Properties

Label 880.2.bo.i.81.3
Level $880$
Weight $2$
Character 880.81
Analytic conductor $7.027$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(81,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.bo (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 5 x^{10} + 4 x^{9} + 28 x^{8} - 81 x^{7} + 335 x^{6} - 235 x^{5} + 782 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.3
Root \(1.85498 - 1.34772i\) of defining polynomial
Character \(\chi\) \(=\) 880.81
Dual form 880.2.bo.i.641.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.01756 - 3.13172i) q^{3} +(0.809017 - 0.587785i) q^{5} +(-1.08622 - 3.34304i) q^{7} +(-6.34518 - 4.61004i) q^{9} +(1.91497 - 2.70793i) q^{11} +(3.45546 + 2.51054i) q^{13} +(-1.01756 - 3.13172i) q^{15} +(-1.28632 + 0.934565i) q^{17} +(-1.71533 + 5.27925i) q^{19} -11.5747 q^{21} +6.39042 q^{23} +(0.309017 - 0.951057i) q^{25} +(-12.9019 + 9.37380i) q^{27} +(-0.117804 - 0.362562i) q^{29} +(-0.615229 - 0.446990i) q^{31} +(-6.53187 - 8.75262i) q^{33} +(-2.84376 - 2.06611i) q^{35} +(-0.448664 - 1.38085i) q^{37} +(11.3784 - 8.26690i) q^{39} +(-1.89183 + 5.82245i) q^{41} +7.19067 q^{43} -7.84307 q^{45} +(-1.33546 + 4.11012i) q^{47} +(-4.33291 + 3.14804i) q^{49} +(1.61789 + 4.97936i) q^{51} +(5.62189 + 4.08454i) q^{53} +(-0.0424355 - 3.31635i) q^{55} +(14.7877 + 10.7439i) q^{57} +(-3.92793 - 12.0889i) q^{59} +(7.19700 - 5.22893i) q^{61} +(-8.51929 + 26.2197i) q^{63} +4.27118 q^{65} -12.5135 q^{67} +(6.50261 - 20.0130i) q^{69} +(5.95347 - 4.32545i) q^{71} +(2.17304 + 6.68793i) q^{73} +(-2.66400 - 1.93551i) q^{75} +(-11.1328 - 3.46042i) q^{77} +(-5.65811 - 4.11086i) q^{79} +(8.95672 + 27.5660i) q^{81} +(-8.69768 + 6.31923i) q^{83} +(-0.491330 + 1.51216i) q^{85} -1.25531 q^{87} +0.451594 q^{89} +(4.63944 - 14.2787i) q^{91} +(-2.02588 + 1.47189i) q^{93} +(1.71533 + 5.27925i) q^{95} +(2.24871 + 1.63379i) q^{97} +(-24.6345 + 8.35419i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{3} + 3 q^{5} + q^{7} - 10 q^{9} - 4 q^{11} + 18 q^{13} - q^{15} + 3 q^{17} - 4 q^{19} - 28 q^{21} + 18 q^{23} - 3 q^{25} - 23 q^{27} + 15 q^{29} + 8 q^{31} + 4 q^{33} - 6 q^{35} + 6 q^{37}+ \cdots - 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.01756 3.13172i 0.587487 1.80810i −0.00156040 0.999999i \(-0.500497\pi\)
0.589047 0.808099i \(-0.299503\pi\)
\(4\) 0 0
\(5\) 0.809017 0.587785i 0.361803 0.262866i
\(6\) 0 0
\(7\) −1.08622 3.34304i −0.410552 1.26355i −0.916169 0.400791i \(-0.868735\pi\)
0.505617 0.862758i \(-0.331265\pi\)
\(8\) 0 0
\(9\) −6.34518 4.61004i −2.11506 1.53668i
\(10\) 0 0
\(11\) 1.91497 2.70793i 0.577386 0.816471i
\(12\) 0 0
\(13\) 3.45546 + 2.51054i 0.958372 + 0.696298i 0.952772 0.303687i \(-0.0982176\pi\)
0.00559963 + 0.999984i \(0.498218\pi\)
\(14\) 0 0
\(15\) −1.01756 3.13172i −0.262732 0.808606i
\(16\) 0 0
\(17\) −1.28632 + 0.934565i −0.311978 + 0.226665i −0.732745 0.680504i \(-0.761761\pi\)
0.420767 + 0.907169i \(0.361761\pi\)
\(18\) 0 0
\(19\) −1.71533 + 5.27925i −0.393525 + 1.21114i 0.536580 + 0.843849i \(0.319716\pi\)
−0.930105 + 0.367295i \(0.880284\pi\)
\(20\) 0 0
\(21\) −11.5747 −2.52581
\(22\) 0 0
\(23\) 6.39042 1.33249 0.666247 0.745731i \(-0.267900\pi\)
0.666247 + 0.745731i \(0.267900\pi\)
\(24\) 0 0
\(25\) 0.309017 0.951057i 0.0618034 0.190211i
\(26\) 0 0
\(27\) −12.9019 + 9.37380i −2.48298 + 1.80399i
\(28\) 0 0
\(29\) −0.117804 0.362562i −0.0218756 0.0673261i 0.939523 0.342486i \(-0.111269\pi\)
−0.961398 + 0.275160i \(0.911269\pi\)
\(30\) 0 0
\(31\) −0.615229 0.446990i −0.110498 0.0802818i 0.531164 0.847269i \(-0.321755\pi\)
−0.641662 + 0.766987i \(0.721755\pi\)
\(32\) 0 0
\(33\) −6.53187 8.75262i −1.13705 1.52364i
\(34\) 0 0
\(35\) −2.84376 2.06611i −0.480683 0.349236i
\(36\) 0 0
\(37\) −0.448664 1.38085i −0.0737599 0.227010i 0.907379 0.420313i \(-0.138080\pi\)
−0.981139 + 0.193304i \(0.938080\pi\)
\(38\) 0 0
\(39\) 11.3784 8.26690i 1.82200 1.32376i
\(40\) 0 0
\(41\) −1.89183 + 5.82245i −0.295454 + 0.909313i 0.687615 + 0.726076i \(0.258658\pi\)
−0.983069 + 0.183238i \(0.941342\pi\)
\(42\) 0 0
\(43\) 7.19067 1.09657 0.548284 0.836293i \(-0.315281\pi\)
0.548284 + 0.836293i \(0.315281\pi\)
\(44\) 0 0
\(45\) −7.84307 −1.16918
\(46\) 0 0
\(47\) −1.33546 + 4.11012i −0.194797 + 0.599523i 0.805182 + 0.593028i \(0.202068\pi\)
−0.999979 + 0.00649536i \(0.997932\pi\)
\(48\) 0 0
\(49\) −4.33291 + 3.14804i −0.618987 + 0.449720i
\(50\) 0 0
\(51\) 1.61789 + 4.97936i 0.226550 + 0.697250i
\(52\) 0 0
\(53\) 5.62189 + 4.08454i 0.772226 + 0.561055i 0.902636 0.430405i \(-0.141629\pi\)
−0.130410 + 0.991460i \(0.541629\pi\)
\(54\) 0 0
\(55\) −0.0424355 3.31635i −0.00572200 0.447177i
\(56\) 0 0
\(57\) 14.7877 + 10.7439i 1.95868 + 1.42306i
\(58\) 0 0
\(59\) −3.92793 12.0889i −0.511373 1.57384i −0.789786 0.613382i \(-0.789808\pi\)
0.278413 0.960461i \(-0.410192\pi\)
\(60\) 0 0
\(61\) 7.19700 5.22893i 0.921482 0.669496i −0.0224105 0.999749i \(-0.507134\pi\)
0.943892 + 0.330253i \(0.107134\pi\)
\(62\) 0 0
\(63\) −8.51929 + 26.2197i −1.07333 + 3.30337i
\(64\) 0 0
\(65\) 4.27118 0.529775
\(66\) 0 0
\(67\) −12.5135 −1.52877 −0.764383 0.644763i \(-0.776956\pi\)
−0.764383 + 0.644763i \(0.776956\pi\)
\(68\) 0 0
\(69\) 6.50261 20.0130i 0.782823 2.40928i
\(70\) 0 0
\(71\) 5.95347 4.32545i 0.706547 0.513336i −0.175511 0.984477i \(-0.556158\pi\)
0.882058 + 0.471141i \(0.156158\pi\)
\(72\) 0 0
