Properties

Label 961.6.a.c
Level $961$
Weight $6$
Character orbit 961.a
Self dual yes
Analytic conductor $154.129$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [961,6,Mod(1,961)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("961.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(154.128850840\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 199x^{6} + 256x^{5} + 12633x^{4} - 18583x^{3} - 260319x^{2} + 410640x + 275908 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 5\cdot 13 \)
Twist minimal: no (minimal twist has level 31)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} - \beta_{6} q^{3} + (\beta_{2} - 3 \beta_1 + 19) q^{4} + (\beta_{7} - \beta_{6} + \beta_{5} + \cdots + 17) q^{5} + (3 \beta_{7} - \beta_{6} + 3 \beta_{5} + \cdots - 7) q^{6}+ \cdots + (930 \beta_{7} - 4910 \beta_{6} + \cdots + 21727) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 7 q^{2} + 2 q^{3} + 149 q^{4} + 128 q^{5} - 72 q^{6} + 88 q^{7} + 924 q^{8} + 1512 q^{9} + 1581 q^{10} - 574 q^{11} + 46 q^{12} + 122 q^{13} - 309 q^{14} + 524 q^{15} + 833 q^{16} - 1932 q^{17} - 6845 q^{18}+ \cdots + 180150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} - 199x^{6} + 256x^{5} + 12633x^{4} - 18583x^{3} - 260319x^{2} + 410640x + 275908 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 50 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 375 \nu^{7} + 7594 \nu^{6} + 28965 \nu^{5} - 752733 \nu^{4} - 7619468 \nu^{3} + 10748347 \nu^{2} + \cdots + 108553724 ) / 12432384 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 617 \nu^{7} - 19862 \nu^{6} + 62853 \nu^{5} + 3039811 \nu^{4} - 1759756 \nu^{3} + \cdots + 643617404 ) / 12432384 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 161 \nu^{7} + 1114 \nu^{6} + 17373 \nu^{5} - 180629 \nu^{4} + 97556 \nu^{3} + 6416003 \nu^{2} + \cdots + 7452188 ) / 1308672 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4621 \nu^{7} + 10926 \nu^{6} - 734361 \nu^{5} - 1111055 \nu^{4} + 35939452 \nu^{3} + \cdots + 260217876 ) / 24864768 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1891 \nu^{7} + 9170 \nu^{6} - 323607 \nu^{5} - 1272353 \nu^{4} + 16630116 \nu^{3} + \cdots - 35821076 ) / 6216192 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 50 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{7} + 7\beta_{6} + \beta_{5} - 2\beta_{4} - 2\beta_{3} - \beta_{2} + 75\beta _1 - 31 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{7} - 7\beta_{6} + 15\beta_{5} + 29\beta_{4} + 31\beta_{3} + 106\beta_{2} - 124\beta _1 + 3585 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -560\beta_{7} + 897\beta_{6} + 47\beta_{5} - 339\beta_{4} - 245\beta_{3} - 221\beta_{2} + 6060\beta _1 - 4243 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2296 \beta_{7} - 1840 \beta_{6} + 2432 \beta_{5} + 4199 \beta_{4} + 5009 \beta_{3} + 10467 \beta_{2} + \cdots + 280872 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 60428 \beta_{7} + 96156 \beta_{6} - 2452 \beta_{5} - 41274 \beta_{4} - 27770 \beta_{3} + \cdots - 516454 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
9.19708
8.08260
6.36806
2.21681
−0.513172
−6.55453
−7.89102
−9.90583
−8.19708 −28.0551 35.1921 −15.0267 229.970 −14.0824 −26.1663 544.091 123.175
1.2 −7.08260 28.6238 18.1632 −77.0065 −202.731 −166.782 98.0006 576.322 545.406
1.3 −5.36806 5.61682 −3.18388 −13.6922 −30.1515 106.967 188.869 −211.451 73.5006
1.4 −1.21681 24.0001 −30.5194 80.9514 −29.2035 175.330 76.0739 333.006 −98.5022
1.5 1.51317 −22.4697 −29.7103 77.4836 −34.0005 20.7014 −93.3783 261.888 117.246
1.6 7.55453 −5.46345 25.0709 20.6359 −41.2738 223.462 −52.3459 −213.151 155.894
1.7 8.89102 −18.9313 47.0502 −33.8630 −168.319 −134.850 133.811 115.395 −301.077
1.8 10.9058 18.6789 86.9372 88.5175 203.709 −122.747 599.135 105.900 965.357
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 961.6.a.c 8
31.b odd 2 1 31.6.a.b 8
93.c even 2 1 279.6.a.f 8
124.d even 2 1 496.6.a.h 8
155.c odd 2 1 775.6.a.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
31.6.a.b 8 31.b odd 2 1
279.6.a.f 8 93.c even 2 1
496.6.a.h 8 124.d even 2 1
775.6.a.b 8 155.c odd 2 1
961.6.a.c 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(961))\):

\( T_{2}^{8} - 7T_{2}^{7} - 178T_{2}^{6} + 903T_{2}^{5} + 10963T_{2}^{4} - 30550T_{2}^{3} - 240688T_{2}^{2} + 115128T_{2} + 420336 \) Copy content Toggle raw display
\( T_{3}^{8} - 2 T_{3}^{7} - 1726 T_{3}^{6} + 2256 T_{3}^{5} + 959544 T_{3}^{4} - 632448 T_{3}^{3} + \cdots + 4699378944 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 7 T^{7} + \cdots + 420336 \) Copy content Toggle raw display
$3$ \( T^{8} + \cdots + 4699378944 \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots + 6147184721424 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 33\!\cdots\!08 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 29\!\cdots\!08 \) Copy content Toggle raw display
$13$ \( T^{8} + \cdots + 18\!\cdots\!20 \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 16\!\cdots\!84 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 18\!\cdots\!88 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots - 40\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 35\!\cdots\!88 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 29\!\cdots\!52 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 33\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots - 36\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 85\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 96\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 54\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 28\!\cdots\!92 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 89\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 35\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 34\!\cdots\!36 \) Copy content Toggle raw display
show more
show less