Properties

Label 867.2.e.d.829.1
Level $867$
Weight $2$
Character 867.829
Analytic conductor $6.923$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(616,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.616");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 867.829
Dual form 867.2.e.d.616.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-0.707107 - 0.707107i) q^{3} +1.00000 q^{4} +(0.707107 - 0.707107i) q^{6} +(2.82843 - 2.82843i) q^{7} +3.00000i q^{8} +1.00000i q^{9} +(2.82843 - 2.82843i) q^{11} +(-0.707107 - 0.707107i) q^{12} -2.00000 q^{13} +(2.82843 + 2.82843i) q^{14} -1.00000 q^{16} -1.00000 q^{18} -4.00000i q^{19} -4.00000 q^{21} +(2.82843 + 2.82843i) q^{22} +(-2.82843 + 2.82843i) q^{23} +(2.12132 - 2.12132i) q^{24} -5.00000i q^{25} -2.00000i q^{26} +(0.707107 - 0.707107i) q^{27} +(2.82843 - 2.82843i) q^{28} +(2.82843 + 2.82843i) q^{31} +5.00000i q^{32} -4.00000 q^{33} +1.00000i q^{36} +(-5.65685 - 5.65685i) q^{37} +4.00000 q^{38} +(1.41421 + 1.41421i) q^{39} +(5.65685 - 5.65685i) q^{41} -4.00000i q^{42} +4.00000i q^{43} +(2.82843 - 2.82843i) q^{44} +(-2.82843 - 2.82843i) q^{46} +8.00000 q^{47} +(0.707107 + 0.707107i) q^{48} -9.00000i q^{49} +5.00000 q^{50} -2.00000 q^{52} +6.00000i q^{53} +(0.707107 + 0.707107i) q^{54} +(8.48528 + 8.48528i) q^{56} +(-2.82843 + 2.82843i) q^{57} +12.0000i q^{59} +(5.65685 - 5.65685i) q^{61} +(-2.82843 + 2.82843i) q^{62} +(2.82843 + 2.82843i) q^{63} -7.00000 q^{64} -4.00000i q^{66} +12.0000 q^{67} +4.00000 q^{69} +(-8.48528 - 8.48528i) q^{71} -3.00000 q^{72} +(5.65685 - 5.65685i) q^{74} +(-3.53553 + 3.53553i) q^{75} -4.00000i q^{76} -16.0000i q^{77} +(-1.41421 + 1.41421i) q^{78} +(-2.82843 + 2.82843i) q^{79} -1.00000 q^{81} +(5.65685 + 5.65685i) q^{82} +12.0000i q^{83} -4.00000 q^{84} -4.00000 q^{86} +(8.48528 + 8.48528i) q^{88} +10.0000 q^{89} +(-5.65685 + 5.65685i) q^{91} +(-2.82843 + 2.82843i) q^{92} -4.00000i q^{93} +8.00000i q^{94} +(3.53553 - 3.53553i) q^{96} +(11.3137 + 11.3137i) q^{97} +9.00000 q^{98} +(2.82843 + 2.82843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 8 q^{13} - 4 q^{16} - 4 q^{18} - 16 q^{21} - 16 q^{33} + 16 q^{38} + 32 q^{47} + 20 q^{50} - 8 q^{52} - 28 q^{64} + 48 q^{67} + 16 q^{69} - 12 q^{72} - 4 q^{81} - 16 q^{84} - 16 q^{86} + 40 q^{89}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000 0.500000
\(5\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0.707107 0.707107i 0.288675 0.288675i
\(7\) 2.82843 2.82843i 1.06904 1.06904i 0.0716124 0.997433i \(-0.477186\pi\)
0.997433 0.0716124i \(-0.0228145\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.82843 2.82843i 0.852803 0.852803i −0.137675 0.990478i \(-0.543963\pi\)
0.990478 + 0.137675i \(0.0439628\pi\)
\(12\) −0.707107 0.707107i −0.204124 0.204124i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 2.82843 + 2.82843i 0.755929 + 0.755929i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 2.82843 + 2.82843i 0.603023 + 0.603023i
\(23\) −2.82843 + 2.82843i −0.589768 + 0.589768i −0.937568 0.347801i \(-0.886929\pi\)
0.347801 + 0.937568i \(0.386929\pi\)
\(24\) 2.12132 2.12132i 0.433013 0.433013i
\(25\) 5.00000i 1.00000i
\(26\) 2.00000i 0.392232i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 2.82843 2.82843i 0.534522 0.534522i
\(29\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(30\) 0 0
\(31\) 2.82843 + 2.82843i 0.508001 + 0.508001i 0.913912 0.405912i \(-0.133046\pi\)
−0.405912 + 0.913912i \(0.633046\pi\)
\(32\) 5.00000i 0.883883i
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) −5.65685 5.65685i −0.929981 0.929981i 0.0677230 0.997704i \(-0.478427\pi\)
−0.997704 + 0.0677230i \(0.978427\pi\)
\(38\) 4.00000 0.648886
\(39\) 1.41421 + 1.41421i 0.226455 + 0.226455i
\(40\) 0 0
\(41\) 5.65685 5.65685i 0.883452 0.883452i −0.110432 0.993884i \(-0.535223\pi\)
0.993884 + 0.110432i \(0.0352233\pi\)
\(42\) 4.00000i 0.617213i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 2.82843 2.82843i 0.426401 0.426401i
\(45\) 0 0
\(46\) −2.82843 2.82843i −0.417029 0.417029i
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) 9.00000i 1.28571i
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0.707107 + 0.707107i 0.0962250 + 0.0962250i
\(55\) 0 0
\(56\) 8.48528 + 8.48528i 1.13389 + 1.13389i
\(57\) −2.82843 + 2.82843i −0.374634 + 0.374634i
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 5.65685 5.65685i 0.724286 0.724286i −0.245189 0.969475i \(-0.578850\pi\)
0.969475 + 0.245189i \(0.0788501\pi\)
\(62\) −2.82843 + 2.82843i −0.359211 + 0.359211i
\(63\) 2.82843 + 2.82843i 0.356348 + 0.356348i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 4.00000i 0.492366i
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) −8.48528 8.48528i −1.00702 1.00702i −0.999975 0.00704243i \(-0.997758\pi\)
−0.00704243 0.999975i \(-0.502242\pi\)
\(72\) −3.00000 −0.353553
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 5.65685 5.65685i 0.657596 0.657596i
\(75\) −3.53553 + 3.53553i −0.408248 + 0.408248i
\(76\) 4.00000i 0.458831i
\(77\) 16.0000i 1.82337i
\(78\) −1.41421 + 1.41421i −0.160128 + 0.160128i
\(79\) −2.82843 + 2.82843i −0.318223 + 0.318223i −0.848084 0.529861i \(-0.822244\pi\)
0.529861 + 0.848084i \(0.322244\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 5.65685 + 5.65685i 0.624695 + 0.624695i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 8.48528 + 8.48528i 0.904534 + 0.904534i
