Properties

Label 95.5.d.c.94.1
Level $95$
Weight $5$
Character 95.94
Self dual yes
Analytic conductor $9.820$
Analytic rank $0$
Dimension $2$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,5,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.82014649297\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 94.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 95.94

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.70820 q^{2} -4.47214 q^{3} +29.0000 q^{4} +25.0000 q^{5} +30.0000 q^{6} -87.2067 q^{8} -61.0000 q^{9} -167.705 q^{10} -62.0000 q^{11} -129.692 q^{12} +67.0820 q^{13} -111.803 q^{15} +121.000 q^{16} +409.200 q^{18} +361.000 q^{19} +725.000 q^{20} +415.909 q^{22} +390.000 q^{24} +625.000 q^{25} -450.000 q^{26} +635.043 q^{27} +750.000 q^{30} +583.614 q^{32} +277.272 q^{33} -1769.00 q^{36} +2643.03 q^{37} -2421.66 q^{38} -300.000 q^{39} -2180.17 q^{40} -1798.00 q^{44} -1525.00 q^{45} -541.128 q^{48} +2401.00 q^{49} -4192.63 q^{50} +1945.38 q^{52} -791.568 q^{53} -4260.00 q^{54} -1550.00 q^{55} -1614.44 q^{57} -3242.30 q^{60} +7138.00 q^{61} -5851.00 q^{64} +1677.05 q^{65} -1860.00 q^{66} +6077.63 q^{67} +5319.61 q^{72} -17730.0 q^{74} -2795.08 q^{75} +10469.0 q^{76} +2012.46 q^{78} +3025.00 q^{80} +2101.00 q^{81} +5406.81 q^{88} +10230.0 q^{90} +9025.00 q^{95} -2610.00 q^{96} +15415.5 q^{97} -16106.4 q^{98} +3782.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 58 q^{4} + 50 q^{5} + 60 q^{6} - 122 q^{9} - 124 q^{11} + 242 q^{16} + 722 q^{19} + 1450 q^{20} + 780 q^{24} + 1250 q^{25} - 900 q^{26} + 1500 q^{30} - 3538 q^{36} - 600 q^{39} - 3596 q^{44} - 3050 q^{45}+ \cdots + 7564 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −6.70820 −1.67705 −0.838525 0.544862i \(-0.816582\pi\)
−0.838525 + 0.544862i \(0.816582\pi\)
\(3\) −4.47214 −0.496904 −0.248452 0.968644i \(-0.579922\pi\)
−0.248452 + 0.968644i \(0.579922\pi\)
\(4\) 29.0000 1.81250
\(5\) 25.0000 1.00000
\(6\) 30.0000 0.833333
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) −87.2067 −1.36260
\(9\) −61.0000 −0.753086
\(10\) −167.705 −1.67705
\(11\) −62.0000 −0.512397 −0.256198 0.966624i \(-0.582470\pi\)
−0.256198 + 0.966624i \(0.582470\pi\)
\(12\) −129.692 −0.900638
\(13\) 67.0820 0.396935 0.198468 0.980107i \(-0.436404\pi\)
0.198468 + 0.980107i \(0.436404\pi\)
\(14\) 0 0
\(15\) −111.803 −0.496904
\(16\) 121.000 0.472656
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 409.200 1.26296
\(19\) 361.000 1.00000
\(20\) 725.000 1.81250
\(21\) 0 0
\(22\) 415.909 0.859315
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 390.000 0.677083
\(25\) 625.000 1.00000
\(26\) −450.000 −0.665680
\(27\) 635.043 0.871116
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 750.000 0.833333
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 583.614 0.569935
\(33\) 277.272 0.254612
\(34\) 0 0
\(35\) 0 0
\(36\) −1769.00 −1.36497
\(37\) 2643.03 1.93063 0.965315 0.261088i \(-0.0840813\pi\)
0.965315 + 0.261088i \(0.0840813\pi\)
\(38\) −2421.66 −1.67705
\(39\) −300.000 −0.197239
\(40\) −2180.17 −1.36260
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −1798.00 −0.928719
\(45\) −1525.00 −0.753086
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −541.128 −0.234865
\(49\) 2401.00 1.00000
\(50\) −4192.63 −1.67705
\(51\) 0 0
\(52\) 1945.38 0.719445
\(53\) −791.568 −0.281797 −0.140899 0.990024i \(-0.544999\pi\)
−0.140899 + 0.990024i \(0.544999\pi\)
\(54\) −4260.00 −1.46091
\(55\) −1550.00 −0.512397
\(56\) 0 0
\(57\) −1614.44 −0.496904
