Properties

Label 975.2.h.c.649.2
Level $975$
Weight $2$
Character 975.649
Analytic conductor $7.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(649,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 975.649
Dual form 975.2.h.c.649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -2.00000 q^{4} +3.00000 q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} -2.00000 q^{4} +3.00000 q^{7} -1.00000 q^{9} +3.00000i q^{11} -2.00000i q^{12} +(-3.00000 - 2.00000i) q^{13} +4.00000 q^{16} +3.00000i q^{17} +3.00000i q^{21} +3.00000i q^{23} -1.00000i q^{27} -6.00000 q^{28} +6.00000 q^{29} +6.00000i q^{31} -3.00000 q^{33} +2.00000 q^{36} -9.00000 q^{37} +(2.00000 - 3.00000i) q^{39} -3.00000i q^{41} +10.0000i q^{43} -6.00000i q^{44} -12.0000 q^{47} +4.00000i q^{48} +2.00000 q^{49} -3.00000 q^{51} +(6.00000 + 4.00000i) q^{52} +3.00000i q^{53} +12.0000i q^{59} +1.00000 q^{61} -3.00000 q^{63} -8.00000 q^{64} -6.00000i q^{68} -3.00000 q^{69} +9.00000i q^{71} -6.00000 q^{73} +9.00000i q^{77} -1.00000 q^{79} +1.00000 q^{81} +6.00000 q^{83} -6.00000i q^{84} +6.00000i q^{87} +15.0000i q^{89} +(-9.00000 - 6.00000i) q^{91} -6.00000i q^{92} -6.00000 q^{93} -9.00000 q^{97} -3.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{4} + 6 q^{7} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{4} + 6 q^{7} - 2 q^{9} - 6 q^{13} + 8 q^{16} - 12 q^{28} + 12 q^{29} - 6 q^{33} + 4 q^{36} - 18 q^{37} + 4 q^{39} - 24 q^{47} + 4 q^{49} - 6 q^{51} + 12 q^{52} + 2 q^{61} - 6 q^{63} - 16 q^{64} - 6 q^{69} - 12 q^{73} - 2 q^{79} + 2 q^{81} + 12 q^{83} - 18 q^{91} - 12 q^{93} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.00000i 0.904534i 0.891883 + 0.452267i \(0.149385\pi\)
−0.891883 + 0.452267i \(0.850615\pi\)
\(12\) 2.00000i 0.577350i
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 3.00000i 0.654654i
\(22\) 0 0
\(23\) 3.00000i 0.625543i 0.949828 + 0.312772i \(0.101257\pi\)
−0.949828 + 0.312772i \(0.898743\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) −6.00000 −1.13389
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 6.00000i 1.07763i 0.842424 + 0.538816i \(0.181128\pi\)
−0.842424 + 0.538816i \(0.818872\pi\)
\(32\) 0 0
\(33\) −3.00000 −0.522233
\(34\) 0 0
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) −9.00000 −1.47959 −0.739795 0.672832i \(-0.765078\pi\)
−0.739795 + 0.672832i \(0.765078\pi\)
\(38\) 0 0
\(39\) 2.00000 3.00000i 0.320256 0.480384i
\(40\) 0 0
\(41\) 3.00000i 0.468521i −0.972174 0.234261i \(-0.924733\pi\)
0.972174 0.234261i \(-0.0752669\pi\)
\(42\) 0 0
\(43\) 10.0000i 1.52499i 0.646997 + 0.762493i \(0.276025\pi\)
−0.646997 + 0.762493i \(0.723975\pi\)
\(44\) 6.00000i 0.904534i
\(45\) 0 0
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 4.00000i 0.577350i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 6.00000 + 4.00000i 0.832050 + 0.554700i
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 6.00000i 0.727607i
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 9.00000i 1.06810i 0.845452 + 0.534052i \(0.179331\pi\)
−0.845452 + 0.534052i \(0.820669\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9.00000i 1.02565i
\(78\) 0 0
\(79\) −1.00000 −0.112509 −0.0562544 0.998416i \(-0.517916\pi\)
−0.0562544 + 0.998416i \(0.517916\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 6.00000i 0.654654i
\(85\) 0 0
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 15.0000i 1.59000i 0.606612 + 0.794998i \(0.292528\pi\)
−0.606612 + 0.794998i \(0.707472\pi\)
\(90\) 0 0
\(91\) −9.00000 6.00000i −0.943456 0.628971i
\(92\) 6.00000i 0.625543i
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.00000 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(98\) 0 0
\(99\) 3.00000i 0.301511i
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.00000i 0.870063i −0.900415 0.435031i \(-0.856737\pi\)
0.900415 0.435031i \(-0.143263\pi\)
\(108\) 2.00000i 0.192450i
