \(0.625953\pi\)
\(350\) 0 0
\(351\) 4687.22i 0.712778i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 21996.0i 3.28853i
\(356\) 0 0
\(357\) 8220.66 1.21872
\(358\) 0 0
\(359\) − 13174.7i − 1.93686i −0.249283 0.968431i \(-0.580195\pi\)
0.249283 0.968431i \(-0.419805\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 2662.00i 0.384900i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) − 9432.12i − 1.29886i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10275.8i 1.37094i 0.728101 + 0.685470i \(0.240403\pi\)
−0.728101 + 0.685470i \(0.759597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5014.00i − 0.658594i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 5820.00 0.747023
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −3930.05 −0.496835 −0.248418 0.968653i \(-0.579911\pi\)
−0.248418 + 0.968653i \(0.579911\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) − 13858.0i − 1.71294i
\(404\) 0 0
\(405\) 9107.62 1.11744
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −6548.00 −0.768961
\(418\) 0 0
\(419\) − 17106.0i − 1.99447i −0.0743149 0.997235i \(-0.523677\pi\)
0.0743149 0.997235i \(-0.476323\pi\)
\(420\) 0 0
\(421\) −17169.6 −1.98764 −0.993820 0.111000i \(-0.964595\pi\)
−0.993820 + 0.111000i \(0.964595\pi\)
\(422\) 0 0
\(423\) − 6468.36i − 0.743504i
\(424\) 0 0
\(425\) 39102.0 4.46288
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3526.23i 0.394089i 0.980395 + 0.197045i \(0.0631344\pi\)
−0.980395 + 0.197045i \(0.936866\pi\)
\(432\) 0 0
\(433\) −14758.0 −1.63793 −0.818966 0.573843i \(-0.805452\pi\)
−0.818966 + 0.573843i \(0.805452\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −22011.0 −2.37674
\(442\) 0 0
\(443\) − 16122.0i − 1.72907i −0.502570 0.864536i \(-0.667612\pi\)
0.502570 0.864536i \(-0.332388\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 908.599i − 0.0961415i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −7081.30 −0.734456
\(454\) 0 0
\(455\) − 36560.3i − 3.76697i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) − 11400.0i − 1.15927i
\(460\) 0 0
\(461\) −4824.23 −0.487390 −0.243695 0.969852i \(-0.578360\pi\)
−0.243695 + 0.969852i \(0.578360\pi\)
\(462\) 0 0
\(463\) 9641.24i 0.967746i 0.875138 + 0.483873i \(0.160770\pi\)
−0.875138 + 0.483873i \(0.839230\pi\)
\(464\) 0 0
\(465\) 12792.0 1.27573
\(466\) 0 0
\(467\) 15246.0i 1.51071i 0.655317 + 0.755354i \(0.272535\pi\)
−0.655317 + 0.755354i \(0.727465\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 15164.9i − 1.44656i −0.690553 0.723282i \(-0.742633\pi\)
0.690553 0.723282i \(-0.257367\pi\)
\(480\) 0 0
\(481\) 13858.0 1.31366
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5804.94i 0.540137i 0.962841 + 0.270069i \(0.0870464\pi\)
−0.962841 + 0.270069i \(0.912954\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 12522.0i − 1.15094i −0.817824 0.575468i \(-0.804820\pi\)
0.817824 0.575468i \(-0.195180\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −36660.0 −3.30870
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −1427.80 −0.127324
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 4394.00i − 0.384900i
\(508\) 0 0
\(509\) −22909.7 −1.99500 −0.997498 0.0706887i \(-0.977480\pi\)
−0.997498 + 0.0706887i \(0.977480\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1038.00 −0.0872852 −0.0436426 0.999047i \(-0.513896\pi\)
−0.0436426 + 0.999047i \(0.513896\pi\)
\(522\) 0 0
\(523\) − 14042.0i − 1.17402i −0.809579 0.587011i \(-0.800304\pi\)
0.809579 0.587011i \(-0.199696\pi\)
\(524\) 0 0
\(525\) 24734.1 2.05616
\(526\) 0 0
\(527\) 33704.7i 2.78596i
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1168.20i 0.0944030i
\(536\) 0 0
\(537\) 1020.00 0.0819669
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −16650.4 −1.32321 −0.661606 0.749851i \(-0.730125\pi\)
−0.661606 + 0.749851i \(0.730125\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2028.00 −0.159394
\(546\) 0 0
\(547\) 25166.0i 1.96713i 0.180553 + 0.983565i \(0.442211\pi\)
−0.180553 + 0.983565i \(0.557789\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 12792.0i 0.978361i
\(556\) 0 0
\(557\) 13520.8 1.02854 0.514269 0.857629i \(-0.328063\pi\)
0.514269 + 0.857629i \(0.328063\pi\)
\(558\) 0 0
