Properties

Label 968.1.z.a.267.1
Level $968$
Weight $1$
Character 968.267
Analytic conductor $0.483$
Analytic rank $0$
Dimension $40$
Projective image $D_{55}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,1,Mod(59,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(110))
 
chi = DirichletCharacter(H, H._module([55, 55, 32]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.59");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 968.z (of order \(110\), degree \(40\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.483094932229\)
Analytic rank: \(0\)
Dimension: \(40\)
Coefficient field: \(\Q(\zeta_{55})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{40} - x^{39} + x^{35} - x^{34} + x^{30} - x^{28} + x^{25} - x^{23} + x^{20} - x^{17} + x^{15} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{55}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{55} + \cdots)\)

Embedding invariants

Embedding label 267.1
Root \(0.941844 + 0.336049i\) of defining polynomial
Character \(\chi\) \(=\) 968.267
Dual form 968.1.z.a.939.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.466667 - 0.884433i) q^{2} +(0.582092 + 1.79149i) q^{3} +(-0.564443 + 0.825472i) q^{4} +(1.31281 - 1.35085i) q^{6} +(0.993482 + 0.113991i) q^{8} +(-2.06160 + 1.49784i) q^{9} +(-0.736741 + 0.676175i) q^{11} +(-1.80739 - 0.530696i) q^{12} +(-0.362808 - 0.931864i) q^{16} +(1.93533 - 0.450041i) q^{17} +(2.28683 + 1.12436i) q^{18} +(-0.760903 + 1.26182i) q^{19} +(0.941844 + 0.336049i) q^{22} +(0.374083 + 1.84617i) q^{24} +(-0.921124 - 0.389270i) q^{25} +(-2.35948 - 1.71427i) q^{27} +(-0.654861 + 0.755750i) q^{32} +(-1.64021 - 0.926272i) q^{33} +(-1.30118 - 1.50165i) q^{34} +(-0.0727689 - 2.54724i) q^{36} +(1.47108 + 0.0841194i) q^{38} +(0.714988 - 0.123734i) q^{41} +(0.0710983 - 0.155684i) q^{43} +(-0.142315 - 0.989821i) q^{44} +(1.45824 - 1.19240i) q^{48} +(-0.870746 + 0.491733i) q^{49} +(0.0855750 + 0.996332i) q^{50} +(1.93278 + 3.20516i) q^{51} +(-0.415059 + 2.88680i) q^{54} +(-2.70345 - 0.628660i) q^{57} +(1.11235 + 0.192500i) q^{59} +(0.974012 + 0.226497i) q^{64} +(-0.0537907 + 1.88292i) q^{66} +(-0.0879554 + 0.611743i) q^{67} +(-0.720886 + 1.85158i) q^{68} +(-2.21891 + 1.25307i) q^{72} +(0.945456 - 0.773095i) q^{73} +(0.161197 - 1.87678i) q^{75} +(-0.612107 - 1.34033i) q^{76} +(0.910198 - 2.80130i) q^{81} +(-0.443096 - 0.574616i) q^{82} +(1.61540 + 0.0923716i) q^{83} +(-0.170871 + 0.00977075i) q^{86} +(-0.809017 + 0.587785i) q^{88} +(1.30759 - 1.50903i) q^{89} +(-1.73511 - 0.733264i) q^{96} +(0.276810 + 1.36611i) q^{97} +(0.841254 + 0.540641i) q^{98} +(0.506065 - 2.49753i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{2} + 2 q^{3} + q^{4} - 3 q^{6} + q^{8} - 8 q^{9} + q^{11} - 9 q^{12} + q^{16} + 2 q^{17} - 2 q^{18} - 3 q^{19} + q^{22} - 3 q^{24} + q^{25} - q^{27} - 4 q^{32} - 3 q^{33} + 2 q^{34} - 2 q^{36}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{19}{55}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.466667 0.884433i −0.466667 0.884433i
\(3\) 0.582092 + 1.79149i 0.582092 + 1.79149i 0.610648 + 0.791902i \(0.290909\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(4\) −0.564443 + 0.825472i −0.564443 + 0.825472i
\(5\) 0 0 0.198590 0.980083i \(-0.436364\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(6\) 1.31281 1.35085i 1.31281 1.35085i
\(7\) 0 0 −0.254218 0.967147i \(-0.581818\pi\)
0.254218 + 0.967147i \(0.418182\pi\)
\(8\) 0.993482 + 0.113991i 0.993482 + 0.113991i
\(9\) −2.06160 + 1.49784i −2.06160 + 1.49784i
\(10\) 0 0
\(11\) −0.736741 + 0.676175i −0.736741 + 0.676175i
\(12\) −1.80739 0.530696i −1.80739 0.530696i
\(13\) 0 0 0.941844 0.336049i \(-0.109091\pi\)
−0.941844 + 0.336049i \(0.890909\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.362808 0.931864i −0.362808 0.931864i
\(17\) 1.93533 0.450041i 1.93533 0.450041i 0.941844 0.336049i \(-0.109091\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(18\) 2.28683 + 1.12436i 2.28683 + 1.12436i
\(19\) −0.760903 + 1.26182i −0.760903 + 1.26182i 0.198590 + 0.980083i \(0.436364\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.941844 + 0.336049i 0.941844 + 0.336049i
\(23\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(24\) 0.374083 + 1.84617i 0.374083 + 1.84617i
\(25\) −0.921124 0.389270i −0.921124 0.389270i
\(26\) 0 0
\(27\) −2.35948 1.71427i −2.35948 1.71427i
\(28\) 0 0
\(29\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(30\) 0 0
\(31\) 0 0 0.610648 0.791902i \(-0.290909\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(32\) −0.654861 + 0.755750i −0.654861 + 0.755750i
\(33\) −1.64021 0.926272i −1.64021 0.926272i
\(34\) −1.30118 1.50165i −1.30118 1.50165i
\(35\) 0 0
\(36\) −0.0727689 2.54724i −0.0727689 2.54724i
\(37\) 0 0 0.0285561 0.999592i \(-0.490909\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(38\) 1.47108 + 0.0841194i 1.47108 + 0.0841194i
\(39\) 0 0
\(40\) 0 0
\(41\) 0.714988 0.123734i 0.714988 0.123734i 0.198590 0.980083i \(-0.436364\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(42\) 0 0