\(73\) 2.17304 + 6.68793i 0.254335 + 0.782763i 0.993960 + 0.109743i \(0.0350029\pi\)
−0.739625 + 0.673019i \(0.764997\pi\)
\(74\) 0 0
\(75\) −2.66400 1.93551i −0.307612 0.223493i
\(76\) 0 0
\(77\) −11.1328 3.46042i −1.26870 0.394352i
\(78\) 0 0
\(79\) −5.65811 4.11086i −0.636587 0.462508i 0.222089 0.975026i \(-0.428712\pi\)
−0.858676 + 0.512519i \(0.828712\pi\)
\(80\) 0 0
\(81\) 8.95672 + 27.5660i 0.995191 + 3.06288i
\(82\) 0 0
\(83\) −8.69768 + 6.31923i −0.954694 + 0.693626i −0.951912 0.306370i \(-0.900886\pi\)
−0.00278190 + 0.999996i \(0.500886\pi\)
\(84\) 0 0
\(85\) −0.491330 + 1.51216i −0.0532922 + 0.164017i
\(86\) 0 0
\(87\) −1.25531 −0.134584
\(88\) 0 0
\(89\) 0.451594 0.0478689 0.0239344 0.999714i \(-0.492381\pi\)
0.0239344 + 0.999714i \(0.492381\pi\)
\(90\) 0 0
\(91\) 4.63944 14.2787i 0.486345 1.49682i
\(92\) 0 0
\(93\) −2.02588 + 1.47189i −0.210074 + 0.152627i
\(94\) 0 0
\(95\) 1.71533 + 5.27925i 0.175990 + 0.541640i
\(96\) 0 0
\(97\) 2.24871 + 1.63379i 0.228322 + 0.165886i 0.696065 0.717979i \(-0.254933\pi\)
−0.467743 + 0.883865i \(0.654933\pi\)
\(98\) 0 0
\(99\) −24.6345 + 8.35419i −2.47586 + 0.839628i
\(100\) 0 0
\(101\) −4.31798 3.13719i −0.429655 0.312162i 0.351856 0.936054i \(-0.385551\pi\)
−0.781511 + 0.623892i \(0.785551\pi\)
\(102\) 0 0
\(103\) −5.37124 16.5310i −0.529244 1.62884i −0.755769 0.654839i \(-0.772737\pi\)
0.226525 0.974005i \(-0.427263\pi\)
\(104\) 0 0
\(105\) −9.36416 + 6.80346i −0.913848 + 0.663950i
\(106\) 0 0
\(107\) −1.08089 + 3.32663i −0.104493 + 0.321598i −0.989611 0.143769i \(-0.954078\pi\)
0.885118 + 0.465367i \(0.154078\pi\)
\(108\) 0 0
\(109\) 4.91209 0.470493 0.235247 0.971936i \(-0.424410\pi\)
0.235247 + 0.971936i \(0.424410\pi\)
\(110\) 0 0
\(111\) −4.78096 −0.453789
\(112\) 0 0
\(113\) −5.30638 + 16.3314i −0.499182 + 1.53633i 0.311153 + 0.950360i \(0.399285\pi\)
−0.810336 + 0.585966i \(0.800715\pi\)
\(114\) 0 0
\(115\) 5.16996 3.75619i 0.482101 0.350267i
\(116\) 0 0
\(117\) −10.3518 31.8596i −0.957026 2.94542i
\(118\) 0 0
\(119\) 4.52151 + 3.28507i 0.414486 + 0.301142i
\(120\) 0 0
\(121\) −3.66576 10.3712i −0.333251 0.942838i
\(122\) 0 0
\(123\) 16.3092 + 11.8493i 1.47055 + 1.06842i
\(124\) 0 0
\(125\) −0.309017 0.951057i −0.0276393 0.0850651i
\(126\) 0 0
\(127\) 12.5303 9.10381i 1.11189 0.807833i 0.128927 0.991654i \(-0.458847\pi\)
0.982960 + 0.183822i \(0.0588469\pi\)
\(128\) 0 0
\(129\) 7.31691 22.5191i 0.644218 1.98270i
\(130\) 0 0
\(131\) 3.64734 0.318670 0.159335 0.987225i \(-0.449065\pi\)
0.159335 + 0.987225i \(0.449065\pi\)
\(132\) 0 0
\(133\) 19.5120 1.69190
\(134\) 0 0
\(135\) −4.92810 + 15.1671i −0.424143 + 1.30538i
\(136\) 0 0
\(137\) 13.1529 9.55615i 1.12373 0.816437i 0.138959 0.990298i \(-0.455624\pi\)
0.984770 + 0.173861i \(0.0556244\pi\)
\(138\) 0 0
\(139\) 2.31525 + 7.12562i 0.196377 + 0.604387i 0.999958 + 0.00919101i \(0.00292563\pi\)
−0.803580 + 0.595196i \(0.797074\pi\)
\(140\) 0 0
\(141\) 11.5128 + 8.36457i 0.969556 + 0.704423i
\(142\) 0 0
\(143\) 13.4155 4.54953i 1.12186 0.380450i
\(144\) 0 0
\(145\) −0.308414 0.224076i −0.0256124 0.0186085i
\(146\) 0 0
\(147\) 5.44980 + 16.7727i 0.449492 + 1.38339i
\(148\) 0 0
\(149\) 9.46754 6.87857i 0.775611 0.563514i −0.128048 0.991768i \(-0.540871\pi\)
0.903659 + 0.428254i \(0.140871\pi\)
\(150\) 0 0
\(151\) −3.89383 + 11.9840i −0.316875 + 0.975242i 0.658100 + 0.752930i \(0.271360\pi\)
−0.974976 + 0.222312i \(0.928640\pi\)
\(152\) 0 0
\(153\) 12.4703 1.00816
\(154\) 0 0
\(155\) −0.760465 −0.0610820
\(156\) 0 0
\(157\) −2.00136 + 6.15954i −0.159726 + 0.491585i −0.998609 0.0527263i \(-0.983209\pi\)
0.838883 + 0.544311i \(0.183209\pi\)
\(158\) 0 0
\(159\) 18.5122 13.4499i 1.46811 1.06665i
\(160\) 0 0
\(161\) −6.94139 21.3634i −0.547058 1.68367i
\(162\) 0 0
\(163\) −17.6153 12.7983i −1.37974 1.00244i −0.996905 0.0786197i \(-0.974949\pi\)
−0.382832 0.923818i \(-0.625051\pi\)
\(164\) 0 0
\(165\) −10.4291 3.24168i −0.811901 0.252365i
\(166\) 0 0
\(167\) 15.4426 + 11.2197i 1.19499 + 0.868208i 0.993782 0.111342i \(-0.0355149\pi\)
0.201203 + 0.979550i \(0.435515\pi\)
\(168\) 0 0
\(169\) 1.62017 + 4.98638i 0.124629 + 0.383567i
\(170\) 0 0
\(171\) 35.2217 25.5900i 2.69347 1.95692i
\(172\) 0 0
\(173\) −0.446930 + 1.37551i −0.0339795 + 0.104578i −0.966608 0.256261i \(-0.917509\pi\)
0.932628 + 0.360839i \(0.117509\pi\)
\(174\) 0 0
\(175\) −3.51508 −0.265715
\(176\) 0 0
\(177\) −41.8560 −3.14609
\(178\) 0 0
\(179\) 2.79036 8.58784i 0.208561 0.641885i −0.790987 0.611833i \(-0.790433\pi\)
0.999548 0.0300525i \(-0.00956744\pi\)
\(180\) 0 0
\(181\) 0.928144 0.674336i 0.0689884 0.0501230i −0.552757 0.833343i \(-0.686424\pi\)
0.621745 + 0.783220i \(0.286424\pi\)
\(182\) 0 0
\(183\) −9.05217 27.8597i −0.669156 2.05945i
\(184\) 0 0
\(185\) −1.17462 0.853410i −0.0863596 0.0627439i
\(186\) 0 0
\(187\) 0.0674714 + 5.27293i 0.00493400 + 0.385595i
\(188\) 0 0
\(189\) 45.3513 + 32.9496i 3.29882 + 2.39673i
\(190\) 0 0
\(191\) 4.63116 + 14.2532i 0.335099 + 1.03133i 0.966673 + 0.256013i \(0.0824091\pi\)
−0.631574 + 0.775316i \(0.717591\pi\)
\(192\) 0 0
\(193\) 12.2825 8.92379i 0.884116 0.642348i −0.0502209 0.998738i \(-0.515993\pi\)
0.934337 + 0.356390i \(0.115993\pi\)
\(194\) 0 0
\(195\) 4.34617 13.3761i 0.311236 0.957885i
\(196\) 0 0
\(197\) −2.95776 −0.210731 −0.105366 0.994434i \(-0.533601\pi\)
−0.105366 + 0.994434i \(0.533601\pi\)