\(109\) 18.0000i 1.72409i −0.506834 0.862044i \(-0.669184\pi\)
0.506834 0.862044i \(-0.330816\pi\)
\(110\) 0 0
\(111\) 9.00000i 0.854242i
\(112\) 12.0000 1.13389
\(113\) 18.0000i 1.69330i −0.532152 0.846649i \(-0.678617\pi\)
0.532152 0.846649i \(-0.321383\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.0000 −1.11417
\(117\) 3.00000 + 2.00000i 0.277350 + 0.184900i
\(118\) 0 0
\(119\) 9.00000i 0.825029i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 0 0
\(123\) 3.00000 0.270501
\(124\) 12.0000i 1.07763i
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 6.00000 0.522233
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 12.0000i 1.01058i
\(142\) 0 0
\(143\) 6.00000 9.00000i 0.501745 0.752618i
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000i 0.164957i
\(148\) 18.0000 1.47959
\(149\) 3.00000i 0.245770i −0.992421 0.122885i \(-0.960785\pi\)
0.992421 0.122885i \(-0.0392146\pi\)
\(150\) 0 0
\(151\) 6.00000i 0.488273i −0.969741 0.244137i \(-0.921495\pi\)
0.969741 0.244137i \(-0.0785045\pi\)
\(152\) 0 0
\(153\) 3.00000i 0.242536i
\(154\) 0 0
\(155\) 0 0
\(156\) −4.00000 + 6.00000i −0.320256 + 0.480384i
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 0 0
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 9.00000i 0.709299i
\(162\) 0 0
\(163\) −3.00000 −0.234978 −0.117489 0.993074i \(-0.537485\pi\)
−0.117489 + 0.993074i \(0.537485\pi\)
\(164\) 6.00000i 0.468521i
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 20.0000i 1.52499i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.0000i 0.904534i
\(177\) −12.0000 −0.901975
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −25.0000 −1.85824 −0.929118 0.369784i \(-0.879432\pi\)
−0.929118 + 0.369784i \(0.879432\pi\)
\(182\) 0 0
\(183\) 1.00000i 0.0739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −9.00000 −0.658145
\(188\) 24.0000 1.75038
\(189\) 3.00000i 0.218218i
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 8.00000i 0.577350i
\(193\) −3.00000 −0.215945 −0.107972 0.994154i \(-0.534436\pi\)
−0.107972 + 0.994154i \(0.534436\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −4.00000 −0.285714
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.0000 1.26335
\(204\) 6.00000 0.420084
\(205\) 0 0
\(206\) 0 0
\(207\) 3.00000i 0.208514i
\(208\) −12.0000 8.00000i −0.832050 0.554700i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 6.00000i 0.412082i
\(213\) −9.00000 −0.616670
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 18.0000i 1.22192i
\(218\) 0 0
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 6.00000 9.00000i 0.403604 0.605406i
\(222\) 0 0
\(223\) 24.0000 1.60716 0.803579 0.595198i \(-0.202926\pi\)
0.803579 + 0.595198i \(0.202926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) −9.00000 −0.592157
\(232\) 0 0
\(233\) 15.0000i 0.982683i 0.870967 + 0.491341i \(0.163493\pi\)
−0.870967 + 0.491341i \(0.836507\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 24.0000i 1.56227i
\(237\) 1.00000i 0.0649570i
\(238\) 0 0
\(239\) 27.0000i 1.74648i 0.487286 + 0.873242i \(0.337987\pi\)
−0.487286 + 0.873242i \(0.662013\pi\)
\(240\) 0 0
\(241\) 30.0000i 1.93247i −0.257663 0.966235i \(-0.582952\pi\)
0.257663 0.966235i \(-0.417048\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 6.00000 0.377964
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 18.0000i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(258\) 0 0
\(259\) −27.0000 −1.67770
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 24.0000i 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −15.0000 −0.917985
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 6.00000i 0.364474i −0.983255 0.182237i \(-0.941666\pi\)
0.983255 0.182237i \(-0.0583338\pi\)
\(272\) 12.0000i 0.727607i
\(273\) 6.00000 9.00000i 0.363137 0.544705i
\(274\) 0 0
\(275\) 0 0
\(276\) 6.00000 0.361158
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 0 0
\(279\) 6.00000i 0.359211i