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −3242.30 −0.900638
\(61\) 7138.00 1.91830 0.959151 0.282895i \(-0.0912949\pi\)
0.959151 + 0.282895i \(0.0912949\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −5851.00 −1.42847
\(65\) 1677.05 0.396935
\(66\) −1860.00 −0.426997
\(67\) 6077.63 1.35389 0.676947 0.736031i \(-0.263302\pi\)
0.676947 + 0.736031i \(0.263302\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5319.61 1.02616
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −17730.0 −3.23776
\(75\) −2795.08 −0.496904
\(76\) 10469.0 1.81250
\(77\) 0 0
\(78\) 2012.46 0.330779
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 3025.00 0.472656
\(81\) 2101.00 0.320226
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 5406.81 0.698194
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 10230.0 1.26296
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 9025.00 1.00000
\(96\) −2610.00 −0.283203
\(97\) 15415.5 1.63837 0.819187 0.573527i \(-0.194425\pi\)
0.819187 + 0.573527i \(0.194425\pi\)
\(98\) −16106.4 −1.67705
\(99\) 3782.00 0.385879
\(100\) 18125.0 1.81250
\(101\) 20098.0 1.97020 0.985100 0.171985i \(-0.0550182\pi\)
0.985100 + 0.171985i \(0.0550182\pi\)
\(102\) 0 0
\(103\) −14637.3 −1.37971 −0.689853 0.723949i \(-0.742325\pi\)
−0.689853 + 0.723949i \(0.742325\pi\)
\(104\) −5850.00 −0.540865
\(105\) 0 0
\(106\) 5310.00 0.472588
\(107\) −17320.6 −1.51285 −0.756423 0.654082i \(-0.773055\pi\)
−0.756423 + 0.654082i \(0.773055\pi\)
\(108\) 18416.3 1.57890
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 10397.7 0.859315
\(111\) −11820.0 −0.959338
\(112\) 0 0
\(113\) −23867.8 −1.86920 −0.934599 0.355703i \(-0.884241\pi\)
−0.934599 + 0.355703i \(0.884241\pi\)
\(114\) 10830.0 0.833333
\(115\) 0 0
\(116\) 0 0
\(117\) −4092.00 −0.298926
\(118\) 0 0
\(119\) 0 0
\(120\) 9750.00 0.677083
\(121\) −10797.0 −0.737450
\(122\) −47883.2 −3.21709
\(123\) 0 0
\(124\) 0 0
\(125\) 15625.0 1.00000
\(126\) 0 0
\(127\) −14208.0 −0.880896 −0.440448 0.897778i \(-0.645180\pi\)
−0.440448 + 0.897778i \(0.645180\pi\)
\(128\) 29911.9 1.82568
\(129\) 0 0
\(130\) −11250.0 −0.665680
\(131\) −20398.0 −1.18863 −0.594313 0.804234i \(-0.702576\pi\)
−0.594313 + 0.804234i \(0.702576\pi\)
\(132\) 8040.90 0.461484
\(133\) 0 0
\(134\) −40770.0 −2.27055
\(135\) 15876.1 0.871116
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 1858.00 0.0961648 0.0480824 0.998843i \(-0.484689\pi\)
0.0480824 + 0.998843i \(0.484689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4159.09 −0.203388
\(144\) −7381.00 −0.355951
\(145\) 0 0
\(146\) 0 0
\(147\) −10737.6 −0.496904
\(148\) 76647.9 3.49927
\(149\) 7618.00 0.343138 0.171569 0.985172i \(-0.445116\pi\)
0.171569 + 0.985172i \(0.445116\pi\)
\(150\) 18750.0 0.833333
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −31481.6 −1.36260
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −8700.00 −0.357495
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 3540.00 0.140026
\(160\) 14590.3 0.569935
\(161\) 0 0
\(162\) −14093.9 −0.537035
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 6931.81 0.254612
\(166\) 0 0
\(167\) 54269.4 1.94591 0.972953 0.231003i \(-0.0742008\pi\)
0.972953 + 0.231003i \(0.0742008\pi\)
\(168\) 0 0
\(169\) −24061.0 −0.842442
\(170\) 0 0
\(171\) −22021.0 −0.753086
\(172\) 0 0
\(173\) 29690.5 0.992031 0.496016 0.868314i \(-0.334796\pi\)
0.496016 + 0.868314i \(0.334796\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7502.00 −0.242188