\(198\) 0 0
\(199\) 5.07974 0.360093 0.180046 0.983658i \(-0.442375\pi\)
0.180046 + 0.983658i \(0.442375\pi\)
\(200\) 0 0
\(201\) −12.7332 + 39.1887i −0.898129 + 2.76416i
\(202\) 0 0
\(203\) −1.08410 + 0.787643i −0.0760887 + 0.0552817i
\(204\) 0 0
\(205\) 1.89183 + 5.82245i 0.132131 + 0.406657i
\(206\) 0 0
\(207\) −40.5484 29.4601i −2.81831 2.04762i
\(208\) 0 0
\(209\) 11.0110 + 14.7546i 0.761649 + 1.02060i
\(210\) 0 0
\(211\) −6.88323 5.00096i −0.473861 0.344280i 0.325083 0.945685i \(-0.394608\pi\)
−0.798944 + 0.601405i \(0.794608\pi\)
\(212\) 0 0
\(213\) −7.48809 23.0460i −0.513076 1.57908i
\(214\) 0 0
\(215\) 5.81738 4.22657i 0.396742 0.288250i
\(216\) 0 0
\(217\) −0.826031 + 2.54226i −0.0560746 + 0.172580i
\(218\) 0 0
\(219\) 23.1559 1.56473
\(220\) 0 0
\(221\) −6.79108 −0.456817
\(222\) 0 0
\(223\) −4.64893 + 14.3079i −0.311316 + 0.958131i 0.665929 + 0.746015i \(0.268035\pi\)
−0.977245 + 0.212116i \(0.931965\pi\)
\(224\) 0 0
\(225\) −6.34518 + 4.61004i −0.423012 + 0.307336i
\(226\) 0 0
\(227\) 4.85263 + 14.9349i 0.322081 + 0.991262i 0.972741 + 0.231894i \(0.0744921\pi\)
−0.650660 + 0.759369i \(0.725508\pi\)
\(228\) 0 0
\(229\) −17.3745 12.6233i −1.14814 0.834170i −0.159905 0.987132i \(-0.551119\pi\)
−0.988232 + 0.152962i \(0.951119\pi\)
\(230\) 0 0
\(231\) −22.1653 + 31.3436i −1.45837 + 2.06225i
\(232\) 0 0
\(233\) 5.72472 + 4.15926i 0.375039 + 0.272482i 0.759297 0.650744i \(-0.225543\pi\)
−0.384258 + 0.923226i \(0.625543\pi\)
\(234\) 0 0
\(235\) 1.33546 + 4.11012i 0.0871158 + 0.268115i
\(236\) 0 0
\(237\) −18.6315 + 13.5366i −1.21025 + 0.879295i
\(238\) 0 0
\(239\) −4.01246 + 12.3491i −0.259545 + 0.798797i 0.733355 + 0.679846i \(0.237953\pi\)
−0.992900 + 0.118951i \(0.962047\pi\)
\(240\) 0 0
\(241\) 4.91442 0.316565 0.158283 0.987394i \(-0.449404\pi\)
0.158283 + 0.987394i \(0.449404\pi\)
\(242\) 0 0
\(243\) 47.5998 3.05353
\(244\) 0 0
\(245\) −1.65502 + 5.09364i −0.105736 + 0.325421i
\(246\) 0 0
\(247\) −19.1810 + 13.9358i −1.22046 + 0.886716i
\(248\) 0 0
\(249\) 10.9397 + 33.6688i 0.693274 + 2.13368i
\(250\) 0 0
\(251\) 3.79074 + 2.75413i 0.239269 + 0.173839i 0.700958 0.713203i \(-0.252756\pi\)
−0.461688 + 0.887042i \(0.652756\pi\)
\(252\) 0 0
\(253\) 12.2375 17.3048i 0.769364 1.08794i
\(254\) 0 0
\(255\) 4.23570 + 3.07741i 0.265250 + 0.192715i
\(256\) 0 0
\(257\) 0.594723 + 1.83037i 0.0370978 + 0.114175i 0.967891 0.251372i \(-0.0808818\pi\)
−0.930793 + 0.365547i \(0.880882\pi\)
\(258\) 0 0
\(259\) −4.12887 + 2.99980i −0.256556 + 0.186399i
\(260\) 0 0
\(261\) −0.923942 + 2.84360i −0.0571905 + 0.176014i
\(262\) 0 0
\(263\) 16.6865 1.02894 0.514468 0.857510i \(-0.327990\pi\)
0.514468 + 0.857510i \(0.327990\pi\)
\(264\) 0 0
\(265\) 6.94904 0.426876
\(266\) 0 0
\(267\) 0.459523 1.41427i 0.0281223 0.0865516i
\(268\) 0 0
\(269\) 3.71156 2.69661i 0.226298 0.164415i −0.468859 0.883273i \(-0.655335\pi\)
0.695157 + 0.718858i \(0.255335\pi\)
\(270\) 0 0
\(271\) −6.25535 19.2520i −0.379985 1.16948i −0.940053 0.341028i \(-0.889225\pi\)
0.560068 0.828447i \(-0.310775\pi\)
\(272\) 0 0
\(273\) −39.9960 29.0588i −2.42067 1.75872i
\(274\) 0 0
\(275\) −1.98363 2.65804i −0.119618 0.160286i
\(276\) 0 0
\(277\) −3.88252 2.82082i −0.233278 0.169487i 0.465005 0.885308i \(-0.346052\pi\)
−0.698283 + 0.715821i \(0.746052\pi\)
\(278\) 0 0
\(279\) 1.84309 + 5.67246i 0.110343 + 0.339601i
\(280\) 0 0
\(281\) 17.4731 12.6950i 1.04236 0.757319i 0.0716156 0.997432i \(-0.477185\pi\)
0.970745 + 0.240113i \(0.0771845\pi\)
\(282\) 0 0
\(283\) 3.78668 11.6542i 0.225095 0.692771i −0.773187 0.634178i \(-0.781339\pi\)
0.998282 0.0585928i \(-0.0186614\pi\)
\(284\) 0 0
\(285\) 18.2786 1.08273
\(286\) 0 0
\(287\) 21.5196 1.27026
\(288\) 0 0
\(289\) −4.47209 + 13.7637i −0.263064 + 0.809627i
\(290\) 0 0
\(291\) 7.40475 5.37986i 0.434074 0.315373i
\(292\) 0 0
\(293\) 4.42491 + 13.6185i 0.258506 + 0.795600i 0.993119 + 0.117113i \(0.0373640\pi\)
−0.734612 + 0.678487i \(0.762636\pi\)
\(294\) 0 0
\(295\) −10.2835 7.47137i −0.598726 0.435000i
\(296\) 0 0
\(297\) 0.676747 + 52.8881i 0.0392688 + 3.06888i
\(298\) 0 0
\(299\) 22.0818 + 16.0434i 1.27702 + 0.927813i
\(300\) 0 0
\(301\) −7.81064 24.0387i −0.450198 1.38557i
\(302\) 0 0
\(303\) −14.2186 + 10.3304i −0.816836 + 0.593466i
\(304\) 0 0
\(305\) 2.74901 8.46059i 0.157408 0.484452i
\(306\) 0 0
\(307\) −0.568487 −0.0324453 −0.0162226 0.999868i \(-0.505164\pi\)
−0.0162226 + 0.999868i \(0.505164\pi\)
\(308\) 0 0
\(309\) −57.2358 −3.25603
\(310\) 0 0
\(311\) −3.15342 + 9.70522i −0.178814 + 0.550333i −0.999787 0.0206341i \(-0.993432\pi\)
0.820973 + 0.570967i \(0.193432\pi\)
\(312\) 0 0
\(313\) 7.55319 5.48771i 0.426931 0.310184i −0.353489 0.935439i \(-0.615005\pi\)
0.780421 + 0.625255i \(0.215005\pi\)
\(314\) 0 0
\(315\) 8.51929 + 26.2197i 0.480008 + 1.47731i
\(316\) 0 0
\(317\) 22.8858 + 16.6275i 1.28539 + 0.933894i 0.999702 0.0244273i \(-0.00777624\pi\)
0.285693 + 0.958321i \(0.407776\pi\)
\(318\) 0 0
\(319\) −1.20738 0.375293i −0.0676004 0.0210124i
\(320\) 0 0
\(321\) 9.31821 + 6.77007i 0.520092 + 0.377869i
\(322\) 0 0
\(323\) −2.72734 8.39389i −0.151753 0.467049i
\(324\) 0 0
\(325\) 3.45546 2.51054i 0.191674 0.139260i
\(326\) 0 0
\(327\) 4.99833 15.3833i 0.276408 0.850697i
\(328\) 0 0
\(329\) 15.1909 0.837501
\(330\) 0 0
\(331\) 5.31846 0.292329 0.146164 0.989260i \(-0.453307\pi\)
