Properties

Label 960.2.v.b
Level $960$
Weight $2$
Character orbit 960.v
Analytic conductor $7.666$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(257,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{8}^{2} + \zeta_{8} - 1) q^{3} + ( - 2 \zeta_{8}^{3} + \zeta_{8}) q^{5} + ( - 3 \zeta_{8}^{2} - 3) q^{7} + (2 \zeta_{8}^{3} - \zeta_{8}^{2} - 2 \zeta_{8}) q^{9} + (\zeta_{8}^{3} + \zeta_{8}) q^{11}+ \cdots + ( - \zeta_{8}^{3} - 4 \zeta_{8}^{2} + \zeta_{8}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 12 q^{7} + 8 q^{15} + 24 q^{21} + 16 q^{25} - 4 q^{27} + 8 q^{31} - 4 q^{33} + 8 q^{37} - 8 q^{43} - 24 q^{45} + 24 q^{51} + 4 q^{55} + 16 q^{57} + 24 q^{61} - 12 q^{63} + 16 q^{67} + 12 q^{73}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(\zeta_{8}^{2}\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
257.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0 −1.70711 + 0.292893i 0 −2.12132 + 0.707107i 0 −3.00000 3.00000i 0 2.82843 1.00000i 0
257.2 0 −0.292893 + 1.70711i 0 2.12132 0.707107i 0 −3.00000 3.00000i 0 −2.82843 1.00000i 0
833.1 0 −1.70711 0.292893i 0 −2.12132 0.707107i 0 −3.00000 + 3.00000i 0 2.82843 + 1.00000i 0
833.2 0 −0.292893 1.70711i 0 2.12132 + 0.707107i 0 −3.00000 + 3.00000i 0 −2.82843 + 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 960.2.v.b 4
3.b odd 2 1 inner 960.2.v.b 4
4.b odd 2 1 960.2.v.l 4
5.c odd 4 1 inner 960.2.v.b 4
8.b even 2 1 240.2.v.d 4
8.d odd 2 1 120.2.r.a 4
12.b even 2 1 960.2.v.l 4
15.e even 4 1 inner 960.2.v.b 4
20.e even 4 1 960.2.v.l 4
24.f even 2 1 120.2.r.a 4
24.h odd 2 1 240.2.v.d 4
40.e odd 2 1 600.2.r.d 4
40.f even 2 1 1200.2.v.c 4
40.i odd 4 1 240.2.v.d 4
40.i odd 4 1 1200.2.v.c 4
40.k even 4 1 120.2.r.a 4
40.k even 4 1 600.2.r.d 4
60.l odd 4 1 960.2.v.l 4
120.i odd 2 1 1200.2.v.c 4
120.m even 2 1 600.2.r.d 4
120.q odd 4 1 120.2.r.a 4
120.q odd 4 1 600.2.r.d 4
120.w even 4 1 240.2.v.d 4
120.w even 4 1 1200.2.v.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.r.a 4 8.d odd 2 1
120.2.r.a 4 24.f even 2 1
120.2.r.a 4 40.k even 4 1
120.2.r.a 4 120.q odd 4 1
240.2.v.d 4 8.b even 2 1
240.2.v.d 4 24.h odd 2 1
240.2.v.d 4 40.i odd 4 1
240.2.v.d 4 120.w even 4 1
600.2.r.d 4 40.e odd 2 1
600.2.r.d 4 40.k even 4 1
600.2.r.d 4 120.m even 2 1
600.2.r.d 4 120.q odd 4 1
960.2.v.b 4 1.a even 1 1 trivial
960.2.v.b 4 3.b odd 2 1 inner
960.2.v.b 4 5.c odd 4 1 inner
960.2.v.b 4 15.e even 4 1 inner
960.2.v.l 4 4.b odd 2 1
960.2.v.l 4 12.b even 2 1
960.2.v.l 4 20.e even 4 1
960.2.v.l 4 60.l odd 4 1
1200.2.v.c 4 40.f even 2 1
1200.2.v.c 4 40.i odd 4 1
1200.2.v.c 4 120.i odd 2 1
1200.2.v.c 4 120.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(960, [\chi])\):

\( T_{7}^{2} + 6T_{7} + 18 \) Copy content Toggle raw display
\( T_{11}^{2} + 2 \) Copy content Toggle raw display
\( T_{17}^{4} + 1296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 6 T + 18)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 1296 \) Copy content Toggle raw display
$19$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 256 \) Copy content Toggle raw display
$29$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T + 8)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 4096 \) Copy content Toggle raw display
$53$ \( T^{4} + 20736 \) Copy content Toggle raw display
$59$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 8 T + 32)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 256 \) Copy content Toggle raw display
$89$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 26 T + 338)^{2} \) Copy content Toggle raw display
show more
show less