\(559\) 10218.1i 0.773132i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 26322.0i − 1.97041i −0.171384 0.985204i \(-0.554824\pi\)
0.171384 0.985204i \(-0.445176\pi\)
\(564\) 0 0
\(565\) 39329.4 2.92849
\(566\) 0 0
\(567\) 15179.4i 1.12429i
\(568\) 0 0
\(569\) 4794.00 0.353207 0.176604 0.984282i \(-0.443489\pi\)
0.176604 + 0.984282i \(0.443489\pi\)
\(570\) 0 0
\(571\) − 20810.0i − 1.52517i −0.646889 0.762584i \(-0.723930\pi\)
0.646889 0.762584i \(-0.276070\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −23322.0 −1.64828
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) − 8869.66i − 0.617342i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 88920.0i 6.12666i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −9830.00 −0.667178 −0.333589 0.942719i \(-0.608260\pi\)
−0.333589 + 0.942719i \(0.608260\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −28793.9 −1.93494
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13182.0i 0.872810i
\(612\) 0 0
\(613\) 19433.9 1.28047 0.640235 0.768179i \(-0.278837\pi\)
0.640235 + 0.768179i \(0.278837\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 59149.0 3.78554
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −33704.7 −2.13656
\(630\) 0 0
\(631\) − 3021.45i − 0.190621i −0.995448 0.0953107i \(-0.969616\pi\)
0.995448 0.0953107i \(-0.0303845\pi\)
\(632\) 0 0
\(633\) −12164.0 −0.763785
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 44856.7 2.79009
\(638\) 0 0
\(639\) 23385.6i 1.44776i
\(640\) 0 0
\(641\) 30690.0 1.89108 0.945540 0.325506i \(-0.105535\pi\)
0.945540 + 0.325506i \(0.105535\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) −9432.12 −0.575798
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 21320.0i 1.28356i
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 62952.9i 3.75538i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11646.0i 0.688412i 0.938894 + 0.344206i \(0.111852\pi\)
−0.938894 + 0.344206i \(0.888148\pi\)
\(660\) 0 0
\(661\) 13924.6 0.819373 0.409687 0.912226i \(-0.365638\pi\)
0.409687 + 0.912226i \(0.365638\pi\)
\(662\) 0 0
\(663\) 10686.9i 0.626008i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 10052.3 0.580932
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 34882.0 1.99792 0.998962 0.0455605i \(-0.0145074\pi\)
0.998962 + 0.0455605i \(0.0145074\pi\)
\(674\) 0 0
\(675\) − 34300.0i − 1.95586i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 8119.70i − 0.450926i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 70827.4i − 3.86567i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) − 7716.00i − 0.417519i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −12168.0 −0.650033
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 21251.1 1.12567 0.562837 0.826568i \(-0.309710\pi\)
0.562837 + 0.826568i \(0.309710\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6446.73 −0.335784
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 4283.00 0.217599
\(730\) 0 0
\(731\) − 24852.0i − 1.25743i
\(732\) 0 0
\(733\) 11126.7 0.560676 0.280338 0.959901i \(-0.409554\pi\)
0.280338 + 0.959901i \(0.409554\pi\)
\(734\) 0 0
\(735\) 41406.2i 2.07794i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 21308.8i − 1.05215i −0.850439 0.526073i \(-0.823664\pi\)
0.850439 0.526073i \(-0.176336\pi\)
\(744\) 0 0
\(745\) 9828.00 0.483316
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1947.00 −0.0949823
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) −8820.00 −0.426851
\(754\) 0 0
\(755\) − 76596.0i − 3.69220i
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) − 3380.00i − 0.160372i
\(764\) 0 0
\(765\) 56722.5 2.68079
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 8508.00i 0.397417i
\(772\) 0 0
\(773\) 11790.2 0.548593 0.274296 0.961645i \(-0.411555\pi\)
0.274296 + 0.961645i \(0.411555\pi\)
\(774\) 0 0
\(775\) 101410.i 4.70032i
\(776\) 0 0
\(777\) −21320.0 −0.984364
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 65548.9i 2.94646i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) − 32060.6i − 1.41955i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22254.0 −0.967131 −0.483565 0.875308i \(-0.660659\pi\)
−0.483565 + 0.875308i \(0.660659\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) −14984.7 −0.646415