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) −44225.0 −1.36497
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) −31922.1 −0.953212
\(184\) 0 0
\(185\) 66075.8 1.93063
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) −60541.5 −1.67705
\(191\) 18242.0 0.500041 0.250021 0.968241i \(-0.419563\pi\)
0.250021 + 0.968241i \(0.419563\pi\)
\(192\) 26166.5 0.709811
\(193\) −70020.2 −1.87979 −0.939894 0.341466i \(-0.889077\pi\)
−0.939894 + 0.341466i \(0.889077\pi\)
\(194\) −103410. −2.74764
\(195\) −7500.00 −0.197239
\(196\) 69629.0 1.81250
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −25370.4 −0.647139
\(199\) 24482.0 0.618217 0.309108 0.951027i \(-0.399969\pi\)
0.309108 + 0.951027i \(0.399969\pi\)
\(200\) −54504.2 −1.36260
\(201\) −27180.0 −0.672756
\(202\) −134821. −3.30412
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 98190.0 2.31384
\(207\) 0 0
\(208\) 8116.93 0.187614
\(209\) −22382.0 −0.512397
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −22955.5 −0.510757
\(213\) 0 0
\(214\) 116190. 2.53712
\(215\) 0 0
\(216\) −55380.0 −1.18699
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −44950.0 −0.928719
\(221\) 0 0
\(222\) 79291.0 1.60886
\(223\) 49761.5 1.00065 0.500326 0.865837i \(-0.333213\pi\)
0.500326 + 0.865837i \(0.333213\pi\)
\(224\) 0 0
\(225\) −38125.0 −0.753086
\(226\) 160110. 3.13474
\(227\) 92372.0 1.79262 0.896311 0.443427i \(-0.146237\pi\)
0.896311 + 0.443427i \(0.146237\pi\)
\(228\) −46818.8 −0.900638
\(229\) 68098.0 1.29856 0.649282 0.760548i \(-0.275069\pi\)
0.649282 + 0.760548i \(0.275069\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 27450.0 0.501315
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −104638. −1.83187 −0.915933 0.401332i \(-0.868548\pi\)
−0.915933 + 0.401332i \(0.868548\pi\)
\(240\) −13528.2 −0.234865
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 72428.5 1.23674
\(243\) −60834.5 −1.03024
\(244\) 207002. 3.47692
\(245\) 60025.0 1.00000
\(246\) 0 0
\(247\) 24216.6 0.396935
\(248\) 0 0
\(249\) 0 0
\(250\) −104816. −1.67705
\(251\) −92878.0 −1.47423 −0.737115 0.675767i \(-0.763813\pi\)
−0.737115 + 0.675767i \(0.763813\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 95310.0 1.47731
\(255\) 0 0
\(256\) −107039. −1.63329
\(257\) 122317. 1.85192 0.925959 0.377623i \(-0.123258\pi\)
0.925959 + 0.377623i \(0.123258\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 48634.5 0.719445
\(261\) 0 0
\(262\) 136834. 1.99339
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −24180.0 −0.346935
\(265\) −19789.2 −0.281797
\(266\) 0 0
\(267\) 0 0
\(268\) 176251. 2.45393
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −106500. −1.46091
\(271\) −145262. −1.97794 −0.988971 0.148111i \(-0.952681\pi\)
−0.988971 + 0.148111i \(0.952681\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −38750.0 −0.512397
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) −12463.8 −0.161273
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) −40361.0 −0.496904
\(286\) 27900.0 0.341092
\(287\) 0 0
\(288\) −35600.4 −0.429211
\(289\) 83521.0 1.00000
\(290\) 0 0
\(291\) −68940.0 −0.814114
\(292\) 0 0
\(293\) −171663. −1.99959 −0.999796 0.0202081i \(-0.993567\pi\)
−0.999796 + 0.0202081i \(0.993567\pi\)
\(294\) 72030.0 0.833333
\(295\) 0 0
\(296\) −230490. −2.63068
\(297\) −39372.7 −0.446357
\(298\) −51103.1 −0.575459
\(299\) 0 0
\(300\) −81057.5 −0.900638
\(301\) 0 0
\(302\) 0 0
\(303\) −89881.0 −0.979000
\(304\) 43681.0 0.472656
\(305\) 178450. 1.91830