0.146164 + 0.989260i \(0.453307\pi\)
\(332\) 0 0
\(333\) −3.51890 + 10.8301i −0.192835 + 0.593484i
\(334\) 0 0
\(335\) −10.1236 + 7.35524i −0.553113 + 0.401860i
\(336\) 0 0
\(337\) −5.44920 16.7709i −0.296837 0.913570i −0.982598 0.185743i \(-0.940531\pi\)
0.685762 0.727826i \(-0.259469\pi\)
\(338\) 0 0
\(339\) 45.7457 + 33.2362i 2.48456 + 1.80514i
\(340\) 0 0
\(341\) −2.38856 + 0.810023i −0.129348 + 0.0438652i
\(342\) 0 0
\(343\) −4.67580 3.39717i −0.252469 0.183430i
\(344\) 0 0
\(345\) −6.50261 20.0130i −0.350089 1.07746i
\(346\) 0 0
\(347\) −9.56975 + 6.95283i −0.513731 + 0.373247i −0.814237 0.580533i \(-0.802844\pi\)
0.300506 + 0.953780i \(0.402844\pi\)
\(348\) 0 0
\(349\) −2.88972 + 8.89363i −0.154683 + 0.476065i −0.998129 0.0611492i \(-0.980523\pi\)
0.843446 + 0.537215i \(0.180523\pi\)
\(350\) 0 0
\(351\) −68.1154 −3.63573
\(352\) 0 0
\(353\) −17.7336 −0.943863 −0.471932 0.881635i \(-0.656443\pi\)
−0.471932 + 0.881635i \(0.656443\pi\)
\(354\) 0 0
\(355\) 2.27402 6.99873i 0.120693 0.371454i
\(356\) 0 0
\(357\) 14.8888 10.8173i 0.787999 0.572514i
\(358\) 0 0
\(359\) 5.83547 + 17.9597i 0.307984 + 0.947878i 0.978547 + 0.206025i \(0.0660528\pi\)
−0.670562 + 0.741853i \(0.733947\pi\)
\(360\) 0 0
\(361\) −9.55683 6.94344i −0.502991 0.365444i
\(362\) 0 0
\(363\) −36.2098 + 0.926821i −1.90052 + 0.0486455i
\(364\) 0 0
\(365\) 5.68909 + 4.13337i 0.297781 + 0.216350i
\(366\) 0 0
\(367\) 8.15607 + 25.1018i 0.425744 + 1.31030i 0.902281 + 0.431149i \(0.141892\pi\)
−0.476537 + 0.879154i \(0.658108\pi\)
\(368\) 0 0
\(369\) 38.8457 28.2231i 2.02223 1.46923i
\(370\) 0 0
\(371\) 7.54817 23.2309i 0.391882 1.20609i
\(372\) 0 0
\(373\) −19.2368 −0.996043 −0.498022 0.867165i \(-0.665940\pi\)
−0.498022 + 0.867165i \(0.665940\pi\)
\(374\) 0 0
\(375\) −3.29288 −0.170044
\(376\) 0 0
\(377\) 0.503160 1.54857i 0.0259141 0.0797553i
\(378\) 0 0
\(379\) −27.8840 + 20.2589i −1.43230 + 1.04063i −0.442720 + 0.896660i \(0.645986\pi\)
−0.989582 + 0.143969i \(0.954014\pi\)
\(380\) 0 0
\(381\) −15.7602 48.5051i −0.807422 2.48499i
\(382\) 0 0
\(383\) −18.0549 13.1177i −0.922564 0.670282i 0.0215967 0.999767i \(-0.493125\pi\)
−0.944161 + 0.329485i \(0.893125\pi\)
\(384\) 0 0
\(385\) −11.0406 + 3.74415i −0.562681 + 0.190819i
\(386\) 0 0
\(387\) −45.6261 33.1493i −2.31930 1.68507i
\(388\) 0 0
\(389\) −4.97726 15.3184i −0.252357 0.776675i −0.994339 0.106255i \(-0.966114\pi\)
0.741982 0.670420i \(-0.233886\pi\)
\(390\) 0 0
\(391\) −8.22011 + 5.97226i −0.415709 + 0.302030i
\(392\) 0 0
\(393\) 3.71138 11.4224i 0.187214 0.576186i
\(394\) 0 0
\(395\) −6.99381 −0.351897
\(396\) 0 0
\(397\) 16.8311 0.844731 0.422365 0.906426i \(-0.361200\pi\)
0.422365 + 0.906426i \(0.361200\pi\)
\(398\) 0 0
\(399\) 19.8545 61.1060i 0.993970 3.05912i
\(400\) 0 0
\(401\) −4.26126 + 3.09599i −0.212797 + 0.154606i −0.689078 0.724687i \(-0.741984\pi\)
0.476281 + 0.879293i \(0.341984\pi\)
\(402\) 0 0
\(403\) −1.00371 3.08911i −0.0499985 0.153880i
\(404\) 0 0
\(405\) 23.4490 + 17.0367i 1.16519 + 0.846560i
\(406\) 0 0
\(407\) −4.59841 1.42933i −0.227935 0.0708493i
\(408\) 0 0
\(409\) −18.8805 13.7175i −0.933581 0.678286i 0.0132860 0.999912i \(-0.495771\pi\)
−0.946867 + 0.321625i \(0.895771\pi\)
\(410\) 0 0
\(411\) −16.5433 50.9151i −0.816022 2.51146i
\(412\) 0 0
\(413\) −36.1471 + 26.2624i −1.77868 + 1.29229i
\(414\) 0 0
\(415\) −3.32222 + 10.2247i −0.163081 + 0.501913i
\(416\) 0 0
\(417\) 24.6713 1.20816
\(418\) 0 0
\(419\) −9.21755 −0.450307 −0.225153 0.974323i \(-0.572288\pi\)
−0.225153 + 0.974323i \(0.572288\pi\)
\(420\) 0 0
\(421\) 6.48628 19.9627i 0.316122 0.972924i −0.659168 0.751996i \(-0.729091\pi\)
0.975290 0.220928i \(-0.0709086\pi\)
\(422\) 0 0
\(423\) 27.4216 19.9229i 1.33328 0.968686i
\(424\) 0 0
\(425\) 0.491330 + 1.51216i 0.0238330 + 0.0733504i
\(426\) 0 0
\(427\) −25.2980 18.3801i −1.22426 0.889475i
\(428\) 0 0
\(429\) −0.596834 46.6428i −0.0288154 2.25194i
\(430\) 0 0
\(431\) 29.7863 + 21.6410i 1.43476 + 1.04241i 0.989106 + 0.147205i \(0.0470279\pi\)
0.445651 + 0.895207i \(0.352972\pi\)
\(432\) 0 0
\(433\) 3.59506 + 11.0645i 0.172768 + 0.531724i 0.999524 0.0308355i \(-0.00981681\pi\)
−0.826757 + 0.562559i \(0.809817\pi\)
\(434\) 0 0
\(435\) −1.01557 + 0.737855i −0.0486928 + 0.0353774i
\(436\) 0 0
\(437\) −10.9617 + 33.7366i −0.524369 + 1.61384i
\(438\) 0 0
\(439\) 12.4765 0.595471 0.297735 0.954648i \(-0.403769\pi\)
0.297735 + 0.954648i \(0.403769\pi\)
\(440\) 0 0
\(441\) 42.0057 2.00027
\(442\) 0 0
\(443\) −2.54233 + 7.82449i −0.120790 + 0.371753i −0.993111 0.117181i \(-0.962614\pi\)
0.872321 + 0.488934i \(0.162614\pi\)
\(444\) 0 0
\(445\) 0.365347 0.265440i 0.0173191 0.0125831i
\(446\) 0 0
\(447\) −11.9080 36.6490i −0.563228 1.73344i
\(448\) 0 0
\(449\) 27.7003 + 20.1255i 1.30726 + 0.949779i 0.999998 0.00184649i \(-0.000587755\pi\)
0.307260 + 0.951625i \(0.400588\pi\)
\(450\) 0 0
\(451\) 12.1440 + 16.2728i 0.571837 + 0.766254i
\(452\) 0 0
\(453\) 33.5682 + 24.3887i 1.57717 + 1.14588i
\(454\) 0 0
\(455\) −4.63944 14.2787i −0.217500 0.669397i
\(456\) 0 0
\(457\) −19.7657 + 14.3606i −0.924600 + 0.671761i −0.944665 0.328038i \(-0.893613\pi\)
0.0200648 + 0.999799i \(0.493613\pi\)
\(458\) 0 0
\(459\) 7.83557 24.1154i 0.365733 1.12561i
\(460\) 0 0
\(461\) −15.4406 −0.719141 −0.359571 0.933118i \(-0.617077\pi\)
−0.359571 + 0.933118i \(0.617077\pi\)
\(462\) 0 0