\(43\) 0.0710983 0.155684i 0.0710983 0.155684i −0.870746 0.491733i \(-0.836364\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(44\) −0.142315 0.989821i −0.142315 0.989821i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.897398 0.441221i \(-0.145455\pi\)
−0.897398 + 0.441221i \(0.854545\pi\)
\(48\) 1.45824 1.19240i 1.45824 1.19240i
\(49\) −0.870746 + 0.491733i −0.870746 + 0.491733i
\(50\) 0.0855750 + 0.996332i 0.0855750 + 0.996332i
\(51\) 1.93278 + 3.20516i 1.93278 + 3.20516i
\(52\) 0 0
\(53\) 0 0 0.362808 0.931864i \(-0.381818\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(54\) −0.415059 + 2.88680i −0.415059 + 2.88680i
\(55\) 0 0
\(56\) 0 0
\(57\) −2.70345 0.628660i −2.70345 0.628660i
\(58\) 0 0
\(59\) 1.11235 + 0.192500i 1.11235 + 0.192500i 0.696938 0.717132i \(-0.254545\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(60\) 0 0
\(61\) 0 0 0.466667 0.884433i \(-0.345455\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.974012 + 0.226497i 0.974012 + 0.226497i
\(65\) 0 0
\(66\) −0.0537907 + 1.88292i −0.0537907 + 1.88292i
\(67\) −0.0879554 + 0.611743i −0.0879554 + 0.611743i 0.897398 + 0.441221i \(0.145455\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(68\) −0.720886 + 1.85158i −0.720886 + 1.85158i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.0855750 0.996332i \(-0.527273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(72\) −2.21891 + 1.25307i −2.21891 + 1.25307i
\(73\) 0.945456 0.773095i 0.945456 0.773095i −0.0285561 0.999592i \(-0.509091\pi\)
0.974012 + 0.226497i \(0.0727273\pi\)
\(74\) 0 0
\(75\) 0.161197 1.87678i 0.161197 1.87678i
\(76\) −0.612107 1.34033i −0.612107 1.34033i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.870746 0.491733i \(-0.836364\pi\)
0.870746 + 0.491733i \(0.163636\pi\)
\(80\) 0 0
\(81\) 0.910198 2.80130i 0.910198 2.80130i
\(82\) −0.443096 0.574616i −0.443096 0.574616i
\(83\) 1.61540 + 0.0923716i 1.61540 + 0.0923716i 0.841254 0.540641i \(-0.181818\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −0.170871 + 0.00977075i −0.170871 + 0.00977075i
\(87\) 0 0
\(88\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(89\) 1.30759 1.50903i 1.30759 1.50903i 0.610648 0.791902i \(-0.290909\pi\)
0.696938 0.717132i \(-0.254545\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) −1.73511 0.733264i −1.73511 0.733264i
\(97\) 0.276810 + 1.36611i 0.276810 + 1.36611i 0.841254 + 0.540641i \(0.181818\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(98\) 0.841254 + 0.540641i 0.841254 + 0.540641i
\(99\) 0.506065 2.49753i 0.506065 2.49753i
\(100\) 0.841254 0.540641i 0.841254 0.540641i
\(101\) 0 0 −0.696938 0.717132i \(-0.745455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(102\) 1.93278 3.20516i 1.93278 3.20516i
\(103\) 0 0 −0.897398 0.441221i \(-0.854545\pi\)
0.897398 + 0.441221i \(0.145455\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.28303 1.17755i 1.28303 1.17755i 0.309017 0.951057i \(-0.400000\pi\)
0.974012 0.226497i \(-0.0727273\pi\)
\(108\) 2.74687 0.980083i 2.74687 0.980083i
\(109\) 0 0 −0.959493 0.281733i \(-0.909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.95786 0.224644i −1.95786 0.224644i −0.959493 0.281733i \(-0.909091\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(114\) 0.705604 + 2.68440i 0.705604 + 2.68440i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.348845 1.07363i −0.348845 1.07363i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.0855750 0.996332i 0.0855750 0.996332i
\(122\) 0 0
\(123\) 0.637857 + 1.20887i 0.637857 + 1.20887i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.696938 0.717132i \(-0.254545\pi\)
−0.696938 + 0.717132i \(0.745455\pi\)
\(128\) −0.254218 0.967147i −0.254218 0.967147i
\(129\) 0.320292 + 0.0367501i 0.320292 + 0.0367501i
\(130\) 0 0
\(131\) 1.89088 0.555213i 1.89088 0.555213i 0.897398 0.441221i \(-0.145455\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(132\) 1.69042 0.831123i 1.69042 0.831123i
\(133\) 0 0
\(134\) 0.582092 0.207690i 0.582092 0.207690i
\(135\) 0 0
\(136\) 1.97401 0.226497i 1.97401 0.226497i
\(137\) 0.631827 + 1.62283i 0.631827 + 1.62283i 0.774142 + 0.633012i \(0.218182\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(138\) 0 0
\(139\) −1.72209 0.846697i −1.72209 0.846697i −0.985354 0.170522i \(-0.945455\pi\)
−0.736741 0.676175i \(-0.763636\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 2.14375 + 1.37771i 2.14375 + 1.37771i
\(145\) 0 0
\(146\) −1.12496 0.475414i −1.12496 0.475414i
\(147\) −1.38779 1.27370i −1.38779 1.27370i
\(148\) 0 0
\(149\) 0 0 −0.941844 0.336049i \(-0.890909\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(150\) −1.73511 + 0.733264i −1.73511 + 0.733264i
\(151\) 0 0 −0.564443 0.825472i \(-0.690909\pi\)
0.564443 + 0.825472i \(0.309091\pi\)
\(152\) −0.899779 + 1.16685i −0.899779 + 1.16685i
\(153\) −3.31579 + 3.82662i −3.31579 + 3.82662i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.0285561 0.999592i \(-0.509091\pi\)
0.0285561 + 0.999592i \(0.490909\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −2.90232 + 0.502267i −2.90232 + 0.502267i