\(306\) 0 0
\(307\) −186260. −1.97625 −0.988127 0.153638i \(-0.950901\pi\)
−0.988127 + 0.153638i \(0.950901\pi\)
\(308\) 0 0
\(309\) 65460.0 0.685581
\(310\) 0 0
\(311\) −62222.0 −0.643314 −0.321657 0.946856i \(-0.604240\pi\)
−0.321657 + 0.946856i \(0.604240\pi\)
\(312\) 26162.0 0.268758
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 65324.5 0.650066 0.325033 0.945703i \(-0.394625\pi\)
0.325033 + 0.945703i \(0.394625\pi\)
\(318\) −23747.0 −0.234831
\(319\) 0 0
\(320\) −146275. −1.42847
\(321\) 77460.0 0.751740
\(322\) 0 0
\(323\) 0 0
\(324\) 60929.0 0.580409
\(325\) 41926.3 0.396935
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −46500.0 −0.426997
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −161225. −1.45393
\(334\) −364050. −3.26338
\(335\) 151941. 1.35389
\(336\) 0 0
\(337\) −223504. −1.96800 −0.984001 0.178165i \(-0.942984\pi\)
−0.984001 + 0.178165i \(0.942984\pi\)
\(338\) 161406. 1.41282
\(339\) 106740. 0.928812
\(340\) 0 0
\(341\) 0 0
\(342\) 147721. 1.26296
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −199170. −1.66369
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 24722.0 0.202970 0.101485 0.994837i \(-0.467641\pi\)
0.101485 + 0.994837i \(0.467641\pi\)
\(350\) 0 0
\(351\) 42600.0 0.345776
\(352\) −36184.1 −0.292033
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −253262. −1.96508 −0.982542 0.186041i \(-0.940434\pi\)
−0.982542 + 0.186041i \(0.940434\pi\)
\(360\) 132990. 1.02616
\(361\) 130321. 1.00000
\(362\) 0 0
\(363\) 48285.7 0.366442
\(364\) 0 0
\(365\) 0 0
\(366\) 214140. 1.59858
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −443250. −3.23776
\(371\) 0 0
\(372\) 0 0
\(373\) 223316. 1.60510 0.802551 0.596584i \(-0.203476\pi\)
0.802551 + 0.596584i \(0.203476\pi\)
\(374\) 0 0
\(375\) −69877.1 −0.496904
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 261725. 1.81250
\(381\) 63540.0 0.437721
\(382\) −122371. −0.838594
\(383\) 276660. 1.88603 0.943015 0.332751i \(-0.107977\pi\)
0.943015 + 0.332751i \(0.107977\pi\)
\(384\) −133770. −0.907186
\(385\) 0 0
\(386\) 469710. 3.15250
\(387\) 0 0
\(388\) 447048. 2.96955
\(389\) 247922. 1.63838 0.819192 0.573519i \(-0.194422\pi\)
0.819192 + 0.573519i \(0.194422\pi\)
\(390\) 50311.5 0.330779
\(391\) 0 0
\(392\) −209383. −1.36260
\(393\) 91222.6 0.590633
\(394\) 0 0
\(395\) 0 0
\(396\) 109678. 0.699406
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −164230. −1.03678
\(399\) 0 0
\(400\) 75625.0 0.472656
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 182329. 1.12825
\(403\) 0 0
\(404\) 582842. 3.57099
\(405\) 52525.0 0.320226
\(406\) 0 0
\(407\) −163868. −0.989248
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −424482. −2.50072
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 39150.0 0.226227
\(417\) −8309.23 −0.0477847
\(418\) 150143. 0.859315
\(419\) −141358. −0.805179 −0.402589 0.915381i \(-0.631890\pi\)
−0.402589 + 0.915381i \(0.631890\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 69030.0 0.383978
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −502297. −2.74203
\(429\) 18600.0 0.101064
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 76840.2 0.411738
\(433\) 86898.1 0.463484 0.231742 0.972777i \(-0.425558\pi\)
0.231742 + 0.972777i \(0.425558\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 135170. 0.698194
\(441\) −146461. −0.753086
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −342780. −1.73880
\(445\) 0 0
\(446\) −333810. −1.67815
\(447\) −34068.7 −0.170506