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) −5.65685 + 5.65685i −0.592999 + 0.592999i
\(92\) −2.82843 + 2.82843i −0.294884 + 0.294884i
\(93\) 4.00000i 0.414781i
\(94\) 8.00000i 0.825137i
\(95\) 0 0
\(96\) 3.53553 3.53553i 0.360844 0.360844i
\(97\) 11.3137 + 11.3137i 1.14873 + 1.14873i 0.986802 + 0.161931i \(0.0517722\pi\)
0.161931 + 0.986802i \(0.448228\pi\)
\(98\) 9.00000 0.909137
\(99\) 2.82843 + 2.82843i 0.284268 + 0.284268i
\(100\) 5.00000i 0.500000i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 6.00000i 0.588348i
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −8.48528 8.48528i −0.820303 0.820303i 0.165848 0.986151i \(-0.446964\pi\)
−0.986151 + 0.165848i \(0.946964\pi\)
\(108\) 0.707107 0.707107i 0.0680414 0.0680414i
\(109\) −5.65685 + 5.65685i −0.541828 + 0.541828i −0.924065 0.382236i \(-0.875154\pi\)
0.382236 + 0.924065i \(0.375154\pi\)
\(110\) 0 0
\(111\) 8.00000i 0.759326i
\(112\) −2.82843 + 2.82843i −0.267261 + 0.267261i
\(113\) −5.65685 + 5.65685i −0.532152 + 0.532152i −0.921212 0.389060i \(-0.872800\pi\)
0.389060 + 0.921212i \(0.372800\pi\)
\(114\) −2.82843 2.82843i −0.264906 0.264906i
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) 5.65685 + 5.65685i 0.512148 + 0.512148i
\(123\) −8.00000 −0.721336
\(124\) 2.82843 + 2.82843i 0.254000 + 0.254000i
\(125\) 0 0
\(126\) −2.82843 + 2.82843i −0.251976 + 0.251976i
\(127\) 8.00000i 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 2.82843 2.82843i 0.249029 0.249029i
\(130\) 0 0
\(131\) 2.82843 + 2.82843i 0.247121 + 0.247121i 0.819788 0.572667i \(-0.194091\pi\)
−0.572667 + 0.819788i \(0.694091\pi\)
\(132\) −4.00000 −0.348155
\(133\) −11.3137 11.3137i −0.981023 0.981023i
\(134\) 12.0000i 1.03664i
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −2.82843 2.82843i −0.239904 0.239904i 0.576906 0.816810i \(-0.304260\pi\)
−0.816810 + 0.576906i \(0.804260\pi\)
\(140\) 0 0
\(141\) −5.65685 5.65685i −0.476393 0.476393i
\(142\) 8.48528 8.48528i 0.712069 0.712069i
\(143\) −5.65685 + 5.65685i −0.473050 + 0.473050i
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 0 0
\(147\) −6.36396 + 6.36396i −0.524891 + 0.524891i
\(148\) −5.65685 5.65685i −0.464991 0.464991i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) −3.53553 3.53553i −0.288675 0.288675i
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 12.0000 0.973329
\(153\) 0 0
\(154\) 16.0000 1.28932
\(155\) 0 0
\(156\) 1.41421 + 1.41421i 0.113228 + 0.113228i
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −2.82843 2.82843i −0.225018 0.225018i
\(159\) 4.24264 4.24264i 0.336463 0.336463i
\(160\) 0 0
\(161\) 16.0000i 1.26098i
\(162\) 1.00000i 0.0785674i
\(163\) −14.1421 + 14.1421i −1.10770 + 1.10770i −0.114245 + 0.993453i \(0.536445\pi\)
−0.993453 + 0.114245i \(0.963555\pi\)
\(164\) 5.65685 5.65685i 0.441726 0.441726i
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −8.48528 8.48528i −0.656611 0.656611i 0.297966 0.954577i \(-0.403692\pi\)
−0.954577 + 0.297966i \(0.903692\pi\)
\(168\) 12.0000i 0.925820i
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 4.00000i 0.304997i
\(173\) 11.3137 + 11.3137i 0.860165 + 0.860165i 0.991357 0.131192i \(-0.0418803\pi\)
−0.131192 + 0.991357i \(0.541880\pi\)
\(174\) 0 0
\(175\) −14.1421 14.1421i −1.06904 1.06904i
\(176\) −2.82843 + 2.82843i −0.213201 + 0.213201i
\(177\) 8.48528 8.48528i 0.637793 0.637793i
\(178\) 10.0000i 0.749532i
\(179\) 4.00000i 0.298974i −0.988764 0.149487i \(-0.952238\pi\)
0.988764 0.149487i \(-0.0477622\pi\)
\(180\) 0 0
\(181\) −5.65685 + 5.65685i −0.420471 + 0.420471i −0.885366 0.464895i \(-0.846092\pi\)
0.464895 + 0.885366i \(0.346092\pi\)
\(182\) −5.65685 5.65685i −0.419314 0.419314i
\(183\) −8.00000 −0.591377
\(184\) −8.48528 8.48528i −0.625543 0.625543i
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) 8.00000 0.583460
\(189\) 4.00000i 0.290957i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 4.94975 + 4.94975i 0.357217 + 0.357217i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) −11.3137 + 11.3137i −0.812277 + 0.812277i
\(195\) 0 0
\(196\) 9.00000i 0.642857i
\(197\) −11.3137 + 11.3137i −0.806068 + 0.806068i −0.984036 0.177968i \(-0.943048\pi\)
0.177968 + 0.984036i \(0.443048\pi\)
\(198\) −2.82843 + 2.82843i −0.201008 + 0.201008i
\(199\) −14.1421 14.1421i −1.00251 1.00251i −0.999997 0.00251257i \(-0.999200\pi\)
−0.00251257 0.999997i \(-0.500800\pi\)
\(200\) 15.0000 1.06066
\(201\) −8.48528 8.48528i −0.598506 0.598506i
\(202\) 6.00000i 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.82843 2.82843i −0.196589 0.196589i
\(208\) 2.00000 0.138675
\(209\) −11.3137 11.3137i −0.782586 0.782586i
\(210\) 0 0
\(211\) −2.82843 + 2.82843i −0.194717 + 0.194717i −0.797731 0.603014i \(-0.793966\pi\)
0.603014 + 0.797731i \(0.293966\pi\)
\(212\) 6.00000i 0.412082i
\(213\) 12.0000i 0.822226i
\(214\) 8.48528 8.48528i 0.580042 0.580042i
\(215\) 0 0
\(216\) 2.12132 + 2.12132i 0.144338 + 0.144338i
\(217\) 16.0000 1.08615
\(218\) −5.65685 5.65685i −0.383131 0.383131i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −8.00000 −0.536925
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 14.1421 + 14.1421i 0.944911 + 0.944911i
\(225\) 5.00000 0.333333
\(226\) −5.65685 5.65685i −0.376288 0.376288i
\(227\) −8.48528 + 8.48528i −0.563188 + 0.563188i −0.930212 0.367024i \(-0.880377\pi\)
0.367024 + 0.930212i \(0.380377\pi\)
\(228\) −2.82843 + 2.82843i −0.187317 + 0.187317i