\(463\) 25.6507 1.19209 0.596046 0.802951i \(-0.296738\pi\)
0.596046 + 0.802951i \(0.296738\pi\)
\(464\) 0 0
\(465\) −0.773816 + 2.38156i −0.0358849 + 0.110442i
\(466\) 0 0
\(467\) −6.31075 + 4.58503i −0.292027 + 0.212170i −0.724146 0.689647i \(-0.757766\pi\)
0.432119 + 0.901816i \(0.357766\pi\)
\(468\) 0 0
\(469\) 13.5924 + 41.8330i 0.627638 + 1.93167i
\(470\) 0 0
\(471\) 17.2534 + 12.5354i 0.794997 + 0.577599i
\(472\) 0 0
\(473\) 13.7699 19.4718i 0.633142 0.895316i
\(474\) 0 0
\(475\) 4.49080 + 3.26276i 0.206052 + 0.149706i
\(476\) 0 0
\(477\) −16.8420 51.8343i −0.771141 2.37333i
\(478\) 0 0
\(479\) −31.4994 + 22.8856i −1.43924 + 1.04567i −0.451042 + 0.892503i \(0.648948\pi\)
−0.988200 + 0.153168i \(0.951052\pi\)
\(480\) 0 0
\(481\) 1.91633 5.89784i 0.0873769 0.268918i
\(482\) 0 0
\(483\) −73.9674 −3.36563
\(484\) 0 0
\(485\) 2.77956 0.126213
\(486\) 0 0
\(487\) 5.50829 16.9528i 0.249605 0.768204i −0.745240 0.666796i \(-0.767665\pi\)
0.994845 0.101408i \(-0.0323347\pi\)
\(488\) 0 0
\(489\) −58.0051 + 42.1432i −2.62308 + 1.90578i
\(490\) 0 0
\(491\) −1.35228 4.16188i −0.0610274 0.187823i 0.915895 0.401418i \(-0.131483\pi\)
−0.976922 + 0.213595i \(0.931483\pi\)
\(492\) 0 0
\(493\) 0.490371 + 0.356275i 0.0220852 + 0.0160458i
\(494\) 0 0
\(495\) −15.0193 + 21.2385i −0.675066 + 0.954599i
\(496\) 0 0
\(497\) −20.9269 15.2043i −0.938700 0.682006i
\(498\) 0 0
\(499\) −12.5515 38.6296i −0.561883 1.72930i −0.677037 0.735949i \(-0.736736\pi\)
0.115154 0.993348i \(-0.463264\pi\)
\(500\) 0 0
\(501\) 50.8507 36.9452i 2.27184 1.65059i
\(502\) 0 0
\(503\) −1.95322 + 6.01140i −0.0870899 + 0.268035i −0.985112 0.171916i \(-0.945004\pi\)
0.898022 + 0.439951i \(0.145004\pi\)
\(504\) 0 0
\(505\) −5.33731 −0.237507
\(506\) 0 0
\(507\) 17.2645 0.766745
\(508\) 0 0
\(509\) −3.99655 + 12.3001i −0.177144 + 0.545193i −0.999725 0.0234549i \(-0.992533\pi\)
0.822581 + 0.568648i \(0.192533\pi\)
\(510\) 0 0
\(511\) 19.9976 14.5291i 0.884642 0.642730i
\(512\) 0 0
\(513\) −27.3556 84.1918i −1.20778 3.71716i
\(514\) 0 0
\(515\) −14.0621 10.2167i −0.619649 0.450201i
\(516\) 0 0
\(517\) 8.57255 + 11.4871i 0.377020 + 0.505202i
\(518\) 0 0
\(519\) 3.85293 + 2.79932i 0.169125 + 0.122876i
\(520\) 0 0
\(521\) −5.07670 15.6245i −0.222414 0.684521i −0.998544 0.0539474i \(-0.982820\pi\)
0.776129 0.630574i \(-0.217180\pi\)
\(522\) 0 0
\(523\) −17.2807 + 12.5552i −0.755632 + 0.548999i −0.897567 0.440877i \(-0.854667\pi\)
0.141936 + 0.989876i \(0.454667\pi\)
\(524\) 0 0
\(525\) −3.57679 + 11.0082i −0.156104 + 0.480438i
\(526\) 0 0
\(527\) 1.20912 0.0526702
\(528\) 0 0
\(529\) 17.8375 0.775542
\(530\) 0 0
\(531\) −30.8070 + 94.8143i −1.33691 + 4.11459i
\(532\) 0 0
\(533\) −21.1546 + 15.3697i −0.916307 + 0.665736i
\(534\) 0 0
\(535\) 1.08089 + 3.32663i 0.0467309 + 0.143823i
\(536\) 0 0
\(537\) −24.0553 17.4772i −1.03806 0.754198i
\(538\) 0 0
\(539\) 0.227275 + 17.7616i 0.00978941 + 0.765047i
\(540\) 0 0
\(541\) −19.4975 14.1658i −0.838265 0.609035i 0.0836204 0.996498i \(-0.473352\pi\)
−0.921885 + 0.387462i \(0.873352\pi\)
\(542\) 0 0
\(543\) −1.16739 3.59286i −0.0500976 0.154184i
\(544\) 0 0
\(545\) 3.97397 2.88725i 0.170226 0.123676i
\(546\) 0 0
\(547\) −6.85674 + 21.1029i −0.293173 + 0.902293i 0.690656 + 0.723183i \(0.257322\pi\)
−0.983829 + 0.179110i \(0.942678\pi\)
\(548\) 0 0
\(549\) −69.7719 −2.97779
\(550\) 0 0
\(551\) 2.11613 0.0901501
\(552\) 0 0
\(553\) −7.59680 + 23.3806i −0.323049 + 0.994243i
\(554\) 0 0
\(555\) −3.86788 + 2.81018i −0.164182 + 0.119285i
\(556\) 0 0
\(557\) 10.9315 + 33.6437i 0.463182 + 1.42553i 0.861254 + 0.508174i \(0.169679\pi\)
−0.398072 + 0.917354i \(0.630321\pi\)
\(558\) 0 0
\(559\) 24.8471 + 18.0524i 1.05092 + 0.763537i
\(560\) 0 0
\(561\) 16.5820 + 5.15420i 0.700091 + 0.217610i
\(562\) 0 0
\(563\) −5.49638 3.99335i −0.231645 0.168300i 0.465908 0.884833i \(-0.345728\pi\)
−0.697553 + 0.716533i \(0.745728\pi\)
\(564\) 0 0
\(565\) 5.30638 + 16.3314i 0.223241 + 0.687066i
\(566\) 0 0
\(567\) 82.4251 59.8853i 3.46153 2.51495i
\(568\) 0 0
\(569\) 11.2890 34.7440i 0.473259 1.45654i −0.375032 0.927012i \(-0.622368\pi\)
0.848291 0.529530i \(-0.177632\pi\)
\(570\) 0 0
\(571\) −30.4606 −1.27474 −0.637369 0.770559i \(-0.719977\pi\)
−0.637369 + 0.770559i \(0.719977\pi\)
\(572\) 0 0
\(573\) 49.3496 2.06161
\(574\) 0 0
\(575\) 1.97475 6.07765i 0.0823527 0.253456i
\(576\) 0 0
\(577\) −8.50077 + 6.17617i −0.353892 + 0.257117i −0.750500 0.660871i \(-0.770187\pi\)
0.396608 + 0.917988i \(0.370187\pi\)
\(578\) 0 0
\(579\) −15.4486 47.5459i −0.642022 1.97594i
\(580\) 0 0
\(581\) 30.5730 + 22.2126i 1.26838 + 0.921534i
\(582\) 0 0
\(583\) 21.8264 7.40189i 0.903957 0.306555i
\(584\) 0 0
\(585\) −27.1014 19.6903i −1.12051 0.814095i
\(586\) 0 0
\(587\) 6.77626 + 20.8552i 0.279686 + 0.860785i 0.987941 + 0.154829i \(0.0494826\pi\)
−0.708255 + 0.705956i \(0.750517\pi\)
\(588\) 0 0
\(589\) 3.41510 2.48121i 0.140717 0.102237i
\(590\) 0 0
\(591\) −3.00969 + 9.26286i −0.123802 + 0.381023i
\(592\) 0 0
\(593\) −21.6482 −0.888987 −0.444493 0.895782i \(-0.646616\pi\)
−0.444493 + 0.895782i \(0.646616\pi\)
\(594\) 0 0
\(595\) 5.58889 0.229122
\(596\) 0 0
\(597\) 5.16892 15.9083i 0.211550 0.651083i
\(598\) 0 0
\(599\) −35.3626 + 25.6924i −1.44488 + 1.04976i −0.457880 + 0.889014i \(0.651391\pi\)
−0.986995 + 0.160750i \(0.948609\pi\)
\(600\) 0 0