\(163\) 0.0497301 + 0.0280839i 0.0497301 + 0.0280839i 0.516397 0.856349i \(-0.327273\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(164\) −0.301432 + 0.660043i −0.301432 + 0.660043i
\(165\) 0 0
\(166\) −0.672156 1.47182i −0.672156 1.47182i
\(167\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(168\) 0 0
\(169\) 0.774142 0.633012i 0.774142 0.633012i
\(170\) 0 0
\(171\) −0.321321 3.74108i −0.321321 3.74108i
\(172\) 0.0883814 + 0.146564i 0.0883814 + 0.146564i
\(173\) 0 0 0.254218 0.967147i \(-0.418182\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.897398 + 0.441221i 0.897398 + 0.441221i
\(177\) 0.302628 + 2.10483i 0.302628 + 2.10483i
\(178\) −1.94485 0.452255i −1.94485 0.452255i
\(179\) −0.393602 0.321847i −0.393602 0.321847i 0.415415 0.909632i \(-0.363636\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(180\) 0 0
\(181\) 0 0 0.466667 0.884433i \(-0.345455\pi\)
−0.466667 + 0.884433i \(0.654545\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.12153 + 1.64018i −1.12153 + 1.64018i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.516397 0.856349i \(-0.672727\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(192\) 0.161197 + 1.87678i 0.161197 + 1.87678i
\(193\) 0.247840 0.139962i 0.247840 0.139962i −0.362808 0.931864i \(-0.618182\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(194\) 1.07906 0.882340i 1.07906 0.882340i
\(195\) 0 0
\(196\) 0.0855750 0.996332i 0.0855750 0.996332i
\(197\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(198\) −2.44506 + 0.717934i −2.44506 + 0.717934i
\(199\) 0 0 0.415415 0.909632i \(-0.363636\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(200\) −0.870746 0.491733i −0.870746 0.491733i
\(201\) −1.14713 + 0.198519i −1.14713 + 0.198519i
\(202\) 0 0
\(203\) 0 0
\(204\) −3.73672 0.213673i −3.73672 0.213673i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.292620 1.44413i −0.292620 1.44413i
\(210\) 0 0
\(211\) 0.242538 0.314528i 0.242538 0.314528i −0.654861 0.755750i \(-0.727273\pi\)
0.897398 + 0.441221i \(0.145455\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −1.64021 0.585227i −1.64021 0.585227i
\(215\) 0 0
\(216\) −2.14869 1.97205i −2.14869 1.97205i
\(217\) 0 0
\(218\) 0 0
\(219\) 1.93534 + 1.24377i 1.93534 + 1.24377i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.516397 0.856349i \(-0.327273\pi\)
−0.516397 + 0.856349i \(0.672727\pi\)
\(224\) 0 0
\(225\) 2.48206 0.577178i 2.48206 0.577178i
\(226\) 0.714988 + 1.83643i 0.714988 + 1.83643i
\(227\) −0.505123 + 0.0579574i −0.505123 + 0.0579574i −0.362808 0.931864i \(-0.618182\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(228\) 2.04489 1.87678i 2.04489 1.87678i
\(229\) 0 0 0.941844 0.336049i \(-0.109091\pi\)
−0.941844 + 0.336049i \(0.890909\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.321326 + 0.233457i −0.321326 + 0.233457i −0.736741 0.676175i \(-0.763636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.786763 + 0.809560i −0.786763 + 0.809560i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 0 0
\(241\) −0.0571121 −0.0571121 −0.0285561 0.999592i \(-0.509091\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(242\) −0.921124 + 0.389270i −0.921124 + 0.389270i
\(243\) 2.63185 2.63185
\(244\) 0 0
\(245\) 0 0
\(246\) 0.771500 1.12828i 0.771500 1.12828i
\(247\) 0 0
\(248\) 0 0
\(249\) 0.774825 + 2.94774i 0.774825 + 2.94774i
\(250\) 0 0
\(251\) −1.36118 + 0.988953i −1.36118 + 0.988953i −0.362808 + 0.931864i \(0.618182\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.736741 + 0.676175i −0.736741 + 0.676175i
\(257\) −0.927251 + 0.106392i −0.927251 + 0.106392i −0.564443 0.825472i \(-0.690909\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(258\) −0.116967 0.300427i −0.116967 0.300427i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −1.37346 1.41326i −1.37346 1.41326i
\(263\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(264\) −1.52394 1.10720i −1.52394 1.10720i
\(265\) 0 0
\(266\) 0 0
\(267\) 3.46456 + 1.46414i 3.46456 + 1.46414i
\(268\) −0.455331 0.417899i −0.455331 0.417899i
\(269\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(270\) 0 0
\(271\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(272\) −1.12153 1.64018i −1.12153 1.64018i
\(273\) 0 0
\(274\) 1.14043 1.31613i 1.14043 1.31613i
\(275\) 0.941844 0.336049i 0.941844 0.336049i
\(276\) 0 0
\(277\) 0 0 0.998369 0.0570888i \(-0.0181818\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(278\) 0.0547987 + 1.91820i 0.0547987 + 1.91820i
\(279\) 0 0
\(280\) 0 0
\(281\) −1.21930 1.58122i −1.21930 1.58122i −0.654861 0.755750i \(-0.727273\pi\)
−0.564443 0.825472i \(-0.690909\pi\)
\(282\) 0 0
\(283\) −0.818662 + 0.141675i −0.818662 + 0.141675i −0.564443 0.825472i \(-0.690909\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.218069 2.53894i 0.218069 2.53894i
\(289\) 2.64555 1.30073i 2.64555 1.30073i
\(290\) 0 0
\(291\) −2.28625 + 1.29111i −2.28625 + 1.29111i
\(292\) 0.104512 + 1.21682i 0.104512 + 1.21682i
\(293\) 0 0 −0.516397 0.856349i \(-0.672727\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(294\) −0.478868 + 1.82180i −0.478868 + 1.82180i
\(295\) 0 0
\(296\) 0 0