\(229\) 10.0000i 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) −11.3137 + 11.3137i −0.744387 + 0.744387i
\(232\) 0 0
\(233\) 5.65685 + 5.65685i 0.370593 + 0.370593i 0.867693 0.497100i \(-0.165602\pi\)
−0.497100 + 0.867693i \(0.665602\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 12.0000i 0.781133i
\(237\) 4.00000 0.259828
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) 11.3137 + 11.3137i 0.728780 + 0.728780i 0.970377 0.241597i \(-0.0776711\pi\)
−0.241597 + 0.970377i \(0.577671\pi\)
\(242\) 5.00000 0.321412
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 5.65685 5.65685i 0.362143 0.362143i
\(245\) 0 0
\(246\) 8.00000i 0.510061i
\(247\) 8.00000i 0.509028i
\(248\) −8.48528 + 8.48528i −0.538816 + 0.538816i
\(249\) 8.48528 8.48528i 0.537733 0.537733i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 2.82843 + 2.82843i 0.178174 + 0.178174i
\(253\) 16.0000i 1.00591i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 2.00000i 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) 2.82843 + 2.82843i 0.176090 + 0.176090i
\(259\) −32.0000 −1.98838
\(260\) 0 0
\(261\) 0 0
\(262\) −2.82843 + 2.82843i −0.174741 + 0.174741i
\(263\) 24.0000i 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 12.0000i 0.738549i
\(265\) 0 0
\(266\) 11.3137 11.3137i 0.693688 0.693688i
\(267\) −7.07107 7.07107i −0.432742 0.432742i
\(268\) 12.0000 0.733017
\(269\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 8.00000 0.484182
\(274\) 10.0000i 0.604122i
\(275\) −14.1421 14.1421i −0.852803 0.852803i
\(276\) 4.00000 0.240772
\(277\) −5.65685 5.65685i −0.339887 0.339887i 0.516437 0.856325i \(-0.327258\pi\)
−0.856325 + 0.516437i \(0.827258\pi\)
\(278\) 2.82843 2.82843i 0.169638 0.169638i
\(279\) −2.82843 + 2.82843i −0.169334 + 0.169334i
\(280\) 0 0
\(281\) 10.0000i 0.596550i −0.954480 0.298275i \(-0.903589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 5.65685 5.65685i 0.336861 0.336861i
\(283\) 2.82843 2.82843i 0.168133 0.168133i −0.618026 0.786158i \(-0.712067\pi\)
0.786158 + 0.618026i \(0.212067\pi\)
\(284\) −8.48528 8.48528i −0.503509 0.503509i
\(285\) 0 0
\(286\) −5.65685 5.65685i −0.334497 0.334497i
\(287\) 32.0000i 1.88890i
\(288\) −5.00000 −0.294628
\(289\) 0 0
\(290\) 0 0
\(291\) 16.0000i 0.937937i
\(292\) 0 0
\(293\) 10.0000 0.584206 0.292103 0.956387i \(-0.405645\pi\)
0.292103 + 0.956387i \(0.405645\pi\)
\(294\) −6.36396 6.36396i −0.371154 0.371154i
\(295\) 0 0
\(296\) 16.9706 16.9706i 0.986394 0.986394i
\(297\) 4.00000i 0.232104i
\(298\) 6.00000i 0.347571i
\(299\) 5.65685 5.65685i 0.327144 0.327144i
\(300\) −3.53553 + 3.53553i −0.204124 + 0.204124i
\(301\) 11.3137 + 11.3137i 0.652111 + 0.652111i
\(302\) 0 0
\(303\) 4.24264 + 4.24264i 0.243733 + 0.243733i
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 0 0
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 16.0000i 0.911685i
\(309\) 0 0
\(310\) 0 0
\(311\) 8.48528 + 8.48528i 0.481156 + 0.481156i 0.905501 0.424345i \(-0.139495\pi\)
−0.424345 + 0.905501i \(0.639495\pi\)
\(312\) −4.24264 + 4.24264i −0.240192 + 0.240192i
\(313\) 11.3137 11.3137i 0.639489 0.639489i −0.310941 0.950429i \(-0.600644\pi\)
0.950429 + 0.310941i \(0.100644\pi\)
\(314\) 2.00000i 0.112867i
\(315\) 0 0
\(316\) −2.82843 + 2.82843i −0.159111 + 0.159111i
\(317\) −22.6274 + 22.6274i −1.27088 + 1.27088i −0.325257 + 0.945626i \(0.605451\pi\)
−0.945626 + 0.325257i \(0.894549\pi\)
\(318\) 4.24264 + 4.24264i 0.237915 + 0.237915i
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000i 0.669775i
\(322\) −16.0000 −0.891645
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 10.0000i 0.554700i
\(326\) −14.1421 14.1421i −0.783260 0.783260i
\(327\) 8.00000 0.442401
\(328\) 16.9706 + 16.9706i 0.937043 + 0.937043i
\(329\) 22.6274 22.6274i 1.24749 1.24749i
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 5.65685 5.65685i 0.309994 0.309994i
\(334\) 8.48528 8.48528i 0.464294 0.464294i
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) 11.3137 + 11.3137i 0.616297 + 0.616297i 0.944580 0.328283i \(-0.106470\pi\)
−0.328283 + 0.944580i \(0.606470\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 8.00000 0.434500
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 4.00000i 0.216295i
\(343\) −5.65685 5.65685i −0.305441 0.305441i
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) −11.3137 + 11.3137i −0.608229 + 0.608229i
\(347\) −2.82843 + 2.82843i −0.151838 + 0.151838i −0.778938 0.627100i \(-0.784242\pi\)
0.627100 + 0.778938i \(0.284242\pi\)
\(348\) 0 0
\(349\) 2.00000i 0.107058i 0.998566 + 0.0535288i \(0.0170469\pi\)
−0.998566 + 0.0535288i \(0.982953\pi\)
\(350\) 14.1421 14.1421i 0.755929 0.755929i
\(351\) −1.41421 + 1.41421i −0.0754851 + 0.0754851i
\(352\) 14.1421 + 14.1421i 0.753778 + 0.753778i
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 8.48528 + 8.48528i 0.450988 + 0.450988i
\(355\) 0 0
\(356\) 10.0000 0.529999
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) 32.0000i 1.68890i 0.535638 + 0.844448i \(0.320071\pi\)
−0.535638 + 0.844448i \(0.679929\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) −5.65685 5.65685i −0.297318 0.297318i
\(363\) −3.53553 + 3.53553i −0.185567 + 0.185567i
\(364\) −5.65685 + 5.65685i −0.296500 + 0.296500i
\(365\) 0 0
\(366\) 8.00000i 0.418167i
\(367\) −8.48528 + 8.48528i −0.442928 + 0.442928i −0.892995 0.450067i \(-0.851400\pi\)
0.450067 + 0.892995i \(0.351400\pi\)