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 255750. 1.26296
\(451\) 0 0
\(452\) −692166. −3.38792
\(453\) 0 0
\(454\) −619650. −3.00632
\(455\) 0 0
\(456\) 140790. 0.677083
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −456815. −2.17776
\(459\) 0 0
\(460\) 0 0
\(461\) −67438.0 −0.317324 −0.158662 0.987333i \(-0.550718\pi\)
−0.158662 + 0.987333i \(0.550718\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −118668. −0.541804
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 225625. 1.00000
\(476\) 0 0
\(477\) 48285.7 0.212218
\(478\) 701933. 3.07213
\(479\) 349138. 1.52169 0.760845 0.648934i \(-0.224785\pi\)
0.760845 + 0.648934i \(0.224785\pi\)
\(480\) −65250.0 −0.283203
\(481\) 177300. 0.766335
\(482\) 0 0
\(483\) 0 0
\(484\) −313113. −1.33663
\(485\) 385386. 1.63837
\(486\) 408090. 1.72776
\(487\) 470071. 1.98201 0.991004 0.133835i \(-0.0427292\pi\)
0.991004 + 0.133835i \(0.0427292\pi\)
\(488\) −622481. −2.61389
\(489\) 0 0
\(490\) −402660. −1.67705
\(491\) −393358. −1.63164 −0.815821 0.578304i \(-0.803715\pi\)
−0.815821 + 0.578304i \(0.803715\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −162450. −0.665680
\(495\) 94550.0 0.385879
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 461218. 1.85227 0.926137 0.377188i \(-0.123109\pi\)
0.926137 + 0.377188i \(0.123109\pi\)
\(500\) 453125. 1.81250
\(501\) −242700. −0.966928
\(502\) 623045. 2.47236
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 502450. 1.97020
\(506\) 0 0
\(507\) 107604. 0.418613
\(508\) −412031. −1.59662
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 239449. 0.913427
\(513\) 229251. 0.871116
\(514\) −820530. −3.10576
\(515\) −365933. −1.37971
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −132780. −0.492944
\(520\) −146250. −0.540865
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 242636. 0.887057 0.443528 0.896260i \(-0.353727\pi\)
0.443528 + 0.896260i \(0.353727\pi\)
\(524\) −591542. −2.15438
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 33550.0 0.120344
\(529\) 279841. 1.00000
\(530\) 132750. 0.472588
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −433015. −1.51285
\(536\) −530010. −1.84482
\(537\) 0 0
\(538\) 0 0
\(539\) −148862. −0.512397
\(540\) 460406. 1.57890
\(541\) −472862. −1.61562 −0.807811 0.589441i \(-0.799348\pi\)
−0.807811 + 0.589441i \(0.799348\pi\)
\(542\) 974447. 3.31711
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −584030. −1.95191 −0.975956 0.217968i \(-0.930057\pi\)
−0.975956 + 0.217968i \(0.930057\pi\)
\(548\) 0 0
\(549\) −435418. −1.44465
\(550\) 259943. 0.859315
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −295500. −0.959338
\(556\) 53882.0 0.174299
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 545525. 1.72107 0.860533 0.509395i \(-0.170131\pi\)
0.860533 + 0.509395i \(0.170131\pi\)
\(564\) 0 0
\(565\) −596695. −1.86920
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 270750. 0.833333
\(571\) −479102. −1.46945 −0.734727 0.678363i \(-0.762690\pi\)
−0.734727 + 0.678363i \(0.762690\pi\)
\(572\) −120614. −0.368641
\(573\) −81580.7 −0.248472
\(574\) 0 0
\(575\) 0 0
\(576\) 356911. 1.07576
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −560276. −1.67705
\(579\) 313140. 0.934074
\(580\) 0 0
\(581\) 0 0
\(582\) 462464. 1.36531
\(583\) 49077.2 0.144392
\(584\) 0 0
\(585\) −102300. −0.298926
\(586\) 1.15155e6 3.35342
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −311390. −0.900638