\(297\) 2.89747 0.332454i 2.89747 0.332454i
\(298\) 0 0
\(299\) 0 0
\(300\) 1.45824 + 1.19240i 1.45824 + 1.19240i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 1.45190 + 0.251261i 1.45190 + 0.251261i
\(305\) 0 0
\(306\) 4.93176 + 1.14683i 4.93176 + 1.14683i
\(307\) −0.198369 1.37969i −0.198369 1.37969i −0.809017 0.587785i \(-0.800000\pi\)
0.610648 0.791902i \(-0.290909\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.254218 0.967147i \(-0.418182\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(312\) 0 0
\(313\) −0.157650 1.83549i −0.157650 1.83549i −0.466667 0.884433i \(-0.654545\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.0855750 0.996332i \(-0.472727\pi\)
−0.0855750 + 0.996332i \(0.527273\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 2.85642 + 1.61310i 2.85642 + 1.61310i
\(322\) 0 0
\(323\) −0.904726 + 2.78446i −0.904726 + 2.78446i
\(324\) 1.79864 + 2.33252i 1.79864 + 2.33252i
\(325\) 0 0
\(326\) 0.00163090 0.0570888i 0.00163090 0.0570888i
\(327\) 0 0
\(328\) 0.724432 0.0414245i 0.724432 0.0414245i
\(329\) 0 0
\(330\) 0 0
\(331\) −0.799779 + 0.922994i −0.799779 + 0.922994i −0.998369 0.0570888i \(-0.981818\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(332\) −0.988049 + 1.28132i −0.988049 + 1.28132i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −0.455331 0.417899i −0.455331 0.417899i 0.415415 0.909632i \(-0.363636\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(338\) −0.921124 0.389270i −0.921124 0.389270i
\(339\) −0.737207 3.63826i −0.737207 3.63826i
\(340\) 0 0
\(341\) 0 0
\(342\) −3.15878 + 2.03003i −3.15878 + 2.03003i
\(343\) 0 0
\(344\) 0.0883814 0.146564i 0.0883814 0.146564i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.409569 + 1.05197i 0.409569 + 1.05197i 0.974012 + 0.226497i \(0.0727273\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(348\) 0 0
\(349\) 0 0 0.736741 0.676175i \(-0.236364\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.0285561 0.999592i −0.0285561 0.999592i
\(353\) −1.72209 + 0.505653i −1.72209 + 0.505653i −0.985354 0.170522i \(-0.945455\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(354\) 1.72035 1.24991i 1.72035 1.24991i
\(355\) 0 0
\(356\) 0.507607 + 1.93114i 0.507607 + 1.93114i
\(357\) 0 0
\(358\) −0.100971 + 0.498310i −0.100971 + 0.498310i
\(359\) 0 0 0.564443 0.825472i \(-0.309091\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(360\) 0 0
\(361\) −0.546537 1.03580i −0.546537 1.03580i
\(362\) 0 0
\(363\) 1.83474 0.426649i 1.83474 0.426649i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.564443 0.825472i \(-0.309091\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(368\) 0 0
\(369\) −1.28869 + 1.32603i −1.28869 + 1.32603i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.959493 0.281733i \(-0.0909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(374\) 1.97401 + 0.226497i 1.97401 + 0.226497i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.338621 + 0.869741i 0.338621 + 0.869741i 0.993482 + 0.113991i \(0.0363636\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.696938 0.717132i \(-0.745455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(384\) 1.58466 1.01840i 1.58466 1.01840i
\(385\) 0 0
\(386\) −0.239446 0.153882i −0.239446 0.153882i
\(387\) 0.0866130 + 0.427452i 0.0866130 + 0.427452i
\(388\) −1.28393 0.542594i −1.28393 0.542594i
\(389\) 0 0 −0.736741 0.676175i \(-0.763636\pi\)
0.736741 + 0.676175i \(0.236364\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.921124 + 0.389270i −0.921124 + 0.389270i
\(393\) 2.09533 + 3.06432i 2.09533 + 3.06432i
\(394\) 0 0
\(395\) 0 0
\(396\) 1.77599 + 1.82745i 1.77599 + 1.82745i
\(397\) 0 0 −0.654861 0.755750i \(-0.727273\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.0285561 + 0.999592i −0.0285561 + 0.999592i
\(401\) 0.724432 + 0.0414245i 0.724432 + 0.0414245i 0.415415 0.909632i \(-0.363636\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(402\) 0.710906 + 0.921920i 0.710906 + 0.921920i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.55482 + 3.40459i 1.55482 + 3.40459i
\(409\) −0.112079 + 1.30492i −0.112079 + 1.30492i 0.696938 + 0.717132i \(0.254545\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(410\) 0 0
\(411\) −2.53952 + 2.07655i −2.53952 + 2.07655i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.514436 3.57798i 0.514436 3.57798i
\(418\) −1.14068 + 0.932733i −1.14068 + 0.932733i
\(419\) −0.277233 1.92820i −0.277233 1.92820i −0.362808 0.931864i \(-0.618182\pi\)
0.0855750 0.996332i \(-0.472727\pi\)
\(420\) 0 0
\(421\) 0 0 −0.774142 0.633012i \(-0.781818\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(422\) −0.391364 0.0677282i −0.391364 0.0677282i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.95786 0.338821i −1.95786 0.338821i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.247840 + 1.72377i 0.247840 + 1.72377i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.362808 0.931864i \(-0.381818\pi\)
−0.362808 + 0.931864i \(0.618182\pi\)
\(432\) −0.741424 + 2.82067i −0.741424 + 2.82067i