\(368\) 2.82843 2.82843i 0.147442 0.147442i
\(369\) 5.65685 + 5.65685i 0.294484 + 0.294484i
\(370\) 0 0
\(371\) 16.9706 + 16.9706i 0.881068 + 0.881068i
\(372\) 4.00000i 0.207390i
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 24.0000i 1.23771i
\(377\) 0 0
\(378\) 4.00000 0.205738
\(379\) 14.1421 + 14.1421i 0.726433 + 0.726433i 0.969907 0.243475i \(-0.0782872\pi\)
−0.243475 + 0.969907i \(0.578287\pi\)
\(380\) 0 0
\(381\) −5.65685 + 5.65685i −0.289809 + 0.289809i
\(382\) 8.00000i 0.409316i
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 2.12132 2.12132i 0.108253 0.108253i
\(385\) 0 0
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 11.3137 + 11.3137i 0.574367 + 0.574367i
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 27.0000 1.36371
\(393\) 4.00000i 0.201773i
\(394\) −11.3137 11.3137i −0.569976 0.569976i
\(395\) 0 0
\(396\) 2.82843 + 2.82843i 0.142134 + 0.142134i
\(397\) −5.65685 + 5.65685i −0.283909 + 0.283909i −0.834666 0.550757i \(-0.814339\pi\)
0.550757 + 0.834666i \(0.314339\pi\)
\(398\) 14.1421 14.1421i 0.708881 0.708881i
\(399\) 16.0000i 0.801002i
\(400\) 5.00000i 0.250000i
\(401\) 16.9706 16.9706i 0.847469 0.847469i −0.142347 0.989817i \(-0.545465\pi\)
0.989817 + 0.142347i \(0.0454650\pi\)
\(402\) 8.48528 8.48528i 0.423207 0.423207i
\(403\) −5.65685 5.65685i −0.281788 0.281788i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) −32.0000 −1.58618
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 7.07107 + 7.07107i 0.348790 + 0.348790i
\(412\) 0 0
\(413\) 33.9411 + 33.9411i 1.67013 + 1.67013i
\(414\) 2.82843 2.82843i 0.139010 0.139010i
\(415\) 0 0
\(416\) 10.0000i 0.490290i
\(417\) 4.00000i 0.195881i
\(418\) 11.3137 11.3137i 0.553372 0.553372i
\(419\) 2.82843 2.82843i 0.138178 0.138178i −0.634635 0.772812i \(-0.718849\pi\)
0.772812 + 0.634635i \(0.218849\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −2.82843 2.82843i −0.137686 0.137686i
\(423\) 8.00000i 0.388973i
\(424\) −18.0000 −0.874157
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 32.0000i 1.54859i
\(428\) −8.48528 8.48528i −0.410152 0.410152i
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −14.1421 + 14.1421i −0.681203 + 0.681203i −0.960271 0.279068i \(-0.909974\pi\)
0.279068 + 0.960271i \(0.409974\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) 16.0000i 0.768025i
\(435\) 0 0
\(436\) −5.65685 + 5.65685i −0.270914 + 0.270914i
\(437\) 11.3137 + 11.3137i 0.541208 + 0.541208i
\(438\) 0 0
\(439\) 25.4558 + 25.4558i 1.21494 + 1.21494i 0.969381 + 0.245560i \(0.0789717\pi\)
0.245560 + 0.969381i \(0.421028\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) −20.0000 −0.950229 −0.475114 0.879924i \(-0.657593\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(444\) 8.00000i 0.379663i
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) 4.24264 + 4.24264i 0.200670 + 0.200670i
\(448\) −19.7990 + 19.7990i −0.935414 + 0.935414i
\(449\) −5.65685 + 5.65685i −0.266963 + 0.266963i −0.827875 0.560912i \(-0.810451\pi\)
0.560912 + 0.827875i \(0.310451\pi\)
\(450\) 5.00000i 0.235702i
\(451\) 32.0000i 1.50682i
\(452\) −5.65685 + 5.65685i −0.266076 + 0.266076i
\(453\) 0 0
\(454\) −8.48528 8.48528i −0.398234 0.398234i
\(455\) 0 0
\(456\) −8.48528 8.48528i −0.397360 0.397360i
\(457\) 38.0000i 1.77757i 0.458329 + 0.888783i \(0.348448\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) 34.0000i 1.58354i −0.610821 0.791769i \(-0.709160\pi\)
0.610821 0.791769i \(-0.290840\pi\)
\(462\) −11.3137 11.3137i −0.526361 0.526361i
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −5.65685 + 5.65685i −0.262049 + 0.262049i
\(467\) 4.00000i 0.185098i −0.995708 0.0925490i \(-0.970499\pi\)
0.995708 0.0925490i \(-0.0295015\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 33.9411 33.9411i 1.56726 1.56726i
\(470\) 0 0
\(471\) −1.41421 1.41421i −0.0651635 0.0651635i
\(472\) −36.0000 −1.65703
\(473\) 11.3137 + 11.3137i 0.520205 + 0.520205i
\(474\) 4.00000i 0.183726i
\(475\) −20.0000 −0.917663
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 8.00000i 0.365911i
\(479\) −8.48528 8.48528i −0.387702 0.387702i 0.486165 0.873867i \(-0.338395\pi\)
−0.873867 + 0.486165i \(0.838395\pi\)
\(480\) 0 0
\(481\) 11.3137 + 11.3137i 0.515861 + 0.515861i
\(482\) −11.3137 + 11.3137i −0.515325 + 0.515325i
\(483\) 11.3137 11.3137i 0.514792 0.514792i
\(484\) 5.00000i 0.227273i
\(485\) 0 0
\(486\) −0.707107 + 0.707107i −0.0320750 + 0.0320750i
\(487\) −2.82843 + 2.82843i −0.128168 + 0.128168i −0.768281 0.640113i \(-0.778888\pi\)
0.640113 + 0.768281i \(0.278888\pi\)
\(488\) 16.9706 + 16.9706i 0.768221 + 0.768221i
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 20.0000i 0.902587i −0.892375 0.451294i \(-0.850963\pi\)
0.892375 0.451294i \(-0.149037\pi\)
\(492\) −8.00000 −0.360668
\(493\) 0 0
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −2.82843 2.82843i −0.127000 0.127000i
\(497\) −48.0000 −2.15309
\(498\) 8.48528 + 8.48528i 0.380235 + 0.380235i
\(499\) 25.4558 25.4558i 1.13956 1.13956i 0.151031 0.988529i \(-0.451741\pi\)
0.988529 0.151031i \(-0.0482594\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 12.0000i 0.535586i
\(503\) −8.48528 + 8.48528i −0.378340 + 0.378340i −0.870503 0.492163i \(-0.836206\pi\)
0.492163 + 0.870503i \(0.336206\pi\)
\(504\) −8.48528 + 8.48528i −0.377964 + 0.377964i
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 6.36396 + 6.36396i 0.282633 + 0.282633i