\(601\) 1.26659 + 3.89816i 0.0516653 + 0.159009i 0.973560 0.228431i \(-0.0733594\pi\)
−0.921895 + 0.387440i \(0.873359\pi\)
\(602\) 0 0
\(603\) 79.4003 + 57.6877i 3.23343 + 2.34922i
\(604\) 0 0
\(605\) −9.06171 6.23581i −0.368411 0.253522i
\(606\) 0 0
\(607\) 34.1107 + 24.7829i 1.38451 + 1.00591i 0.996443 + 0.0842744i \(0.0268572\pi\)
0.388067 + 0.921631i \(0.373143\pi\)
\(608\) 0 0
\(609\) 1.36354 + 4.19656i 0.0552536 + 0.170053i
\(610\) 0 0
\(611\) −14.9332 + 10.8496i −0.604134 + 0.438929i
\(612\) 0 0
\(613\) −3.29326 + 10.1356i −0.133014 + 0.409374i −0.995276 0.0970885i \(-0.969047\pi\)
0.862262 + 0.506462i \(0.169047\pi\)
\(614\) 0 0
\(615\) 20.1593 0.812901
\(616\) 0 0
\(617\) 6.71898 0.270496 0.135248 0.990812i \(-0.456817\pi\)
0.135248 + 0.990812i \(0.456817\pi\)
\(618\) 0 0
\(619\) 10.6056 32.6407i 0.426275 1.31194i −0.475493 0.879719i \(-0.657730\pi\)
0.901768 0.432220i \(-0.142270\pi\)
\(620\) 0 0
\(621\) −82.4488 + 59.9025i −3.30855 + 2.40381i
\(622\) 0 0
\(623\) −0.490530 1.50970i −0.0196527 0.0604847i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) 57.4117 19.4698i 2.29280 0.777547i
\(628\) 0 0
\(629\) 1.86762 + 1.35690i 0.0744667 + 0.0541032i
\(630\) 0 0
\(631\) −3.40926 10.4926i −0.135721 0.417705i 0.859981 0.510327i \(-0.170475\pi\)
−0.995701 + 0.0926212i \(0.970475\pi\)
\(632\) 0 0
\(633\) −22.6657 + 16.4676i −0.900879 + 0.654527i
\(634\) 0 0
\(635\) 4.78616 14.7303i 0.189933 0.584553i
\(636\) 0 0
\(637\) −22.8755 −0.906358
\(638\) 0 0
\(639\) −57.7163 −2.28322
\(640\) 0 0
\(641\) −7.81307 + 24.0462i −0.308598 + 0.949767i 0.669712 + 0.742621i \(0.266417\pi\)
−0.978310 + 0.207146i \(0.933583\pi\)
\(642\) 0 0
\(643\) −4.31960 + 3.13838i −0.170349 + 0.123765i −0.669693 0.742638i \(-0.733574\pi\)
0.499344 + 0.866404i \(0.333574\pi\)
\(644\) 0 0
\(645\) −7.31691 22.5191i −0.288103 0.886691i
\(646\) 0 0
\(647\) 2.79236 + 2.02877i 0.109779 + 0.0797591i 0.641320 0.767273i \(-0.278387\pi\)
−0.531541 + 0.847032i \(0.678387\pi\)
\(648\) 0 0
\(649\) −40.2578 12.5134i −1.58026 0.491194i
\(650\) 0 0
\(651\) 7.12111 + 5.17379i 0.279098 + 0.202777i
\(652\) 0 0
\(653\) 3.49945 + 10.7702i 0.136944 + 0.421471i 0.995887 0.0906000i \(-0.0288785\pi\)
−0.858943 + 0.512071i \(0.828878\pi\)
\(654\) 0 0
\(655\) 2.95076 2.14385i 0.115296 0.0837673i
\(656\) 0 0
\(657\) 17.0433 52.4539i 0.664923 2.04642i
\(658\) 0 0
\(659\) −12.0511 −0.469444 −0.234722 0.972063i \(-0.575418\pi\)
−0.234722 + 0.972063i \(0.575418\pi\)
\(660\) 0 0
\(661\) −11.9301 −0.464027 −0.232013 0.972713i \(-0.574531\pi\)
−0.232013 + 0.972713i \(0.574531\pi\)
\(662\) 0 0
\(663\) −6.91031 + 21.2677i −0.268374 + 0.825971i
\(664\) 0 0
\(665\) 15.7855 11.4688i 0.612136 0.444743i
\(666\) 0 0
\(667\) −0.752814 2.31692i −0.0291491 0.0897116i
\(668\) 0 0
\(669\) 40.0779 + 29.1183i 1.54950 + 1.12578i
\(670\) 0 0
\(671\) −0.377505 29.5022i −0.0145734 1.13892i
\(672\) 0 0
\(673\) 26.9841 + 19.6051i 1.04016 + 0.755720i 0.970317 0.241838i \(-0.0777502\pi\)
0.0698428 + 0.997558i \(0.477750\pi\)
\(674\) 0 0
\(675\) 4.92810 + 15.1671i 0.189683 + 0.583783i
\(676\) 0 0
\(677\) −24.2644 + 17.6291i −0.932555 + 0.677541i −0.946617 0.322360i \(-0.895524\pi\)
0.0140621 + 0.999901i \(0.495524\pi\)
\(678\) 0 0
\(679\) 3.01921 9.29218i 0.115867 0.356601i
\(680\) 0 0
\(681\) 51.7096 1.98152
\(682\) 0 0
\(683\) −13.1505 −0.503190 −0.251595 0.967833i \(-0.580955\pi\)
−0.251595 + 0.967833i \(0.580955\pi\)
\(684\) 0 0
\(685\) 5.02396 15.4622i 0.191956 0.590779i
\(686\) 0 0
\(687\) −57.2121 + 41.5670i −2.18278 + 1.58588i
\(688\) 0 0
\(689\) 9.17181 + 28.2279i 0.349418 + 1.07540i
\(690\) 0 0
\(691\) −21.1770 15.3860i −0.805613 0.585312i 0.106942 0.994265i \(-0.465894\pi\)
−0.912555 + 0.408953i \(0.865894\pi\)
\(692\) 0 0
\(693\) 54.6868 + 73.2796i 2.07738 + 2.78366i
\(694\) 0 0
\(695\) 6.06141 + 4.40387i 0.229923 + 0.167048i
\(696\) 0 0
\(697\) −3.00796 9.25755i −0.113935 0.350655i
\(698\) 0 0
\(699\) 18.8508 13.6959i 0.713004 0.518028i
\(700\) 0 0
\(701\) 0.437201 1.34557i 0.0165129 0.0508214i −0.942461 0.334317i \(-0.891494\pi\)
0.958973 + 0.283496i \(0.0914943\pi\)
\(702\) 0 0
\(703\) 8.05944 0.303968
\(704\) 0 0
\(705\) 14.2306 0.535957
\(706\) 0 0
\(707\) −5.79749 + 17.8428i −0.218037 + 0.671049i
\(708\) 0 0
\(709\) −2.97859 + 2.16407i −0.111863 + 0.0812734i −0.642310 0.766445i \(-0.722024\pi\)
0.530447 + 0.847718i \(0.322024\pi\)
\(710\) 0 0
\(711\) 16.9505 + 52.1682i 0.635693 + 1.95646i
\(712\) 0 0
\(713\) −3.93157 2.85645i −0.147238 0.106975i
\(714\) 0 0
\(715\) 8.17919 11.5661i 0.305885 0.432546i
\(716\) 0 0
\(717\) 34.5910 + 25.1318i 1.29182 + 0.938565i
\(718\) 0 0
\(719\) 2.45788 + 7.56458i 0.0916635 + 0.282111i 0.986370 0.164544i \(-0.0526151\pi\)
−0.894706 + 0.446655i \(0.852615\pi\)
\(720\) 0 0
\(721\) −49.4293 + 35.9125i −1.84084 + 1.33745i
\(722\) 0 0
\(723\) 5.00070 15.3906i 0.185978 0.572381i
\(724\) 0 0
\(725\) −0.381220 −0.0141582
\(726\) 0 0
\(727\) 35.6495 1.32217 0.661083 0.750313i \(-0.270097\pi\)
0.661083 + 0.750313i \(0.270097\pi\)
\(728\) 0 0
\(729\) 21.5653 66.3711i 0.798714 2.45819i
\(730\) 0 0
\(731\) −9.24949 + 6.72015i −0.342105 + 0.248554i
\(732\) 0 0
\(733\) 2.94883 + 9.07558i 0.108918 + 0.335214i 0.990630 0.136573i \(-0.0436089\pi\)
−0.881712 + 0.471788i \(0.843609\pi\)
\(734\) 0 0
\(735\) 14.2678 + 10.3661i 0.526274 + 0.382360i
\(736\) 0 0
\(737\) −23.9630 + 33.8856i −0.882688 + 1.24819i