\(433\) 0.926829 + 1.53697i 0.926829 + 1.53697i 0.841254 + 0.540641i \(0.181818\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0.196869 2.29210i 0.196869 2.29210i
\(439\) 0 0 −0.415415 0.909632i \(-0.636364\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(440\) 0 0
\(441\) 1.05860 2.31800i 1.05860 2.31800i
\(442\) 0 0
\(443\) −1.37346 + 0.237687i −1.37346 + 0.237687i −0.809017 0.587785i \(-0.800000\pi\)
−0.564443 + 0.825472i \(0.690909\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.83924 0.105172i 1.83924 0.105172i 0.897398 0.441221i \(-0.145455\pi\)
0.941844 + 0.336049i \(0.109091\pi\)
\(450\) −1.66877 1.92586i −1.66877 1.92586i
\(451\) −0.443096 + 0.574616i −0.443096 + 0.574616i
\(452\) 1.29054 1.48936i 1.29054 1.48936i
\(453\) 0 0
\(454\) 0.286984 + 0.419700i 0.286984 + 0.419700i
\(455\) 0 0
\(456\) −2.61417 0.932733i −2.61417 0.932733i
\(457\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(458\) 0 0
\(459\) −5.33786 2.25580i −5.33786 2.25580i
\(460\) 0 0
\(461\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(462\) 0 0
\(463\) 0 0 0.841254 0.540641i \(-0.181818\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.356430 + 0.175245i 0.356430 + 0.175245i
\(467\) 0.809238 0.188180i 0.809238 0.188180i 0.198590 0.980083i \(-0.436364\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.08316 + 0.318044i 1.08316 + 0.318044i
\(473\) 0.0528883 + 0.162773i 0.0528883 + 0.162773i
\(474\) 0 0
\(475\) 1.19207 0.866091i 1.19207 0.866091i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.198590 0.980083i \(-0.436364\pi\)
−0.198590 + 0.980083i \(0.563636\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.0266524 + 0.0505118i 0.0266524 + 0.0505118i
\(483\) 0 0
\(484\) 0.774142 + 0.633012i 0.774142 + 0.633012i
\(485\) 0 0
\(486\) −1.22820 2.32770i −1.22820 2.32770i
\(487\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(488\) 0 0
\(489\) −0.0213646 + 0.105439i −0.0213646 + 0.105439i
\(490\) 0 0
\(491\) −0.310476 1.18117i −0.310476 1.18117i −0.921124 0.389270i \(-0.872727\pi\)
0.610648 0.791902i \(-0.290909\pi\)
\(492\) −1.35792 0.155807i −1.35792 0.155807i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 2.24549 2.06089i 2.24549 2.06089i
\(499\) −1.98372 + 0.227611i −1.98372 + 0.227611i −0.985354 + 0.170522i \(0.945455\pi\)
−0.998369 + 0.0570888i \(0.981818\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.50988 + 0.742358i 1.50988 + 0.742358i
\(503\) 0 0 0.516397 0.856349i \(-0.327273\pi\)
−0.516397 + 0.856349i \(0.672727\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 1.58466 + 1.01840i 1.58466 + 1.01840i
\(508\) 0 0
\(509\) 0 0 −0.921124 0.389270i \(-0.872727\pi\)
0.921124 + 0.389270i \(0.127273\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.941844 + 0.336049i 0.941844 + 0.336049i
\(513\) 3.95842 1.67284i 3.95842 1.67284i
\(514\) 0.526814 + 0.770442i 0.526814 + 0.770442i
\(515\) 0 0
\(516\) −0.211123 + 0.243649i −0.211123 + 0.243649i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.0176486 + 0.617782i −0.0176486 + 0.617782i 0.941844 + 0.336049i \(0.109091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(522\) 0 0
\(523\) −1.12496 1.45888i −1.12496 1.45888i −0.870746 0.491733i \(-0.836364\pi\)
−0.254218 0.967147i \(-0.581818\pi\)
\(524\) −0.608982 + 1.87425i −0.608982 + 1.87425i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −0.268077 + 1.86452i −0.268077 + 1.86452i
\(529\) 0.415415 + 0.909632i 0.415415 + 0.909632i
\(530\) 0 0
\(531\) −2.58157 + 1.26927i −2.58157 + 1.26927i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.321868 3.74744i −0.321868 3.74744i
\(535\) 0 0
\(536\) −0.157116 + 0.597730i −0.157116 + 0.597730i
\(537\) 0.347474 0.892480i 0.347474 0.892480i
\(538\) 0 0
\(539\) 0.309017 0.951057i 0.309017 0.951057i
\(540\) 0 0
\(541\) 0 0 −0.974012 0.226497i \(-0.927273\pi\)
0.974012 + 0.226497i \(0.0727273\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.927251 + 1.75734i −0.927251 + 1.75734i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.799530 + 0.653772i 0.799530 + 0.653772i 0.941844 0.336049i \(-0.109091\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(548\) −1.69623 0.394442i −1.69623 0.394442i
\(549\) 0 0
\(550\) −0.736741 0.676175i −0.736741 0.676175i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 1.67095 0.943629i 1.67095 0.943629i
\(557\) 0 0 0.774142 0.633012i \(-0.218182\pi\)
−0.774142 + 0.633012i \(0.781818\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −3.59121 1.05447i −3.59121 1.05447i
\(562\) −0.829475 + 1.81630i −0.829475 + 1.81630i
\(563\) 0.812697 + 0.458951i 0.812697 + 0.458951i 0.841254 0.540641i \(-0.181818\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.507345 + 0.657936i 0.507345 + 0.657936i
\(567\) 0 0
\(568\) 0 0
\(569\) −0.0294925 1.03237i −0.0294925 1.03237i −0.870746 0.491733i \(-0.836364\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(570\) 0 0
\(571\) −1.10181 1.27155i −1.10181 1.27155i −0.959493 0.281733i \(-0.909091\pi\)
−0.142315 0.989821i \(-0.545455\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −2.34728 + 0.991970i −2.34728 + 0.991970i