\(508\) 8.00000i 0.354943i
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11.0000i 0.486136i
\(513\) −2.82843 2.82843i −0.124878 0.124878i
\(514\) 2.00000 0.0882162
\(515\) 0 0
\(516\) 2.82843 2.82843i 0.124515 0.124515i
\(517\) 22.6274 22.6274i 0.995153 0.995153i
\(518\) 32.0000i 1.40600i
\(519\) 16.0000i 0.702322i
\(520\) 0 0
\(521\) 16.9706 16.9706i 0.743494 0.743494i −0.229755 0.973249i \(-0.573792\pi\)
0.973249 + 0.229755i \(0.0737924\pi\)
\(522\) 0 0
\(523\) 12.0000 0.524723 0.262362 0.964970i \(-0.415499\pi\)
0.262362 + 0.964970i \(0.415499\pi\)
\(524\) 2.82843 + 2.82843i 0.123560 + 0.123560i
\(525\) 20.0000i 0.872872i
\(526\) 24.0000 1.04645
\(527\) 0 0
\(528\) 4.00000 0.174078
\(529\) 7.00000i 0.304348i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) −11.3137 11.3137i −0.490511 0.490511i
\(533\) −11.3137 + 11.3137i −0.490051 + 0.490051i
\(534\) 7.07107 7.07107i 0.305995 0.305995i
\(535\) 0 0
\(536\) 36.0000i 1.55496i
\(537\) −2.82843 + 2.82843i −0.122056 + 0.122056i
\(538\) 0 0
\(539\) −25.4558 25.4558i −1.09646 1.09646i
\(540\) 0 0
\(541\) −28.2843 28.2843i −1.21604 1.21604i −0.969009 0.247027i \(-0.920546\pi\)
−0.247027 0.969009i \(-0.579454\pi\)
\(542\) 0 0
\(543\) 8.00000 0.343313
\(544\) 0 0
\(545\) 0 0
\(546\) 8.00000i 0.342368i
\(547\) −25.4558 25.4558i −1.08841 1.08841i −0.995692 0.0927212i \(-0.970443\pi\)
−0.0927212 0.995692i \(-0.529557\pi\)
\(548\) −10.0000 −0.427179
\(549\) 5.65685 + 5.65685i 0.241429 + 0.241429i
\(550\) 14.1421 14.1421i 0.603023 0.603023i
\(551\) 0 0
\(552\) 12.0000i 0.510754i
\(553\) 16.0000i 0.680389i
\(554\) 5.65685 5.65685i 0.240337 0.240337i
\(555\) 0 0
\(556\) −2.82843 2.82843i −0.119952 0.119952i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) −2.82843 2.82843i −0.119737 0.119737i
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 44.0000i 1.85438i 0.374593 + 0.927189i \(0.377783\pi\)
−0.374593 + 0.927189i \(0.622217\pi\)
\(564\) −5.65685 5.65685i −0.238197 0.238197i
\(565\) 0 0
\(566\) 2.82843 + 2.82843i 0.118888 + 0.118888i
\(567\) −2.82843 + 2.82843i −0.118783 + 0.118783i
\(568\) 25.4558 25.4558i 1.06810 1.06810i
\(569\) 26.0000i 1.08998i −0.838444 0.544988i \(-0.816534\pi\)
0.838444 0.544988i \(-0.183466\pi\)
\(570\) 0 0
\(571\) −14.1421 + 14.1421i −0.591830 + 0.591830i −0.938125 0.346296i \(-0.887439\pi\)
0.346296 + 0.938125i \(0.387439\pi\)
\(572\) −5.65685 + 5.65685i −0.236525 + 0.236525i
\(573\) −5.65685 5.65685i −0.236318 0.236318i
\(574\) 32.0000 1.33565
\(575\) 14.1421 + 14.1421i 0.589768 + 0.589768i
\(576\) 7.00000i 0.291667i
\(577\) 30.0000 1.24892 0.624458 0.781058i \(-0.285320\pi\)
0.624458 + 0.781058i \(0.285320\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 33.9411 + 33.9411i 1.40812 + 1.40812i
\(582\) 16.0000 0.663221
\(583\) 16.9706 + 16.9706i 0.702849 + 0.702849i
\(584\) 0 0
\(585\) 0 0
\(586\) 10.0000i 0.413096i
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) −6.36396 + 6.36396i −0.262445 + 0.262445i
\(589\) 11.3137 11.3137i 0.466173 0.466173i
\(590\) 0 0
\(591\) 16.0000 0.658152
\(592\) 5.65685 + 5.65685i 0.232495 + 0.232495i
\(593\) 46.0000i 1.88899i −0.328521 0.944497i \(-0.606550\pi\)
0.328521 0.944497i \(-0.393450\pi\)
\(594\) 4.00000 0.164122
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 20.0000i 0.818546i
\(598\) 5.65685 + 5.65685i 0.231326 + 0.231326i
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) −10.6066 10.6066i −0.433013 0.433013i
\(601\) 11.3137 11.3137i 0.461496 0.461496i −0.437650 0.899146i \(-0.644189\pi\)
0.899146 + 0.437650i \(0.144189\pi\)
\(602\) −11.3137 + 11.3137i −0.461112 + 0.461112i
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 0 0
\(606\) −4.24264 + 4.24264i −0.172345 + 0.172345i
\(607\) −2.82843 2.82843i −0.114802 0.114802i 0.647372 0.762174i \(-0.275868\pi\)
−0.762174 + 0.647372i \(0.775868\pi\)
\(608\) 20.0000 0.811107
\(609\) 0 0
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 12.0000i 0.484281i
\(615\) 0 0
\(616\) 48.0000 1.93398
\(617\) −16.9706 16.9706i −0.683209 0.683209i 0.277513 0.960722i \(-0.410490\pi\)
−0.960722 + 0.277513i \(0.910490\pi\)
\(618\) 0 0
\(619\) −25.4558 + 25.4558i −1.02316 + 1.02316i −0.0234313 + 0.999725i \(0.507459\pi\)
−0.999725 + 0.0234313i \(0.992541\pi\)
\(620\) 0 0
\(621\) 4.00000i 0.160514i
\(622\) −8.48528 + 8.48528i −0.340229 + 0.340229i
\(623\) 28.2843 28.2843i 1.13319 1.13319i
\(624\) −1.41421 1.41421i −0.0566139 0.0566139i
\(625\) −25.0000 −1.00000
\(626\) 11.3137 + 11.3137i 0.452187 + 0.452187i
\(627\) 16.0000i 0.638978i
\(628\) 2.00000 0.0798087
\(629\) 0 0
\(630\) 0 0
\(631\) 8.00000i 0.318475i −0.987240 0.159237i \(-0.949096\pi\)
0.987240 0.159237i \(-0.0509036\pi\)
\(632\) −8.48528 8.48528i −0.337526 0.337526i
\(633\) 4.00000 0.158986
\(634\) −22.6274 22.6274i −0.898650 0.898650i
\(635\) 0 0
\(636\) 4.24264 4.24264i 0.168232 0.168232i
\(637\) 18.0000i 0.713186i
\(638\) 0 0
\(639\) 8.48528 8.48528i 0.335673 0.335673i
\(640\) 0 0
\(641\) 5.65685 + 5.65685i 0.223432 + 0.223432i 0.809942 0.586510i \(-0.199498\pi\)
−0.586510 + 0.809942i \(0.699498\pi\)
\(642\) −12.0000 −0.473602
\(643\) −2.82843 2.82843i −0.111542 0.111542i 0.649133 0.760675i \(-0.275132\pi\)
−0.760675 + 0.649133i \(0.775132\pi\)
\(644\) 16.0000i 0.630488i
\(645\) 0 0
\(646\) 0 0
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 33.9411 + 33.9411i 1.33231 + 1.33231i