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 319807. 0.912524
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 264120. 0.748563
\(595\) 0 0
\(596\) 220922. 0.621937
\(597\) −109487. −0.307194
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 243750. 0.677083
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −370736. −1.01960
\(604\) 0 0
\(605\) −269925. −0.737450
\(606\) 602940. 1.64183
\(607\) −309369. −0.839652 −0.419826 0.907605i \(-0.637909\pi\)
−0.419826 + 0.907605i \(0.637909\pi\)
\(608\) 210685. 0.569935
\(609\) 0 0
\(610\) −1.19708e6 −3.21709
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 1.24947e6 3.31428
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) −439119. −1.14976
\(619\) −766142. −1.99953 −0.999765 0.0216731i \(-0.993101\pi\)
−0.999765 + 0.0216731i \(0.993101\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 417398. 1.07887
\(623\) 0 0
\(624\) −36300.0 −0.0932261
\(625\) 390625. 1.00000
\(626\) 0 0
\(627\) 100095. 0.254612
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 504178. 1.26627 0.633133 0.774043i \(-0.281768\pi\)
0.633133 + 0.774043i \(0.281768\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −438210. −1.09019
\(635\) −355199. −0.880896
\(636\) 102660. 0.253797
\(637\) 161064. 0.396935
\(638\) 0 0
\(639\) 0 0
\(640\) 747797. 1.82568
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −519617. −1.26071
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −183221. −0.436341
\(649\) 0 0
\(650\) −281250. −0.665680
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −509950. −1.18863
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 201023. 0.461484
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.08153e6 2.43832
\(667\) 0 0
\(668\) 1.57381e6 3.52695
\(669\) −222540. −0.497228
\(670\) −1.01925e6 −2.27055
\(671\) −442556. −0.982931
\(672\) 0 0
\(673\) −540775. −1.19395 −0.596976 0.802259i \(-0.703631\pi\)
−0.596976 + 0.802259i \(0.703631\pi\)
\(674\) 1.49931e6 3.30044
\(675\) 396902. 0.871116
\(676\) −697769. −1.52693
\(677\) 533289. 1.16355 0.581775 0.813350i \(-0.302358\pi\)
0.581775 + 0.813350i \(0.302358\pi\)
\(678\) −716034. −1.55767
\(679\) 0 0
\(680\) 0 0
\(681\) −413100. −0.890761
\(682\) 0 0
\(683\) −641774. −1.37575 −0.687877 0.725828i \(-0.741457\pi\)
−0.687877 + 0.725828i \(0.741457\pi\)
\(684\) −638609. −1.36497
\(685\) 0 0
\(686\) 0 0
\(687\) −304544. −0.645262
\(688\) 0 0
\(689\) −53100.0 −0.111855
\(690\) 0 0
\(691\) 954658. 1.99936 0.999682 0.0252304i \(-0.00803194\pi\)
0.999682 + 0.0252304i \(0.00803194\pi\)
\(692\) 861025. 1.79806
\(693\) 0 0
\(694\) 0 0
\(695\) 46450.0 0.0961648
\(696\) 0 0
\(697\) 0 0
\(698\) −165840. −0.340392
\(699\) 0 0
\(700\) 0 0
\(701\) −75422.0 −0.153484 −0.0767418 0.997051i \(-0.524452\pi\)
−0.0767418 + 0.997051i \(0.524452\pi\)
\(702\) −285769. −0.579885
\(703\) 954135. 1.93063
\(704\) 362762. 0.731942
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −964558. −1.91883 −0.959414 0.282003i \(-0.909001\pi\)
−0.959414 + 0.282003i \(0.909001\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −103977. −0.203388
\(716\) 0 0
\(717\) 467955. 0.910261
\(718\) 1.69893e6 3.29555
\(719\) 522898. 1.01148 0.505742 0.862685i \(-0.331219\pi\)
0.505742 + 0.862685i \(0.331219\pi\)
\(720\) −184525. −0.355951
\(721\) 0 0
\(722\) −874220. −1.67705
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −323910. −0.614541
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 101879. 0.191703
\(730\) 0 0
\(731\) 0 0
\(732\) −925741. −1.72770