\(577\) −1.06324 0.379362i −1.06324 0.379362i −0.254218 0.967147i \(-0.581818\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(578\) −2.38500 1.73280i −2.38500 1.73280i
\(579\) 0.395006 + 0.362534i 0.395006 + 0.362534i
\(580\) 0 0
\(581\) 0 0
\(582\) 2.20882 + 1.41952i 2.20882 + 1.41952i
\(583\) 0 0
\(584\) 1.02742 0.660282i 1.02742 0.660282i
\(585\) 0 0
\(586\) 0 0
\(587\) −1.65323 0.812838i −1.65323 0.812838i −0.998369 0.0570888i \(-0.981818\pi\)
−0.654861 0.755750i \(-0.727273\pi\)
\(588\) 1.83474 0.426649i 1.83474 0.426649i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.72209 0.505653i −1.72209 0.505653i −0.736741 0.676175i \(-0.763636\pi\)
−0.985354 + 0.170522i \(0.945455\pi\)
\(594\) −1.64619 2.40748i −1.64619 2.40748i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.696938 0.717132i \(-0.254545\pi\)
−0.696938 + 0.717132i \(0.745455\pi\)
\(600\) 0.374083 1.84617i 0.374083 1.84617i
\(601\) −1.09955 + 1.60804i −1.09955 + 1.60804i −0.362808 + 0.931864i \(0.618182\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(602\) 0 0
\(603\) −0.734966 1.39292i −0.734966 1.39292i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.466667 0.884433i \(-0.654545\pi\)
0.466667 + 0.884433i \(0.345455\pi\)
\(608\) −0.455331 1.40136i −0.455331 1.40136i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −1.28720 4.89700i −1.28720 4.89700i
\(613\) 0 0 −0.993482 0.113991i \(-0.963636\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(614\) −1.12767 + 0.819299i −1.12767 + 0.819299i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.0547987 + 0.0160903i 0.0547987 + 0.0160903i 0.309017 0.951057i \(-0.400000\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(618\) 0 0
\(619\) −1.32230 + 1.21360i −1.32230 + 1.21360i −0.362808 + 0.931864i \(0.618182\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.696938 + 0.717132i 0.696938 + 0.717132i
\(626\) −1.54980 + 0.995994i −1.54980 + 0.995994i
\(627\) 2.41683 1.36485i 2.41683 1.36485i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.736741 0.676175i \(-0.763636\pi\)
0.736741 + 0.676175i \(0.236364\pi\)
\(632\) 0 0
\(633\) 0.704655 + 0.251420i 0.704655 + 0.251420i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.0556279 1.94723i −0.0556279 1.94723i −0.254218 0.967147i \(-0.581818\pi\)
0.198590 0.980083i \(-0.436364\pi\)
\(642\) 0.0936761 3.27909i 0.0936761 3.27909i
\(643\) −0.396533 0.0226746i −0.396533 0.0226746i −0.142315 0.989821i \(-0.545455\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.88488 0.499247i 2.88488 0.499247i
\(647\) 0 0 −0.870746 0.491733i \(-0.836364\pi\)
0.870746 + 0.491733i \(0.163636\pi\)
\(648\) 1.22359 2.67929i 1.22359 2.67929i
\(649\) −0.949680 + 0.610322i −0.949680 + 0.610322i
\(650\) 0 0
\(651\) 0 0
\(652\) −0.0512523 + 0.0251991i −0.0512523 + 0.0251991i
\(653\) 0 0 0.774142 0.633012i \(-0.218182\pi\)
−0.774142 + 0.633012i \(0.781818\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −0.374706 0.621380i −0.374706 0.621380i
\(657\) −0.791180 + 3.00996i −0.791180 + 3.00996i
\(658\) 0 0
\(659\) 0.262179 1.82350i 0.262179 1.82350i −0.254218 0.967147i \(-0.581818\pi\)
0.516397 0.856349i \(-0.327273\pi\)
\(660\) 0 0
\(661\) 0 0 −0.142315 0.989821i \(-0.545455\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(662\) 1.18956 + 0.276620i 1.18956 + 0.276620i
\(663\) 0 0
\(664\) 1.59434 + 0.275911i 1.59434 + 0.275911i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.651166 + 1.67251i −0.651166 + 1.67251i 0.0855750 + 0.996332i \(0.472727\pi\)
−0.736741 + 0.676175i \(0.763636\pi\)
\(674\) −0.157116 + 0.597730i −0.157116 + 0.597730i
\(675\) 1.50606 + 2.49753i 1.50606 + 2.49753i
\(676\) 0.0855750 + 0.996332i 0.0855750 + 0.996332i
\(677\) 0 0 0.870746 0.491733i \(-0.163636\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(678\) −2.87377 + 2.34987i −2.87377 + 2.34987i
\(679\) 0 0
\(680\) 0 0
\(681\) −0.397858 0.871188i −0.397858 0.871188i
\(682\) 0 0
\(683\) −0.118239 + 0.258908i −0.118239 + 0.258908i −0.959493 0.281733i \(-0.909091\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(684\) 3.26952 + 1.84638i 3.26952 + 1.84638i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −0.170871 0.00977075i −0.170871 0.00977075i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.507607 0.0290260i 0.507607 0.0290260i 0.198590 0.980083i \(-0.436364\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.739263 0.853155i 0.739263 0.853155i
\(695\) 0 0
\(696\) 0 0
\(697\) 1.32805 0.561238i 1.32805 0.561238i
\(698\) 0 0
\(699\) −0.605278 0.439760i −0.605278 0.439760i
\(700\) 0 0
\(701\) 0 0 −0.921124 0.389270i \(-0.872727\pi\)
0.921124 + 0.389270i \(0.127273\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.870746 + 0.491733i −0.870746 + 0.491733i
\(705\) 0 0
\(706\) 1.25086 + 1.28711i 1.25086 + 1.28711i
\(707\) 0 0
\(708\) −1.90829 0.938244i −1.90829 0.938244i
\(709\) 0 0 0.974012 0.226497i \(-0.0727273\pi\)
−0.974012 + 0.226497i \(0.927273\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.47108 1.35014i 1.47108 1.35014i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.487841 0.143243i 0.487841 0.143243i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.254218 0.967147i \(-0.581818\pi\)