\(650\) −10.0000 −0.392232
\(651\) −11.3137 11.3137i −0.443419 0.443419i
\(652\) −14.1421 + 14.1421i −0.553849 + 0.553849i
\(653\) 22.6274 22.6274i 0.885479 0.885479i −0.108606 0.994085i \(-0.534639\pi\)
0.994085 + 0.108606i \(0.0346386\pi\)
\(654\) 8.00000i 0.312825i
\(655\) 0 0
\(656\) −5.65685 + 5.65685i −0.220863 + 0.220863i
\(657\) 0 0
\(658\) 22.6274 + 22.6274i 0.882109 + 0.882109i
\(659\) 4.00000 0.155818 0.0779089 0.996960i \(-0.475176\pi\)
0.0779089 + 0.996960i \(0.475176\pi\)
\(660\) 0 0
\(661\) 42.0000i 1.63361i −0.576913 0.816805i \(-0.695743\pi\)
0.576913 0.816805i \(-0.304257\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) −36.0000 −1.39707
\(665\) 0 0
\(666\) 5.65685 + 5.65685i 0.219199 + 0.219199i
\(667\) 0 0
\(668\) −8.48528 8.48528i −0.328305 0.328305i
\(669\) 11.3137 11.3137i 0.437413 0.437413i
\(670\) 0 0
\(671\) 32.0000i 1.23535i
\(672\) 20.0000i 0.771517i
\(673\) −22.6274 + 22.6274i −0.872223 + 0.872223i −0.992714 0.120492i \(-0.961553\pi\)
0.120492 + 0.992714i \(0.461553\pi\)
\(674\) −11.3137 + 11.3137i −0.435788 + 0.435788i
\(675\) −3.53553 3.53553i −0.136083 0.136083i
\(676\) −9.00000 −0.346154
\(677\) −33.9411 33.9411i −1.30446 1.30446i −0.925350 0.379113i \(-0.876229\pi\)
−0.379113 0.925350i \(-0.623771\pi\)
\(678\) 8.00000i 0.307238i
\(679\) 64.0000 2.45609
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 16.0000i 0.612672i
\(683\) 8.48528 + 8.48528i 0.324680 + 0.324680i 0.850559 0.525879i \(-0.176264\pi\)
−0.525879 + 0.850559i \(0.676264\pi\)
\(684\) 4.00000 0.152944
\(685\) 0 0
\(686\) 5.65685 5.65685i 0.215980 0.215980i
\(687\) −7.07107 + 7.07107i −0.269778 + 0.269778i
\(688\) 4.00000i 0.152499i
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) 14.1421 14.1421i 0.537992 0.537992i −0.384947 0.922939i \(-0.625780\pi\)
0.922939 + 0.384947i \(0.125780\pi\)
\(692\) 11.3137 + 11.3137i 0.430083 + 0.430083i
\(693\) 16.0000 0.607790
\(694\) −2.82843 2.82843i −0.107366 0.107366i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −2.00000 −0.0757011
\(699\) 8.00000i 0.302588i
\(700\) −14.1421 14.1421i −0.534522 0.534522i
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) −1.41421 1.41421i −0.0533761 0.0533761i
\(703\) −22.6274 + 22.6274i −0.853409 + 0.853409i
\(704\) −19.7990 + 19.7990i −0.746203 + 0.746203i
\(705\) 0 0
\(706\) 18.0000i 0.677439i
\(707\) −16.9706 + 16.9706i −0.638244 + 0.638244i
\(708\) 8.48528 8.48528i 0.318896 0.318896i
\(709\) −28.2843 28.2843i −1.06224 1.06224i −0.997930 0.0643080i \(-0.979516\pi\)
−0.0643080 0.997930i \(-0.520484\pi\)
\(710\) 0 0
\(711\) −2.82843 2.82843i −0.106074 0.106074i
\(712\) 30.0000i 1.12430i
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000i 0.149487i
\(717\) 5.65685 + 5.65685i 0.211259 + 0.211259i
\(718\) −32.0000 −1.19423
\(719\) −25.4558 25.4558i −0.949343 0.949343i 0.0494346 0.998777i \(-0.484258\pi\)
−0.998777 + 0.0494346i \(0.984258\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000i 0.111648i
\(723\) 16.0000i 0.595046i
\(724\) −5.65685 + 5.65685i −0.210235 + 0.210235i
\(725\) 0 0
\(726\) −3.53553 3.53553i −0.131216 0.131216i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) −16.9706 16.9706i −0.628971 0.628971i
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 0 0
\(732\) −8.00000 −0.295689
\(733\) 34.0000i 1.25582i −0.778287 0.627909i \(-0.783911\pi\)
0.778287 0.627909i \(-0.216089\pi\)
\(734\) −8.48528 8.48528i −0.313197 0.313197i
\(735\) 0 0
\(736\) −14.1421 14.1421i −0.521286 0.521286i
\(737\) 33.9411 33.9411i 1.25024 1.25024i
\(738\) −5.65685 + 5.65685i −0.208232 + 0.208232i
\(739\) 4.00000i 0.147142i 0.997290 + 0.0735712i \(0.0234396\pi\)
−0.997290 + 0.0735712i \(0.976560\pi\)
\(740\) 0 0
\(741\) 5.65685 5.65685i 0.207810 0.207810i
\(742\) −16.9706 + 16.9706i −0.623009 + 0.623009i
\(743\) −25.4558 25.4558i −0.933884 0.933884i 0.0640616 0.997946i \(-0.479595\pi\)
−0.997946 + 0.0640616i \(0.979595\pi\)
\(744\) 12.0000 0.439941
\(745\) 0 0
\(746\) 26.0000i 0.951928i
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) −48.0000 −1.75388
\(750\) 0 0
\(751\) 14.1421 + 14.1421i 0.516054 + 0.516054i 0.916375 0.400321i \(-0.131101\pi\)
−0.400321 + 0.916375i \(0.631101\pi\)
\(752\) −8.00000 −0.291730
\(753\) 8.48528 + 8.48528i 0.309221 + 0.309221i
\(754\) 0 0
\(755\) 0 0
\(756\) 4.00000i 0.145479i
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) −14.1421 + 14.1421i −0.513665 + 0.513665i
\(759\) 11.3137 11.3137i 0.410662 0.410662i
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) −5.65685 5.65685i −0.204926 0.204926i
\(763\) 32.0000i 1.15848i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 24.0000i 0.866590i
\(768\) 12.0208 + 12.0208i 0.433764 + 0.433764i
\(769\) 34.0000 1.22607 0.613036 0.790055i \(-0.289948\pi\)
0.613036 + 0.790055i \(0.289948\pi\)
\(770\) 0 0
\(771\) −1.41421 + 1.41421i −0.0509317 + 0.0509317i
\(772\) 0 0
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 4.00000i 0.143777i
\(775\) 14.1421 14.1421i 0.508001 0.508001i
\(776\) −33.9411 + 33.9411i −1.21842 + 1.21842i
\(777\) 22.6274 + 22.6274i 0.811754 + 0.811754i
\(778\) 6.00000 0.215110
\(779\) −22.6274 22.6274i −0.810711 0.810711i
\(780\) 0 0
\(781\) −48.0000 −1.71758
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000i 0.321429i
\(785\) 0 0
\(786\) 4.00000 0.142675
\(787\) −8.48528 8.48528i −0.302468 0.302468i 0.539511 0.841979i \(-0.318609\pi\)