\(738\) 0 0
\(739\) 28.2796 + 20.5463i 1.04028 + 0.755808i 0.970340 0.241743i \(-0.0777192\pi\)
0.0699400 + 0.997551i \(0.477719\pi\)
\(740\) 0 0
\(741\) 24.1253 + 74.2500i 0.886265 + 2.72764i
\(742\) 0 0
\(743\) 27.3175 19.8473i 1.00218 0.728128i 0.0396268 0.999215i \(-0.487383\pi\)
0.962555 + 0.271087i \(0.0873831\pi\)
\(744\) 0 0
\(745\) 3.61628 11.1298i 0.132490 0.407763i
\(746\) 0 0
\(747\) 84.3203 3.08512
\(748\) 0 0
\(749\) 12.2951 0.449255
\(750\) 0 0
\(751\) 4.10288 12.6274i 0.149716 0.460779i −0.847871 0.530202i \(-0.822116\pi\)
0.997587 + 0.0694236i \(0.0221160\pi\)
\(752\) 0 0
\(753\) 12.4825 9.06903i 0.454886 0.330494i
\(754\) 0 0
\(755\) 3.89383 + 11.9840i 0.141711 + 0.436141i
\(756\) 0 0
\(757\) −13.1915 9.58418i −0.479453 0.348343i 0.321661 0.946855i \(-0.395759\pi\)
−0.801114 + 0.598512i \(0.795759\pi\)
\(758\) 0 0
\(759\) −41.7414 55.9329i −1.51512 2.03024i
\(760\) 0 0
\(761\) 17.2081 + 12.5025i 0.623795 + 0.453214i 0.854245 0.519871i \(-0.174020\pi\)
−0.230450 + 0.973084i \(0.574020\pi\)
\(762\) 0 0
\(763\) −5.33560 16.4213i −0.193162 0.594491i
\(764\) 0 0
\(765\) 10.0887 7.32986i 0.364757 0.265012i
\(766\) 0 0
\(767\) 16.7769 51.6340i 0.605779 1.86440i
\(768\) 0 0
\(769\) −5.81494 −0.209692 −0.104846 0.994488i \(-0.533435\pi\)
−0.104846 + 0.994488i \(0.533435\pi\)
\(770\) 0 0
\(771\) 6.33737 0.228235
\(772\) 0 0
\(773\) 5.76962 17.7571i 0.207519 0.638677i −0.792082 0.610415i \(-0.791003\pi\)
0.999601 0.0282619i \(-0.00899724\pi\)
\(774\) 0 0
\(775\) −0.615229 + 0.446990i −0.0220997 + 0.0160564i
\(776\) 0 0
\(777\) 5.19317 + 15.9829i 0.186304 + 0.573384i
\(778\) 0 0
\(779\) −27.4931 19.9749i −0.985041 0.715674i
\(780\) 0 0
\(781\) −0.312278 24.4047i −0.0111742 0.873269i
\(782\) 0 0
\(783\) 4.91848 + 3.57348i 0.175772 + 0.127706i
\(784\) 0 0
\(785\) 2.00136 + 6.15954i 0.0714315 + 0.219843i
\(786\) 0 0
\(787\) −37.4747 + 27.2270i −1.33583 + 0.970536i −0.336242 + 0.941775i \(0.609156\pi\)
−0.999586 + 0.0287609i \(0.990844\pi\)
\(788\) 0 0
\(789\) 16.9795 52.2575i 0.604486 1.86042i
\(790\) 0 0
\(791\) 60.3602 2.14616
\(792\) 0 0
\(793\) 37.9964 1.34929
\(794\) 0 0
\(795\) 7.07104 21.7624i 0.250784 0.771833i
\(796\) 0 0
\(797\) 4.94938 3.59593i 0.175316 0.127375i −0.496667 0.867941i \(-0.665443\pi\)
0.671983 + 0.740567i \(0.265443\pi\)
\(798\) 0 0
\(799\) −2.12335 6.53500i −0.0751187 0.231192i
\(800\) 0 0
\(801\) −2.86545 2.08187i −0.101246 0.0735592i
\(802\) 0 0
\(803\) 22.2717 + 6.92276i 0.785953 + 0.244299i
\(804\) 0 0
\(805\) −18.1728 13.2033i −0.640507 0.465356i
\(806\) 0 0
\(807\) −4.66828 14.3675i −0.164331 0.505760i
\(808\) 0 0
\(809\) −11.4981 + 8.35384i −0.404251 + 0.293706i −0.771270 0.636508i \(-0.780378\pi\)
0.367019 + 0.930213i \(0.380378\pi\)
\(810\) 0 0
\(811\) −9.46843 + 29.1408i −0.332482 + 1.02327i 0.635468 + 0.772128i \(0.280807\pi\)
−0.967949 + 0.251146i \(0.919193\pi\)
\(812\) 0 0
\(813\) −66.6570 −2.33776
\(814\) 0 0
\(815\) −21.7737 −0.762700
\(816\) 0 0
\(817\) −12.3344 + 37.9614i −0.431526 + 1.32810i
\(818\) 0 0
\(819\) −95.2635 + 69.2130i −3.32878 + 2.41850i
\(820\) 0 0
\(821\) −1.09135 3.35884i −0.0380885 0.117224i 0.930204 0.367042i \(-0.119629\pi\)
−0.968293 + 0.249817i \(0.919629\pi\)
\(822\) 0 0
\(823\) 24.1029 + 17.5118i 0.840174 + 0.610422i 0.922419 0.386190i \(-0.126209\pi\)
−0.0822455 + 0.996612i \(0.526209\pi\)
\(824\) 0 0
\(825\) −10.3427 + 3.50747i −0.360087 + 0.122115i
\(826\) 0 0
\(827\) −40.8255 29.6614i −1.41964 1.03143i −0.991831 0.127561i \(-0.959285\pi\)
−0.427810 0.903869i \(-0.640715\pi\)
\(828\) 0 0
\(829\) −5.96340 18.3535i −0.207117 0.637442i −0.999620 0.0275731i \(-0.991222\pi\)
0.792502 0.609869i \(-0.208778\pi\)
\(830\) 0 0
\(831\) −12.7847 + 9.28862i −0.443496 + 0.322219i
\(832\) 0 0
\(833\) 2.63145 8.09877i 0.0911743 0.280606i
\(834\) 0 0
\(835\) 19.0881 0.660572
\(836\) 0 0
\(837\) 12.1276 0.419193
\(838\) 0 0
\(839\) 5.22204 16.0718i 0.180285 0.554859i −0.819551 0.573007i \(-0.805777\pi\)
0.999835 + 0.0181475i \(0.00577685\pi\)
\(840\) 0 0
\(841\) 23.3439 16.9604i 0.804963 0.584840i
\(842\) 0 0
\(843\) −21.9772 67.6388i −0.756934 2.32960i
\(844\) 0 0
\(845\) 4.24167 + 3.08175i 0.145918 + 0.106015i
\(846\) 0 0
\(847\) −30.6896 + 23.5202i −1.05451 + 0.808163i
\(848\) 0 0
\(849\) −32.6445 23.7176i −1.12036 0.813987i
\(850\) 0 0
\(851\) −2.86715 8.82418i −0.0982847 0.302489i
\(852\) 0 0
\(853\) 38.4944 27.9678i 1.31802 0.957599i 0.318067 0.948068i \(-0.396966\pi\)
0.999955 0.00953082i \(-0.00303380\pi\)
\(854\) 0 0
\(855\) 13.4535 41.4056i 0.460099 1.41604i
\(856\) 0 0
\(857\) 21.8041 0.744813 0.372406 0.928070i \(-0.378533\pi\)
0.372406 + 0.928070i \(0.378533\pi\)
\(858\) 0 0
\(859\) 23.3331 0.796116 0.398058 0.917360i \(-0.369684\pi\)
0.398058 + 0.917360i \(0.369684\pi\)
\(860\) 0 0
\(861\) 21.8974 67.3933i 0.746261 2.29676i
\(862\) 0 0
\(863\) −17.7244 + 12.8775i −0.603346 + 0.438357i −0.847065 0.531489i \(-0.821633\pi\)
0.243719 + 0.969846i \(0.421633\pi\)
\(864\) 0 0
\(865\) 0.446930 + 1.37551i 0.0151961 + 0.0467688i
\(866\) 0 0
\(867\) 38.5533 + 28.0106i 1.30934 + 0.951290i
\(868\) 0 0
\(869\) −21.9670 + 7.44958i −0.745181 + 0.252710i
\(870\) 0 0
\(871\) −43.2398 31.4156i −1.46513 1.06448i
\(872\) 0 0
\(873\) −6.73667 20.7333i −0.228002 0.701717i
\(874\) 0 0
\(875\) −2.84376 + 2.06611i −0.0961365 + 0.0698473i
\(876\) 0 0