0.254218 + 0.967147i \(0.418182\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.661048 + 0.966751i −0.661048 + 0.966751i
\(723\) −0.0332445 0.102316i −0.0332445 0.102316i
\(724\) 0 0
\(725\) 0 0
\(726\) −1.23355 1.42360i −1.23355 1.42360i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.621782 + 1.91365i 0.621782 + 1.91365i
\(730\) 0 0
\(731\) 0.0675344 0.333296i 0.0675344 0.333296i
\(732\) 0 0
\(733\) 0 0 −0.254218 0.967147i \(-0.581818\pi\)
0.254218 + 0.967147i \(0.418182\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.348845 0.510170i −0.348845 0.510170i
\(738\) 1.77417 + 0.520944i 1.77417 + 0.520944i
\(739\) −0.478868 + 0.170860i −0.478868 + 0.170860i −0.564443 0.825472i \(-0.690909\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.974012 0.226497i \(-0.0727273\pi\)
−0.974012 + 0.226497i \(0.927273\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −3.46866 + 2.22918i −3.46866 + 2.22918i
\(748\) −0.720886 1.85158i −0.720886 1.85158i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.921124 0.389270i \(-0.872727\pi\)
0.921124 + 0.389270i \(0.127273\pi\)
\(752\) 0 0
\(753\) −2.56403 1.86288i −2.56403 1.86288i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.610648 0.791902i \(-0.290909\pi\)
−0.610648 + 0.791902i \(0.709091\pi\)
\(758\) 0.611204 0.705367i 0.611204 0.705367i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.12705 0.0644468i 1.12705 0.0644468i 0.516397 0.856349i \(-0.327273\pi\)
0.610648 + 0.791902i \(0.290909\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.64021 0.926272i −1.64021 0.926272i
\(769\) 0.698939 1.53046i 0.698939 1.53046i −0.142315 0.989821i \(-0.545455\pi\)
0.841254 0.540641i \(-0.181818\pi\)
\(770\) 0 0
\(771\) −0.730346 1.59923i −0.730346 1.59923i
\(772\) −0.0243572 + 0.283586i −0.0243572 + 0.283586i
\(773\) 0 0 0.897398 0.441221i \(-0.145455\pi\)
−0.897398 + 0.441221i \(0.854545\pi\)
\(774\) 0.337633 0.276081i 0.337633 0.276081i
\(775\) 0 0
\(776\) 0.119281 + 1.38876i 0.119281 + 1.38876i
\(777\) 0 0
\(778\) 0 0
\(779\) −0.387907 + 0.996332i −0.387907 + 0.996332i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.774142 + 0.633012i 0.774142 + 0.633012i
\(785\) 0 0
\(786\) 1.73236 3.28319i 1.73236 3.28319i
\(787\) −0.288416 + 0.546610i −0.288416 + 0.546610i −0.985354 0.170522i \(-0.945455\pi\)
0.696938 + 0.717132i \(0.254545\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.787463 2.42356i 0.787463 2.42356i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.0855750 0.996332i \(-0.527273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.897398 0.441221i 0.897398 0.441221i
\(801\) −0.435427 + 5.06959i −0.435427 + 5.06959i
\(802\) −0.301432 0.660043i −0.301432 0.660043i
\(803\) −0.173809 + 1.20886i −0.173809 + 1.20886i
\(804\) 0.483619 1.05898i 0.483619 1.05898i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.0570190 + 0.00326046i 0.0570190 + 0.00326046i 0.0855750 0.996332i \(-0.472727\pi\)
−0.0285561 + 0.999592i \(0.509091\pi\)
\(810\) 0 0
\(811\) 0.0207207 + 0.725319i 0.0207207 + 0.725319i 0.941844 + 0.336049i \(0.109091\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 2.28555 2.96395i 2.28555 2.96395i
\(817\) 0.142345 + 0.208173i 0.142345 + 0.208173i
\(818\) 1.20642 0.509835i 1.20642 0.509835i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.736741 0.676175i \(-0.763636\pi\)
0.736741 + 0.676175i \(0.236364\pi\)
\(822\) 3.02168 + 1.27697i 3.02168 + 1.27697i
\(823\) 0 0 −0.198590 0.980083i \(-0.563636\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(824\) 0 0
\(825\) 1.15027 + 1.49170i 1.15027 + 1.49170i
\(826\) 0 0
\(827\) 0.719794 + 0.740650i 0.719794 + 0.740650i 0.974012 0.226497i \(-0.0727273\pi\)
−0.254218 + 0.967147i \(0.581818\pi\)
\(828\) 0 0
\(829\) 0 0 −0.897398 0.441221i \(-0.854545\pi\)
0.897398 + 0.441221i \(0.145455\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.46388 + 1.34353i −1.46388 + 1.34353i
\(834\) −3.40455 + 1.21474i −3.40455 + 1.21474i
\(835\) 0 0
\(836\) 1.35726 + 0.573583i 1.35726 + 0.573583i
\(837\) 0 0
\(838\) −1.57598 + 1.14502i −1.57598 + 1.14502i
\(839\) 0 0 −0.993482 0.113991i \(-0.963636\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(840\) 0 0
\(841\) 0.696938 0.717132i 0.696938 0.717132i
\(842\) 0 0
\(843\) 2.12300 3.10479i 2.12300 3.10479i
\(844\) 0.122736 + 0.377742i 0.122736 + 0.377742i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −0.730346 1.38416i −0.730346 1.38416i
\(850\) 0.614005 + 1.88971i 0.614005 + 1.88971i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.696938 0.717132i \(-0.254545\pi\)
−0.696938 + 0.717132i \(0.745455\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.40890 1.02362i 1.40890 1.02362i
\(857\) −0.164217 + 0.0482185i −0.164217 + 0.0482185i −0.362808 0.931864i \(-0.618182\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(858\) 0 0
\(859\) 1.76762 + 0.519021i 1.76762 + 0.519021i 0.993482 0.113991i \(-0.0363636\pi\)
0.774142 + 0.633012i \(0.218182\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.362808 0.931864i \(-0.618182\pi\)