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) − 38870.0i − 1.65840i
\(820\) 0 0
\(821\) 43115.2 1.83280 0.916401 0.400262i \(-0.131081\pi\)
0.916401 + 0.400262i \(0.131081\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −109098. −4.53784
\(834\) 0 0
\(835\) − 15444.0i − 0.640074i
\(836\) 0 0
\(837\) 29565.5 1.22095
\(838\) 0 0
\(839\) − 44326.6i − 1.82399i −0.410204 0.911994i \(-0.634542\pi\)
0.410204 0.911994i \(-0.365458\pi\)
\(840\) 0 0
\(841\) 24389.0 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 47528.4 1.93494
\(846\) 0 0
\(847\) − 47989.9i − 1.94681i
\(848\) 0 0
\(849\) 18284.0 0.739111
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 9771.04 0.392209 0.196104 0.980583i \(-0.437171\pi\)
0.196104 + 0.980583i \(0.437171\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −33894.0 −1.35099 −0.675494 0.737365i \(-0.736070\pi\)
−0.675494 + 0.737365i \(0.736070\pi\)
\(858\) 0 0
\(859\) − 3850.00i − 0.152922i −0.997073 0.0764612i \(-0.975638\pi\)
0.997073 0.0764612i \(-0.0243621\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42812.3i 1.68870i 0.535792 + 0.844350i \(0.320013\pi\)
−0.535792 + 0.844350i \(0.679987\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 16166.0i − 0.633248i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 170040.i 6.56960i
\(876\) 0 0
\(877\) −40274.0 −1.55069 −0.775346 0.631537i \(-0.782424\pi\)
−0.775346 + 0.631537i \(0.782424\pi\)
\(878\) 0 0
\(879\) − 19945.9i − 0.765368i
\(880\) 0 0
\(881\) −31470.0 −1.20346 −0.601732 0.798698i \(-0.705522\pi\)
−0.601732 + 0.798698i \(0.705522\pi\)
\(882\) 0 0
\(883\) 51262.0i 1.95368i 0.213960 + 0.976842i \(0.431364\pi\)
−0.213960 + 0.976842i \(0.568636\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 11033.0i 0.412058i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 15720.2i − 0.579331i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 36826.0i − 1.34817i −0.738655 0.674083i \(-0.764539\pi\)
0.738655 0.674083i \(-0.235461\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −104922. −3.77842
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 47658.0i − 1.69955i
\(924\) 0 0
\(925\) −101410. −3.60468
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −5614.00 −0.195733 −0.0978663 0.995200i \(-0.531202\pi\)
−0.0978663 + 0.995200i \(0.531202\pi\)
\(938\) 0 0
\(939\) − 4.00000i 0 0.000139015i
\(940\) 0 0
\(941\) 52720.4 1.82639 0.913196 0.407521i \(-0.133607\pi\)
0.913196 + 0.407521i \(0.133607\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 78000.0 2.68502
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 20897.8i 0.712573i
\(952\) 0 0
\(953\) 58458.0 1.98703 0.993515 0.113698i \(-0.0362695\pi\)
0.993515 + 0.113698i \(0.0362695\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −57621.0 −1.93417
\(962\) 0 0
\(963\) 1242.00i 0.0415606i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 55518.3i − 1.84627i −0.384471 0.923137i \(-0.625616\pi\)
0.384471 0.923137i \(-0.374384\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41862.0i 1.38354i 0.722119 + 0.691769i \(0.243168\pi\)
−0.722119 + 0.691769i \(0.756832\pi\)
\(972\) 0 0
\(973\) 118046. 3.88939
\(974\) 0 0
\(975\) 32154.3i 1.05617i
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −2156.12 −0.0701729
\(982\) 0 0
\(983\) − 19058.9i − 0.618399i −0.950997 0.309199i \(-0.899939\pi\)
0.950997 0.309199i \(-0.100061\pi\)
\(984\) 0 0
\(985\) 95940.0 3.10345
\(986\) 0 0
\(987\) − 20280.0i − 0.654022i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 29565.5i 0.936348i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.e.a.545.2 yes 4
4.3 odd 2 inner 832.4.e.a.545.4 yes 4
8.3 odd 2 inner 832.4.e.a.545.1 4
8.5 even 2 inner 832.4.e.a.545.3 yes 4
13.12 even 2 inner 832.4.e.a.545.1 4
52.51 odd 2 inner 832.4.e.a.545.3 yes 4
104.51 odd 2 CM 832.4.e.a.545.2 yes 4
104.77 even 2 inner 832.4.e.a.545.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
832.4.e.a.545.1 4 8.3 odd 2 inner
832.4.e.a.545.1 4 13.12 even 2 inner
832.4.e.a.545.2 yes 4 1.1 even 1 trivial
832.4.e.a.545.2 yes 4 104.51 odd 2 CM
832.4.e.a.545.3 yes 4 8.5 even 2 inner
832.4.e.a.545.3 yes 4 52.51 odd 2 inner
832.4.e.a.545.4 yes 4 4.3 odd 2 inner
832.4.e.a.545.4 yes 4 104.77 even 2 inner