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) −268440. −0.496904
\(736\) 0 0
\(737\) −376813. −0.693731
\(738\) 0 0
\(739\) 873362. 1.59921 0.799605 0.600527i \(-0.205042\pi\)
0.799605 + 0.600527i \(0.205042\pi\)
\(740\) 1.91620e6 3.49927
\(741\) −108300. −0.197239
\(742\) 0 0
\(743\) 1.09624e6 1.98577 0.992884 0.119085i \(-0.0379962\pi\)
0.992884 + 0.119085i \(0.0379962\pi\)
\(744\) 0 0
\(745\) 190450. 0.343138
\(746\) −1.49805e6 −2.69184
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 468750. 0.833333
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 415363. 0.732551
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −787040. −1.36260
\(761\) 902578. 1.55853 0.779265 0.626694i \(-0.215592\pi\)
0.779265 + 0.626694i \(0.215592\pi\)
\(762\) −426239. −0.734080
\(763\) 0 0
\(764\) 529018. 0.906325
\(765\) 0 0
\(766\) −1.85589e6 −3.16297
\(767\) 0 0
\(768\) 478693. 0.811586
\(769\) −714542. −1.20830 −0.604150 0.796870i \(-0.706487\pi\)
−0.604150 + 0.796870i \(0.706487\pi\)
\(770\) 0 0
\(771\) −547020. −0.920226
\(772\) −2.03059e6 −3.40712
\(773\) −697371. −1.16709 −0.583546 0.812080i \(-0.698335\pi\)
−0.583546 + 0.812080i \(0.698335\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.34433e6 −2.23245
\(777\) 0 0
\(778\) −1.66311e6 −2.74765
\(779\) 0 0
\(780\) −217500. −0.357495
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 290521. 0.472656
\(785\) 0 0
\(786\) −611940. −0.990521
\(787\) −404142. −0.652507 −0.326253 0.945282i \(-0.605786\pi\)
−0.326253 + 0.945282i \(0.605786\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −329816. −0.525800
\(793\) 478832. 0.761441
\(794\) 0 0
\(795\) 88500.0 0.140026
\(796\) 709978. 1.12052
\(797\) −694796. −1.09381 −0.546903 0.837196i \(-0.684193\pi\)
−0.546903 + 0.837196i \(0.684193\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 364759. 0.569935
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −788220. −1.21937
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −1.75268e6 −2.68460
\(809\) −59038.0 −0.0902058 −0.0451029 0.998982i \(-0.514362\pi\)
−0.0451029 + 0.998982i \(0.514362\pi\)
\(810\) −352348. −0.537035
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 649631. 0.982847
\(814\) 1.09926e6 1.65902
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.33320e6 −1.97792 −0.988959 0.148189i \(-0.952656\pi\)
−0.988959 + 0.148189i \(0.952656\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 1.27647e6 1.87999
\(825\) 173295. 0.254612
\(826\) 0 0
\(827\) 887053. 1.29700 0.648498 0.761217i \(-0.275398\pi\)
0.648498 + 0.761217i \(0.275398\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −392497. −0.567009
\(833\) 0 0
\(834\) 55740.0 0.0801373
\(835\) 1.35673e6 1.94591
\(836\) −649078. −0.928719
\(837\) 0 0
\(838\) 948258. 1.35033
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 707281. 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −601525. −0.842442
\(846\) 0 0
\(847\) 0 0
\(848\) −95779.7 −0.133193
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) −550525. −0.753086
\(856\) 1.51047e6 2.06141
\(857\) 1.12071e6 1.52592 0.762962 0.646444i \(-0.223745\pi\)
0.762962 + 0.646444i \(0.223745\pi\)
\(858\) −124773. −0.169490
\(859\) 1.42104e6 1.92584 0.962921 0.269784i \(-0.0869523\pi\)
0.962921 + 0.269784i \(0.0869523\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.44214e6 −1.93636 −0.968181 0.250249i \(-0.919487\pi\)
−0.968181 + 0.250249i \(0.919487\pi\)
\(864\) 370620. 0.496480
\(865\) 742263. 0.992031