−0.841979 + 0.539511i \(0.818609\pi\)
\(788\) −11.3137 + 11.3137i −0.403034 + 0.403034i
\(789\) −16.9706 + 16.9706i −0.604168 + 0.604168i
\(790\) 0 0
\(791\) 32.0000i 1.13779i
\(792\) −8.48528 + 8.48528i −0.301511 + 0.301511i
\(793\) −11.3137 + 11.3137i −0.401762 + 0.401762i
\(794\) −5.65685 5.65685i −0.200754 0.200754i
\(795\) 0 0
\(796\) −14.1421 14.1421i −0.501255 0.501255i
\(797\) 18.0000i 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) −16.0000 −0.566394
\(799\) 0 0
\(800\) 25.0000 0.883883
\(801\) 10.0000i 0.353333i
\(802\) 16.9706 + 16.9706i 0.599251 + 0.599251i
\(803\) 0 0
\(804\) −8.48528 8.48528i −0.299253 0.299253i
\(805\) 0 0
\(806\) 5.65685 5.65685i 0.199254 0.199254i
\(807\) 0 0
\(808\) 18.0000i 0.633238i
\(809\) 28.2843 28.2843i 0.994422 0.994422i −0.00556251 0.999985i \(-0.501771\pi\)
0.999985 + 0.00556251i \(0.00177061\pi\)
\(810\) 0 0
\(811\) 2.82843 + 2.82843i 0.0993195 + 0.0993195i 0.755021 0.655701i \(-0.227627\pi\)
−0.655701 + 0.755021i \(0.727627\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 32.0000i 1.12160i
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 10.0000i 0.349642i
\(819\) −5.65685 5.65685i −0.197666 0.197666i
\(820\) 0 0
\(821\) 22.6274 + 22.6274i 0.789702 + 0.789702i 0.981445 0.191743i \(-0.0614140\pi\)
−0.191743 + 0.981445i \(0.561414\pi\)
\(822\) −7.07107 + 7.07107i −0.246632 + 0.246632i
\(823\) −31.1127 + 31.1127i −1.08452 + 1.08452i −0.0884389 + 0.996082i \(0.528188\pi\)
−0.996082 + 0.0884389i \(0.971812\pi\)
\(824\) 0 0
\(825\) 20.0000i 0.696311i
\(826\) −33.9411 + 33.9411i −1.18096 + 1.18096i
\(827\) −8.48528 + 8.48528i −0.295062 + 0.295062i −0.839076 0.544014i \(-0.816904\pi\)
0.544014 + 0.839076i \(0.316904\pi\)
\(828\) −2.82843 2.82843i −0.0982946 0.0982946i
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) 8.00000i 0.277517i
\(832\) 14.0000 0.485363
\(833\) 0 0
\(834\) −4.00000 −0.138509
\(835\) 0 0
\(836\) −11.3137 11.3137i −0.391293 0.391293i
\(837\) 4.00000 0.138260
\(838\) 2.82843 + 2.82843i 0.0977064 + 0.0977064i
\(839\) 31.1127 31.1127i 1.07413 1.07413i 0.0771068 0.997023i \(-0.475432\pi\)
0.997023 0.0771068i \(-0.0245682\pi\)
\(840\) 0 0
\(841\) 29.0000i 1.00000i
\(842\) 22.0000i 0.758170i
\(843\) −7.07107 + 7.07107i −0.243541 + 0.243541i
\(844\) −2.82843 + 2.82843i −0.0973585 + 0.0973585i
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) −14.1421 14.1421i −0.485930 0.485930i
\(848\) 6.00000i 0.206041i
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 32.0000 1.09695
\(852\) 12.0000i 0.411113i
\(853\) 16.9706 + 16.9706i 0.581061 + 0.581061i 0.935195 0.354134i \(-0.115224\pi\)
−0.354134 + 0.935195i \(0.615224\pi\)
\(854\) 32.0000 1.09502
\(855\) 0 0
\(856\) 25.4558 25.4558i 0.870063 0.870063i
\(857\) −5.65685 + 5.65685i −0.193234 + 0.193234i −0.797092 0.603858i \(-0.793630\pi\)
0.603858 + 0.797092i \(0.293630\pi\)
\(858\) 8.00000i 0.273115i
\(859\) 4.00000i 0.136478i 0.997669 + 0.0682391i \(0.0217381\pi\)
−0.997669 + 0.0682391i \(0.978262\pi\)
\(860\) 0 0
\(861\) −22.6274 + 22.6274i −0.771140 + 0.771140i
\(862\) −14.1421 14.1421i −0.481683 0.481683i
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 3.53553 + 3.53553i 0.120281 + 0.120281i
\(865\) 0 0
\(866\) −2.00000 −0.0679628
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) 16.0000i 0.542763i
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) −16.9706 16.9706i −0.574696 0.574696i
\(873\) −11.3137 + 11.3137i −0.382911 + 0.382911i
\(874\) −11.3137 + 11.3137i −0.382692 + 0.382692i
\(875\) 0 0
\(876\) 0 0
\(877\) 28.2843 28.2843i 0.955092 0.955092i −0.0439421 0.999034i \(-0.513992\pi\)
0.999034 + 0.0439421i \(0.0139917\pi\)
\(878\) −25.4558 + 25.4558i −0.859093 + 0.859093i
\(879\) −7.07107 7.07107i −0.238501 0.238501i
\(880\) 0 0
\(881\) −16.9706 16.9706i −0.571753 0.571753i 0.360865 0.932618i \(-0.382481\pi\)
−0.932618 + 0.360865i \(0.882481\pi\)
\(882\) 9.00000i 0.303046i
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.0000i 0.671913i
\(887\) 2.82843 + 2.82843i 0.0949693 + 0.0949693i 0.752995 0.658026i \(-0.228608\pi\)
−0.658026 + 0.752995i \(0.728608\pi\)
\(888\) −24.0000 −0.805387
\(889\) −22.6274 22.6274i −0.758899 0.758899i
\(890\) 0 0
\(891\) −2.82843 + 2.82843i −0.0947559 + 0.0947559i
\(892\) 16.0000i 0.535720i
\(893\) 32.0000i 1.07084i
\(894\) −4.24264 + 4.24264i −0.141895 + 0.141895i
\(895\) 0 0
\(896\) 8.48528 + 8.48528i 0.283473 + 0.283473i
\(897\) −8.00000 −0.267112
\(898\) −5.65685 5.65685i −0.188772 0.188772i
\(899\) 0 0
\(900\) 5.00000 0.166667
\(901\) 0 0
\(902\) 32.0000 1.06548
\(903\) 16.0000i 0.532447i
\(904\) −16.9706 16.9706i −0.564433 0.564433i
\(905\) 0 0
\(906\) 0 0
\(907\) −19.7990 + 19.7990i −0.657415 + 0.657415i −0.954768 0.297353i \(-0.903896\pi\)
0.297353 + 0.954768i \(0.403896\pi\)
\(908\) −8.48528 + 8.48528i −0.281594 + 0.281594i
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) −19.7990 + 19.7990i −0.655970 + 0.655970i −0.954424 0.298454i \(-0.903529\pi\)
0.298454 + 0.954424i \(0.403529\pi\)
\(912\) 2.82843 2.82843i 0.0936586 0.0936586i
\(913\) 33.9411 + 33.9411i 1.12329 + 1.12329i
\(914\) −38.0000 −1.25693
\(915\) 0 0
\(916\) 10.0000i 0.330409i
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) 24.0000 0.791687 0.395843 0.918318i \(-0.370452\pi\)
0.395843 + 0.918318i \(0.370452\pi\)
\(920\) 0 0
\(921\) 8.48528 + 8.48528i 0.279600 + 0.279600i
