Properties

Label 9200.2.a.dc
Level $9200$
Weight $2$
Character orbit 9200.a
Self dual yes
Analytic conductor $73.462$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9200,2,Mod(1,9200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9200 = 2^{4} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.4623698596\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 7x^{5} + 24x^{4} + x^{3} - 35x^{2} + 17x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (\beta_{3} + 1) q^{7} + (\beta_{6} + \beta_{5} + \beta_{2}) q^{9} + (\beta_{6} + \beta_{5} + 1) q^{11} + (\beta_{5} + \beta_{2} + \beta_1) q^{13} + ( - \beta_{5} + 2 \beta_{3} - \beta_{2} + \cdots + 1) q^{17}+ \cdots + (4 \beta_{6} + 4 \beta_{5} - 3 \beta_{3} + \cdots + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} + 4 q^{7} + 2 q^{9} + 7 q^{11} + 7 q^{13} + 7 q^{19} - 6 q^{21} - 7 q^{23} - 11 q^{29} + 10 q^{31} + 19 q^{33} + 19 q^{37} + 24 q^{39} - 16 q^{41} + 6 q^{43} + 6 q^{47} - 17 q^{49} + 7 q^{51}+ \cdots + 61 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 7x^{5} + 24x^{4} + x^{3} - 35x^{2} + 17x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} - 11\nu^{4} - 3\nu^{3} + 26\nu^{2} + 7\nu - 6 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 2\nu^{5} - 9\nu^{4} + 15\nu^{3} + 16\nu^{2} - 21\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 10\nu^{3} + 6\nu^{2} + 20\nu - 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{6} - 8\nu^{5} - 23\nu^{4} + 63\nu^{3} + 20\nu^{2} - 91\nu + 22 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -2\nu^{6} + 4\nu^{5} + 17\nu^{4} - 30\nu^{3} - 22\nu^{2} + 42\nu - 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{6} + \beta_{5} - \beta_{4} - \beta_{3} + 2\beta_{2} + 6\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{6} + 10\beta_{5} - 4\beta_{3} + 10\beta_{2} + 15 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 13\beta_{6} + 14\beta_{5} - 9\beta_{4} - 14\beta_{3} + 24\beta_{2} + 40\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 76\beta_{6} + 87\beta_{5} - 3\beta_{4} - 47\beta_{3} + 92\beta_{2} + 11\beta _1 + 90 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.49931
−1.40334
0.189375
0.356372
1.58319
1.78665
2.98707
0 −2.49931 0 0 0 2.92777 0 3.24657 0
1.2 0 −1.40334 0 0 0 1.57117 0 −1.03063 0
1.3 0 0.189375 0 0 0 −1.65661 0 −2.96414 0
1.4 0 0.356372 0 0 0 −2.46376 0 −2.87300 0
1.5 0 1.58319 0 0 0 2.84620 0 −0.493499 0
1.6 0 1.78665 0 0 0 1.75578 0 0.192116 0
1.7 0 2.98707 0 0 0 −0.980560 0 5.92257 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9200.2.a.dc 7
4.b odd 2 1 4600.2.a.bh 7
5.b even 2 1 9200.2.a.cz 7
5.c odd 4 2 1840.2.e.g 14
20.d odd 2 1 4600.2.a.bi 7
20.e even 4 2 920.2.e.b 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.e.b 14 20.e even 4 2
1840.2.e.g 14 5.c odd 4 2
4600.2.a.bh 7 4.b odd 2 1
4600.2.a.bi 7 20.d odd 2 1
9200.2.a.cz 7 5.b even 2 1
9200.2.a.dc 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9200))\):

\( T_{3}^{7} - 3T_{3}^{6} - 7T_{3}^{5} + 24T_{3}^{4} + T_{3}^{3} - 35T_{3}^{2} + 17T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{7} - 4T_{7}^{6} - 8T_{7}^{5} + 41T_{7}^{4} + 10T_{7}^{3} - 116T_{7}^{2} + 12T_{7} + 92 \) Copy content Toggle raw display
\( T_{11}^{7} - 7T_{11}^{6} - 27T_{11}^{5} + 198T_{11}^{4} + 248T_{11}^{3} - 1224T_{11}^{2} - 1780T_{11} - 128 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} \) Copy content Toggle raw display
$3$ \( T^{7} - 3 T^{6} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{7} \) Copy content Toggle raw display
$7$ \( T^{7} - 4 T^{6} + \cdots + 92 \) Copy content Toggle raw display
$11$ \( T^{7} - 7 T^{6} + \cdots - 128 \) Copy content Toggle raw display
$13$ \( T^{7} - 7 T^{6} + \cdots + 2 \) Copy content Toggle raw display
$17$ \( T^{7} - 58 T^{5} + \cdots - 52 \) Copy content Toggle raw display
$19$ \( T^{7} - 7 T^{6} + \cdots - 1936 \) Copy content Toggle raw display
$23$ \( (T + 1)^{7} \) Copy content Toggle raw display
$29$ \( T^{7} + 11 T^{6} + \cdots + 9244 \) Copy content Toggle raw display
$31$ \( T^{7} - 10 T^{6} + \cdots + 225251 \) Copy content Toggle raw display
$37$ \( T^{7} - 19 T^{6} + \cdots - 42832 \) Copy content Toggle raw display
$41$ \( T^{7} + 16 T^{6} + \cdots + 110153 \) Copy content Toggle raw display
$43$ \( T^{7} - 6 T^{6} + \cdots + 64 \) Copy content Toggle raw display
$47$ \( T^{7} - 6 T^{6} + \cdots + 5752 \) Copy content Toggle raw display
$53$ \( T^{7} - 15 T^{6} + \cdots - 156352 \) Copy content Toggle raw display
$59$ \( T^{7} - 11 T^{6} + \cdots - 486592 \) Copy content Toggle raw display
$61$ \( T^{7} - 5 T^{6} + \cdots + 2669336 \) Copy content Toggle raw display
$67$ \( T^{7} - 9 T^{6} + \cdots + 462832 \) Copy content Toggle raw display
$71$ \( T^{7} - 14 T^{6} + \cdots - 632317 \) Copy content Toggle raw display
$73$ \( T^{7} - 10 T^{6} + \cdots - 16 \) Copy content Toggle raw display
$79$ \( T^{7} - 32 T^{6} + \cdots - 473312 \) Copy content Toggle raw display
$83$ \( T^{7} - T^{6} + \cdots - 11984 \) Copy content Toggle raw display
$89$ \( T^{7} + 24 T^{6} + \cdots + 311456 \) Copy content Toggle raw display
$97$ \( T^{7} + 7 T^{6} + \cdots + 4038856 \) Copy content Toggle raw display
show more
show less