Properties

Label 841.2.a.c
Level $841$
Weight $2$
Character orbit 841.a
Self dual yes
Analytic conductor $6.715$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [841,2,Mod(1,841)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(841, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("841.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.71541880999\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - \beta q^{3} + (\beta - 1) q^{4} + ( - 3 \beta + 2) q^{5} + ( - \beta - 1) q^{6} + (2 \beta - 1) q^{7} + ( - 2 \beta + 1) q^{8} + (\beta - 2) q^{9} + ( - \beta - 3) q^{10} + (\beta + 2) q^{11} + \cdots + (\beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{3} - q^{4} + q^{5} - 3 q^{6} - 3 q^{9} - 7 q^{10} + 5 q^{11} - 2 q^{12} + 4 q^{13} + 5 q^{14} + 7 q^{15} - 3 q^{16} + 11 q^{17} + q^{18} + 3 q^{19} - 8 q^{20} - 5 q^{21} + 5 q^{22}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 0.618034 −1.61803 3.85410 −0.381966 −2.23607 2.23607 −2.61803 −2.38197
1.2 1.61803 −1.61803 0.618034 −2.85410 −2.61803 2.23607 −2.23607 −0.381966 −4.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 841.2.a.c yes 2
3.b odd 2 1 7569.2.a.d 2
29.b even 2 1 841.2.a.a 2
29.c odd 4 2 841.2.b.b 4
29.d even 7 6 841.2.d.g 12
29.e even 14 6 841.2.d.i 12
29.f odd 28 12 841.2.e.j 24
87.d odd 2 1 7569.2.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
841.2.a.a 2 29.b even 2 1
841.2.a.c yes 2 1.a even 1 1 trivial
841.2.b.b 4 29.c odd 4 2
841.2.d.g 12 29.d even 7 6
841.2.d.i 12 29.e even 14 6
841.2.e.j 24 29.f odd 28 12
7569.2.a.d 2 3.b odd 2 1
7569.2.a.l 2 87.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(841))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$7$ \( T^{2} - 5 \) Copy content Toggle raw display
$11$ \( T^{2} - 5T + 5 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T - 1 \) Copy content Toggle raw display
$17$ \( T^{2} - 11T + 29 \) Copy content Toggle raw display
$19$ \( T^{2} - 3T - 9 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 9T - 11 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$41$ \( T^{2} + T - 11 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$47$ \( (T - 7)^{2} \) Copy content Toggle raw display
$53$ \( (T + 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$61$ \( T^{2} + T - 1 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$73$ \( T^{2} - 14T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$83$ \( T^{2} + 2T - 79 \) Copy content Toggle raw display
$89$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$97$ \( T^{2} - 13T - 59 \) Copy content Toggle raw display
show more
show less