\(922\) 34.0000 1.11973
\(923\) 16.9706 + 16.9706i 0.558593 + 0.558593i
\(924\) −11.3137 + 11.3137i −0.372194 + 0.372194i
\(925\) −28.2843 + 28.2843i −0.929981 + 0.929981i
\(926\) 40.0000i 1.31448i
\(927\) 0 0
\(928\) 0 0
\(929\) 16.9706 16.9706i 0.556786 0.556786i −0.371605 0.928391i \(-0.621192\pi\)
0.928391 + 0.371605i \(0.121192\pi\)
\(930\) 0 0
\(931\) −36.0000 −1.17985
\(932\) 5.65685 + 5.65685i 0.185296 + 0.185296i
\(933\) 12.0000i 0.392862i
\(934\) 4.00000 0.130884
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 26.0000i 0.849383i 0.905338 + 0.424691i \(0.139617\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) 33.9411 + 33.9411i 1.10822 + 1.10822i
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) −33.9411 + 33.9411i −1.10645 + 1.10645i −0.112835 + 0.993614i \(0.535993\pi\)
−0.993614 + 0.112835i \(0.964007\pi\)
\(942\) 1.41421 1.41421i 0.0460776 0.0460776i
\(943\) 32.0000i 1.04206i
\(944\) 12.0000i 0.390567i
\(945\) 0 0
\(946\) −11.3137 + 11.3137i −0.367840 + 0.367840i
\(947\) −8.48528 8.48528i −0.275735 0.275735i 0.555669 0.831404i \(-0.312462\pi\)
−0.831404 + 0.555669i \(0.812462\pi\)
\(948\) 4.00000 0.129914
\(949\) 0 0
\(950\) 20.0000i 0.648886i
\(951\) 32.0000 1.03767
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 6.00000i 0.194257i
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) 0 0
\(958\) 8.48528 8.48528i 0.274147 0.274147i
\(959\) −28.2843 + 28.2843i −0.913347 + 0.913347i
\(960\) 0 0
\(961\) 15.0000i 0.483871i
\(962\) −11.3137 + 11.3137i −0.364769 + 0.364769i
\(963\) 8.48528 8.48528i 0.273434 0.273434i
\(964\) 11.3137 + 11.3137i 0.364390 + 0.364390i
\(965\) 0 0
\(966\) 11.3137 + 11.3137i 0.364013 + 0.364013i
\(967\) 24.0000i 0.771788i 0.922543 + 0.385894i \(0.126107\pi\)
−0.922543 + 0.385894i \(0.873893\pi\)
\(968\) 15.0000 0.482118
\(969\) 0 0
\(970\) 0 0
\(971\) 36.0000i 1.15529i 0.816286 + 0.577647i \(0.196029\pi\)
−0.816286 + 0.577647i \(0.803971\pi\)
\(972\) 0.707107 + 0.707107i 0.0226805 + 0.0226805i
\(973\) −16.0000 −0.512936
\(974\) −2.82843 2.82843i −0.0906287 0.0906287i
\(975\) 7.07107 7.07107i 0.226455 0.226455i
\(976\) −5.65685 + 5.65685i −0.181071 + 0.181071i
\(977\) 46.0000i 1.47167i 0.677161 + 0.735835i \(0.263210\pi\)
−0.677161 + 0.735835i \(0.736790\pi\)
\(978\) 20.0000i 0.639529i
\(979\) 28.2843 28.2843i 0.903969 0.903969i
\(980\) 0 0
\(981\) −5.65685 5.65685i −0.180609 0.180609i
\(982\) 20.0000 0.638226
\(983\) 14.1421 + 14.1421i 0.451064 + 0.451064i 0.895708 0.444644i \(-0.146670\pi\)
−0.444644 + 0.895708i \(0.646670\pi\)
\(984\) 24.0000i 0.765092i
\(985\) 0 0
\(986\) 0 0
\(987\) −32.0000 −1.01857
\(988\) 8.00000i 0.254514i
\(989\) −11.3137 11.3137i −0.359755 0.359755i
\(990\) 0 0
\(991\) 8.48528 + 8.48528i 0.269544 + 0.269544i 0.828916 0.559373i \(-0.188958\pi\)
−0.559373 + 0.828916i \(0.688958\pi\)
\(992\) −14.1421 + 14.1421i −0.449013 + 0.449013i
\(993\) 14.1421 14.1421i 0.448787 0.448787i
\(994\) 48.0000i 1.52247i
\(995\) 0 0
\(996\) 8.48528 8.48528i 0.268866 0.268866i
\(997\) 5.65685 5.65685i 0.179154 0.179154i −0.611833 0.790987i \(-0.709567\pi\)
0.790987 + 0.611833i \(0.209567\pi\)
\(998\) 25.4558 + 25.4558i 0.805791 + 0.805791i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.e.d.829.1 4
17.2 even 8 867.2.a.a.1.1 1
17.3 odd 16 867.2.h.d.712.1 8
17.4 even 4 inner 867.2.e.d.616.1 4
17.5 odd 16 867.2.h.d.733.2 8
17.6 odd 16 867.2.h.d.757.1 8
17.7 odd 16 867.2.h.d.688.1 8
17.8 even 8 51.2.d.b.16.2 yes 2
17.9 even 8 51.2.d.b.16.1 2
17.10 odd 16 867.2.h.d.688.2 8
17.11 odd 16 867.2.h.d.757.2 8
17.12 odd 16 867.2.h.d.733.1 8
17.13 even 4 inner 867.2.e.d.616.2 4
17.14 odd 16 867.2.h.d.712.2 8
17.15 even 8 867.2.a.b.1.1 1
17.16 even 2 inner 867.2.e.d.829.2 4
51.2 odd 8 2601.2.a.i.1.1 1
51.8 odd 8 153.2.d.a.118.1 2
51.26 odd 8 153.2.d.a.118.2 2
51.32 odd 8 2601.2.a.j.1.1 1
68.43 odd 8 816.2.c.c.577.2 2
68.59 odd 8 816.2.c.c.577.1 2
85.8 odd 8 1275.2.d.b.424.1 2
85.9 even 8 1275.2.g.a.526.2 2
85.42 odd 8 1275.2.d.d.424.2 2
85.43 odd 8 1275.2.d.d.424.1 2
85.59 even 8 1275.2.g.a.526.1 2
85.77 odd 8 1275.2.d.b.424.2 2
136.43 odd 8 3264.2.c.d.577.1 2
136.59 odd 8 3264.2.c.d.577.2 2
136.77 even 8 3264.2.c.e.577.2 2
136.93 even 8 3264.2.c.e.577.1 2
204.59 even 8 2448.2.c.j.577.2 2
204.179 even 8 2448.2.c.j.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.d.b.16.1 2 17.9 even 8
51.2.d.b.16.2 yes 2 17.8 even 8
153.2.d.a.118.1 2 51.8 odd 8
153.2.d.a.118.2 2 51.26 odd 8
816.2.c.c.577.1 2 68.59 odd 8
816.2.c.c.577.2 2 68.43 odd 8
867.2.a.a.1.1 1 17.2 even 8
867.2.a.b.1.1 1 17.15 even 8
867.2.e.d.616.1 4 17.4 even 4 inner
867.2.e.d.616.2 4 17.13 even 4 inner
867.2.e.d.829.1 4 1.1 even 1 trivial
867.2.e.d.829.2 4 17.16 even 2 inner
867.2.h.d.688.1 8 17.7 odd 16
867.2.h.d.688.2 8 17.10 odd 16
867.2.h.d.712.1 8 17.3 odd 16
867.2.h.d.712.2 8 17.14 odd 16
867.2.h.d.733.1 8 17.12 odd 16
867.2.h.d.733.2 8 17.5 odd 16
867.2.h.d.757.1 8 17.6 odd 16
867.2.h.d.757.2 8 17.11 odd 16
1275.2.d.b.424.1 2 85.8 odd 8
1275.2.d.b.424.2 2 85.77 odd 8
1275.2.d.d.424.1 2 85.43 odd 8
1275.2.d.d.424.2 2 85.42 odd 8
1275.2.g.a.526.1 2 85.59 even 8
1275.2.g.a.526.2 2 85.9 even 8
2448.2.c.j.577.1 2 204.179 even 8
2448.2.c.j.577.2 2 204.59 even 8
2601.2.a.i.1.1 1 51.2 odd 8
2601.2.a.j.1.1 1 51.32 odd 8
3264.2.c.d.577.1 2 136.43 odd 8
3264.2.c.d.577.2 2 136.59 odd 8
3264.2.c.e.577.1 2 136.93 even 8
3264.2.c.e.577.2 2 136.77 even 8