\(866\) −582930. −0.777286
\(867\) −373517. −0.496904
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 407700. 0.537408
\(872\) 0 0
\(873\) −940343. −1.23384
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.53627e6 −1.99742 −0.998709 0.0507905i \(-0.983826\pi\)
−0.998709 + 0.0507905i \(0.983826\pi\)
\(878\) 0 0
\(879\) 767700. 0.993605
\(880\) −187550. −0.242188
\(881\) 1.26018e6 1.62360 0.811802 0.583933i \(-0.198487\pi\)
0.811802 + 0.583933i \(0.198487\pi\)
\(882\) 982490. 1.26296
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 646523. 0.821745 0.410872 0.911693i \(-0.365224\pi\)
0.410872 + 0.911693i \(0.365224\pi\)
\(888\) 1.03078e6 1.30720
\(889\) 0 0
\(890\) 0 0
\(891\) −130262. −0.164083
\(892\) 1.44308e6 1.81368
\(893\) 0 0
\(894\) 228540. 0.285948
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −1.10562e6 −1.36497
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 2.08143e6 2.54698
\(905\) 0 0
\(906\) 0 0
\(907\) 671746. 0.816565 0.408282 0.912856i \(-0.366128\pi\)
0.408282 + 0.912856i \(0.366128\pi\)
\(908\) 2.67879e6 3.24913
\(909\) −1.22598e6 −1.48373
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −195347. −0.234865
\(913\) 0 0
\(914\) 0 0
\(915\) −798053. −0.953212
\(916\) 1.97484e6 2.35365
\(917\) 0 0
\(918\) 0 0
\(919\) 813602. 0.963343 0.481672 0.876352i \(-0.340030\pi\)
0.481672 + 0.876352i \(0.340030\pi\)
\(920\) 0 0
\(921\) 832980. 0.982009
\(922\) 452388. 0.532168
\(923\) 0 0
\(924\) 0 0
\(925\) 1.65190e6 1.93063
\(926\) 0 0
\(927\) 892875. 1.03904
\(928\) 0 0
\(929\) −955198. −1.10678 −0.553391 0.832922i \(-0.686666\pi\)
−0.553391 + 0.832922i \(0.686666\pi\)
\(930\) 0 0
\(931\) 866761. 1.00000
\(932\) 0 0
\(933\) 278265. 0.319665
\(934\) 0 0
\(935\) 0 0
\(936\) 356850. 0.407318
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.51354e6 −1.67705
\(951\) −292140. −0.323020
\(952\) 0 0
\(953\) −1.68922e6 −1.85995 −0.929973 0.367628i \(-0.880170\pi\)
−0.929973 + 0.367628i \(0.880170\pi\)
\(954\) −323910. −0.355900
\(955\) 456050. 0.500041
\(956\) −3.03450e6 −3.32026
\(957\) 0 0
\(958\) −2.34209e6 −2.55195
\(959\) 0 0
\(960\) 654162. 0.709811
\(961\) 923521. 1.00000
\(962\) −1.18936e6 −1.28518
\(963\) 1.05656e6 1.13930
\(964\) 0 0
\(965\) −1.75051e6 −1.87979
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 941570. 1.00485
\(969\) 0 0
\(970\) −2.58525e6 −2.74764
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −1.76420e6 −1.86730
\(973\) 0 0
\(974\) −3.15333e6 −3.32393
\(975\) −187500. −0.197239
\(976\) 863698. 0.906697
\(977\) −907848. −0.951095 −0.475548 0.879690i \(-0.657750\pi\)
−0.475548 + 0.879690i \(0.657750\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.74072e6 1.81250
\(981\) 0 0
\(982\) 2.63873e6 2.73635
\(983\) −1.93243e6 −1.99985 −0.999925 0.0122789i \(-0.996091\pi\)
−0.999925 + 0.0122789i \(0.996091\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 702282. 0.719445
\(989\) 0 0
\(990\) −634261. −0.647139
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 612050. 0.618217
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −3.09394e6 −3.10636
\(999\) 1.67844e6 1.68180
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.5.d.c.94.1 2
5.4 even 2 inner 95.5.d.c.94.2 yes 2
19.18 odd 2 inner 95.5.d.c.94.2 yes 2
95.94 odd 2 CM 95.5.d.c.94.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.5.d.c.94.1 2 1.1 even 1 trivial
95.5.d.c.94.1 2 95.94 odd 2 CM
95.5.d.c.94.2 yes 2 5.4 even 2 inner
95.5.d.c.94.2 yes 2 19.18 odd 2 inner