\(877\) 16.2963 50.1547i 0.550286 1.69361i −0.157794 0.987472i \(-0.550438\pi\)
0.708079 0.706133i \(-0.249562\pi\)
\(878\) 0 0
\(879\) 47.1518 1.59039
\(880\) 0 0
\(881\) 34.3244 1.15642 0.578210 0.815888i \(-0.303752\pi\)
0.578210 + 0.815888i \(0.303752\pi\)
\(882\) 0 0
\(883\) −15.3638 + 47.2850i −0.517034 + 1.59127i 0.262516 + 0.964928i \(0.415448\pi\)
−0.779550 + 0.626340i \(0.784552\pi\)
\(884\) 0 0
\(885\) −33.8622 + 24.6023i −1.13827 + 0.826998i
\(886\) 0 0
\(887\) 3.70249 + 11.3951i 0.124317 + 0.382610i 0.993776 0.111396i \(-0.0355322\pi\)
−0.869459 + 0.494006i \(0.835532\pi\)
\(888\) 0 0
\(889\) −44.0450 32.0006i −1.47722 1.07327i
\(890\) 0 0
\(891\) 91.7985 + 28.5339i 3.07537 + 0.955921i
\(892\) 0 0
\(893\) −19.4076 14.1005i −0.649451 0.471854i
\(894\) 0 0
\(895\) −2.79036 8.58784i −0.0932714 0.287060i
\(896\) 0 0
\(897\) 72.7128 52.8290i 2.42781 1.76391i
\(898\) 0 0
\(899\) −0.0895854 + 0.275716i −0.00298784 + 0.00919563i
\(900\) 0 0
\(901\) −11.0488 −0.368089
\(902\) 0 0
\(903\) −83.2301 −2.76972
\(904\) 0 0
\(905\) 0.354520 1.09110i 0.0117846 0.0362694i
\(906\) 0 0
\(907\) 38.2401 27.7831i 1.26974 0.922522i 0.270550 0.962706i \(-0.412794\pi\)
0.999192 + 0.0401839i \(0.0127944\pi\)
\(908\) 0 0
\(909\) 12.9357 + 39.8121i 0.429051 + 1.32048i
\(910\) 0 0
\(911\) −7.16223 5.20366i −0.237295 0.172405i 0.462782 0.886472i \(-0.346851\pi\)
−0.700077 + 0.714067i \(0.746851\pi\)
\(912\) 0 0
\(913\) 0.456221 + 35.6539i 0.0150987 + 1.17997i
\(914\) 0 0
\(915\) −23.6989 17.2182i −0.783461 0.569218i
\(916\) 0 0
\(917\) −3.96181 12.1932i −0.130830 0.402655i
\(918\) 0 0
\(919\) −13.3602 + 9.70674i −0.440712 + 0.320196i −0.785918 0.618331i \(-0.787809\pi\)
0.345206 + 0.938527i \(0.387809\pi\)
\(920\) 0 0
\(921\) −0.578468 + 1.78034i −0.0190612 + 0.0586642i
\(922\) 0 0
\(923\) 31.4312 1.03457
\(924\) 0 0
\(925\) −1.45191 −0.0477384
\(926\) 0 0
\(927\) −42.1270 + 129.654i −1.38363 + 4.25838i
\(928\) 0 0
\(929\) 9.13367 6.63600i 0.299666 0.217720i −0.427784 0.903881i \(-0.640705\pi\)
0.727450 + 0.686161i \(0.240705\pi\)
\(930\) 0 0
\(931\) −9.18693 28.2745i −0.301089 0.926658i
\(932\) 0 0
\(933\) 27.1852 + 19.7512i 0.890005 + 0.646626i
\(934\) 0 0
\(935\) 3.15393 + 4.22623i 0.103145 + 0.138212i
\(936\) 0 0
\(937\) 17.4527 + 12.6801i 0.570153 + 0.414241i 0.835161 0.550006i \(-0.185374\pi\)
−0.265008 + 0.964246i \(0.585374\pi\)
\(938\) 0 0
\(939\) −9.50017 29.2385i −0.310026 0.954163i
\(940\) 0 0
\(941\) −40.6986 + 29.5693i −1.32674 + 0.963930i −0.326914 + 0.945054i \(0.606009\pi\)
−0.999822 + 0.0188761i \(0.993991\pi\)
\(942\) 0 0
\(943\) −12.0896 + 37.2079i −0.393691 + 1.21165i
\(944\) 0 0
\(945\) 56.0573 1.82354
\(946\) 0 0
\(947\) 41.7335 1.35615 0.678077 0.734990i \(-0.262813\pi\)
0.678077 + 0.734990i \(0.262813\pi\)
\(948\) 0 0
\(949\) −9.28145 + 28.5654i −0.301288 + 0.927271i
\(950\) 0 0
\(951\) 75.3602 54.7524i 2.44372 1.77547i
\(952\) 0 0
\(953\) −10.8923 33.5229i −0.352835 1.08591i −0.957254 0.289248i \(-0.906595\pi\)
0.604420 0.796666i \(-0.293405\pi\)
\(954\) 0 0
\(955\) 12.1245 + 8.80899i 0.392341 + 0.285052i
\(956\) 0 0
\(957\) −2.40389 + 3.39930i −0.0777067 + 0.109884i
\(958\) 0 0
\(959\) −46.2335 33.5906i −1.49296 1.08470i
\(960\) 0 0
\(961\) −9.40082 28.9327i −0.303252 0.933315i
\(962\) 0 0
\(963\) 22.1943 16.1251i 0.715203 0.519625i
\(964\) 0 0
\(965\) 4.69151 14.4390i 0.151025 0.464808i
\(966\) 0 0
\(967\) 21.6156 0.695111 0.347556 0.937659i \(-0.387012\pi\)
0.347556 + 0.937659i \(0.387012\pi\)
\(968\) 0 0
\(969\) −29.0625 −0.933623
\(970\) 0 0
\(971\) 3.65675 11.2543i 0.117351 0.361169i −0.875079 0.483980i \(-0.839191\pi\)
0.992430 + 0.122811i \(0.0391909\pi\)
\(972\) 0 0
\(973\) 21.3063 15.4800i 0.683050 0.496265i
\(974\) 0 0
\(975\) −4.34617 13.3761i −0.139189 0.428379i
\(976\) 0 0
\(977\) 41.8260 + 30.3884i 1.33813 + 0.972210i 0.999510 + 0.0312874i \(0.00996071\pi\)
0.338622 + 0.940923i \(0.390039\pi\)
\(978\) 0 0
\(979\) 0.864790 1.22289i 0.0276388 0.0390836i
\(980\) 0 0
\(981\) −31.1681 22.6449i −0.995121 0.722998i
\(982\) 0 0
\(983\) 15.7983 + 48.6221i 0.503887 + 1.55080i 0.802634 + 0.596472i \(0.203431\pi\)
−0.298747 + 0.954332i \(0.596569\pi\)
\(984\) 0 0
\(985\) −2.39288 + 1.73853i −0.0762434 + 0.0553940i
\(986\) 0 0
\(987\) 15.4576 47.5736i 0.492021 1.51428i
\(988\) 0 0
\(989\) 45.9514 1.46117
\(990\) 0 0
\(991\) −3.16402 −0.100508 −0.0502542 0.998736i \(-0.516003\pi\)
−0.0502542 + 0.998736i \(0.516003\pi\)
\(992\) 0 0
\(993\) 5.41183 16.6559i 0.171739 0.528559i
\(994\) 0 0
\(995\) 4.10959 2.98579i 0.130283 0.0946560i
\(996\) 0 0
\(997\) −1.75762 5.40939i −0.0556643 0.171317i 0.919359 0.393420i \(-0.128708\pi\)
−0.975023 + 0.222103i \(0.928708\pi\)
\(998\) 0 0
\(999\) 18.7324 + 13.6099i 0.592667 + 0.430598i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.bo.i.81.3 12
4.3 odd 2 440.2.y.c.81.1 12
11.3 even 5 inner 880.2.bo.i.641.3 12
11.5 even 5 9680.2.a.dc.1.6 6
11.6 odd 10 9680.2.a.dd.1.6 6
44.3 odd 10 440.2.y.c.201.1 yes 12
44.27 odd 10 4840.2.a.bb.1.1 6
44.39 even 10 4840.2.a.ba.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.c.81.1 12 4.3 odd 2
440.2.y.c.201.1 yes 12 44.3 odd 10
880.2.bo.i.81.3 12 1.1 even 1 trivial
880.2.bo.i.641.3 12 11.3 even 5 inner
4840.2.a.ba.1.1 6 44.39 even 10
4840.2.a.bb.1.1 6 44.27 odd 10
9680.2.a.dc.1.6 6 11.5 even 5
9680.2.a.dd.1.6 6 11.6 odd 10