0.362808 + 0.931864i \(0.381818\pi\)
\(864\) 2.84069 0.660574i 2.84069 0.660574i
\(865\) 0 0
\(866\) 0.926829 1.53697i 0.926829 1.53697i
\(867\) 3.87021 + 3.98235i 3.87021 + 3.98235i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.61690 2.40177i −2.61690 2.40177i
\(874\) 0 0
\(875\) 0 0
\(876\) −2.11908 + 0.895532i −2.11908 + 0.895532i
\(877\) 0 0 −0.564443 0.825472i \(-0.690909\pi\)
0.564443 + 0.825472i \(0.309091\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.05959 + 1.22283i 1.05959 + 1.22283i 0.974012 + 0.226497i \(0.0727273\pi\)
0.0855750 + 0.996332i \(0.472727\pi\)
\(882\) −2.54413 + 0.145478i −2.54413 + 0.145478i
\(883\) −0.00488737 0.171080i −0.00488737 0.171080i −0.998369 0.0570888i \(-0.981818\pi\)
0.993482 0.113991i \(-0.0363636\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.851167 + 1.10381i 0.851167 + 1.10381i
\(887\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.22359 + 2.67929i 1.22359 + 2.67929i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −0.951332 1.57761i −0.951332 1.57761i
\(899\) 0 0
\(900\) −0.924537 + 2.37465i −0.924537 + 2.37465i
\(901\) 0 0
\(902\) 0.714988 + 0.123734i 0.714988 + 0.123734i
\(903\) 0 0
\(904\) −1.91949 0.446359i −1.91949 0.446359i
\(905\) 0 0
\(906\) 0 0
\(907\) 0.687626 1.30320i 0.687626 1.30320i −0.254218 0.967147i \(-0.581818\pi\)
0.941844 0.336049i \(-0.109091\pi\)
\(908\) 0.237271 0.449678i 0.237271 0.449678i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.974012 0.226497i \(-0.927273\pi\)
0.974012 + 0.226497i \(0.0727273\pi\)
\(912\) 0.395006 + 2.74733i 0.395006 + 2.74733i
\(913\) −1.25259 + 1.02424i −1.25259 + 1.02424i
\(914\) 0.230270 1.60156i 0.230270 1.60156i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0.495903 + 5.77369i 0.495903 + 5.77369i
\(919\) 0 0 0.870746 0.491733i \(-0.163636\pi\)
−0.870746 + 0.491733i \(0.836364\pi\)
\(920\) 0 0
\(921\) 2.35623 1.15848i 2.35623 1.15848i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.21334 + 1.57348i 1.21334 + 1.57348i 0.696938 + 0.717132i \(0.254545\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(930\) 0 0
\(931\) 0.0420768 1.47288i 0.0420768 1.47288i
\(932\) −0.0113419 0.397019i −0.0113419 0.397019i
\(933\) 0 0
\(934\) −0.544078 0.627899i −0.544078 0.627899i
\(935\) 0 0
\(936\) 0 0
\(937\) 0.630674 0.817873i 0.630674 0.817873i −0.362808 0.931864i \(-0.618182\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(938\) 0 0
\(939\) 3.19650 1.35085i 3.19650 1.35085i
\(940\) 0 0
\(941\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.224186 1.10640i −0.224186 1.10640i
\(945\) 0 0
\(946\) 0.119281 0.122737i 0.119281 0.122737i
\(947\) 1.67154 1.07423i 1.67154 1.07423i 0.774142 0.633012i \(-0.218182\pi\)
0.897398 0.441221i \(-0.145455\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.32230 0.650131i −1.32230 0.650131i
\(951\) 0 0
\(952\) 0 0
\(953\) 1.93533 0.222058i 1.93533 0.222058i 0.941844 0.336049i \(-0.109091\pi\)
0.993482 + 0.113991i \(0.0363636\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.254218 0.967147i −0.254218 0.967147i
\(962\) 0 0
\(963\) −0.881308 + 4.34943i −0.881308 + 4.34943i
\(964\) 0.0322365 0.0471444i 0.0322365 0.0471444i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.198590 0.980083i 0.198590 0.980083i
\(969\) −5.51498 −5.51498
\(970\) 0 0
\(971\) −0.592999 1.82506i −0.592999 1.82506i −0.564443 0.825472i \(-0.690909\pi\)
−0.0285561 0.999592i \(-0.509091\pi\)
\(972\) −1.48553 + 2.17252i −1.48553 + 2.17252i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −0.672156 + 0.488350i −0.672156 + 0.488350i −0.870746 0.491733i \(-0.836364\pi\)
0.198590 + 0.980083i \(0.436364\pi\)
\(978\) 0.103224 0.0303092i 0.103224 0.0303092i
\(979\) 0.0570190 + 1.99592i 0.0570190 + 1.99592i
\(980\) 0 0
\(981\) 0 0
\(982\) −0.899779 + 0.825810i −0.899779 + 0.825810i
\(983\) 0 0 0.993482 0.113991i \(-0.0363636\pi\)
−0.993482 + 0.113991i \(0.963636\pi\)
\(984\) 0.495898 + 1.27370i 0.495898 + 1.27370i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.841254 0.540641i \(-0.818182\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(992\) 0 0
\(993\) −2.11908 0.895532i −2.11908 0.895532i
\(994\) 0 0
\(995\) 0 0
\(996\) −2.87062 1.02424i −2.87062 1.02424i
\(997\) 0 0 0.921124 0.389270i \(-0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(998\) 1.12705 + 1.64825i 1.12705 + 1.64825i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.1.z.a.267.1 40
4.3 odd 2 3872.1.bx.a.751.1 40
8.3 odd 2 CM 968.1.z.a.267.1 40
8.5 even 2 3872.1.bx.a.751.1 40
121.92 even 55 inner 968.1.z.a.939.1 yes 40
484.455 odd 110 3872.1.bx.a.1423.1 40
968.213 even 110 3872.1.bx.a.1423.1 40
968.939 odd 110 inner 968.1.z.a.939.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
968.1.z.a.267.1 40 1.1 even 1 trivial
968.1.z.a.267.1 40 8.3 odd 2 CM
968.1.z.a.939.1 yes 40 121.92 even 55 inner
968.1.z.a.939.1 yes 40 968.939 odd 110 inner
3872.1.bx.a.751.1 40 4.3 odd 2
3872.1.bx.a.751.1 40 8.5 even 2
3872.1.bx.a.1423.1 40 484.455 odd 110
3872.1.bx.a.1423.1 40 968.213 even 110