\(280\) 0 0
\(281\) 6.00000i 0.357930i 0.983855 + 0.178965i \(0.0572749\pi\)
−0.983855 + 0.178965i \(0.942725\pi\)
\(282\) 0 0
\(283\) 22.0000i 1.30776i −0.756596 0.653882i \(-0.773139\pi\)
0.756596 0.653882i \(-0.226861\pi\)
\(284\) 18.0000i 1.06810i
\(285\) 0 0
\(286\) 0 0
\(287\) 9.00000i 0.531253i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 9.00000i 0.527589i
\(292\) 12.0000 0.702247
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 3.00000 0.174078
\(298\) 0 0
\(299\) 6.00000 9.00000i 0.346989 0.520483i
\(300\) 0 0
\(301\) 30.0000i 1.72917i
\(302\) 0 0
\(303\) 18.0000i 1.03407i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 15.0000 0.856095 0.428048 0.903756i \(-0.359202\pi\)
0.428048 + 0.903756i \(0.359202\pi\)
\(308\) 18.0000i 1.02565i
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 0 0
\(313\) 8.00000i 0.452187i 0.974106 + 0.226093i \(0.0725954\pi\)
−0.974106 + 0.226093i \(0.927405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 18.0000i 1.00781i
\(320\) 0 0
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) 0 0
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 18.0000 0.995402
\(328\) 0 0
\(329\) −36.0000 −1.98474
\(330\) 0 0
\(331\) 24.0000i 1.31916i −0.751635 0.659580i \(-0.770734\pi\)
0.751635 0.659580i \(-0.229266\pi\)
\(332\) −12.0000 −0.658586
\(333\) 9.00000 0.493197
\(334\) 0 0
\(335\) 0 0
\(336\) 12.0000i 0.654654i
\(337\) 14.0000i 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.00000i 0.483145i −0.970383 0.241573i \(-0.922337\pi\)
0.970383 0.241573i \(-0.0776632\pi\)
\(348\) 12.0000i 0.643268i
\(349\) 18.0000i 0.963518i −0.876304 0.481759i \(-0.839998\pi\)
0.876304 0.481759i \(-0.160002\pi\)
\(350\) 0 0
\(351\) −2.00000 + 3.00000i −0.106752 + 0.160128i
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 30.0000i 1.59000i
\(357\) −9.00000 −0.476331
\(358\) 0 0
\(359\) 24.0000i 1.26667i −0.773877 0.633336i \(-0.781685\pi\)
0.773877 0.633336i \(-0.218315\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 2.00000i 0.104973i
\(364\) 18.0000 + 12.0000i 0.943456 + 0.628971i
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0000i 1.35719i 0.734513 + 0.678594i \(0.237411\pi\)
−0.734513 + 0.678594i \(0.762589\pi\)
\(368\) 12.0000i 0.625543i
\(369\) 3.00000i 0.156174i
\(370\) 0 0
\(371\) 9.00000i 0.467257i
\(372\) 12.0000 0.622171
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −18.0000 12.0000i −0.927047 0.618031i
\(378\) 0 0
\(379\) 30.0000i 1.54100i −0.637442 0.770498i \(-0.720007\pi\)
0.637442 0.770498i \(-0.279993\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) −30.0000 −1.53293 −0.766464 0.642287i \(-0.777986\pi\)
−0.766464 + 0.642287i \(0.777986\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.0000i 0.508329i
\(388\) 18.0000 0.913812
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 6.00000i 0.301511i
\(397\) 3.00000 0.150566 0.0752828 0.997162i \(-0.476014\pi\)
0.0752828 + 0.997162i \(0.476014\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000i 0.898877i 0.893311 + 0.449439i \(0.148376\pi\)
−0.893311 + 0.449439i \(0.851624\pi\)
\(402\) 0 0
\(403\) 12.0000 18.0000i 0.597763 0.896644i
\(404\) −36.0000 −1.79107
\(405\) 0 0
\(406\) 0 0
\(407\) 27.0000i 1.33834i
\(408\) 0 0
\(409\) 24.0000i 1.18672i 0.804936 + 0.593362i \(0.202200\pi\)
−0.804936 + 0.593362i \(0.797800\pi\)
\(410\) 0 0
\(411\) 18.0000i 0.887875i
\(412\) 8.00000i 0.394132i
\(413\) 36.0000i 1.77144i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 13.0000i 0.636613i
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 18.0000i 0.877266i 0.898666 + 0.438633i \(0.144537\pi\)
−0.898666 + 0.438633i \(0.855463\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.00000 0.145180
\(428\) 18.0000i 0.870063i
\(429\) 9.00000 + 6.00000i 0.434524 + 0.289683i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 38.0000i 1.82616i 0.407777 + 0.913082i \(0.366304\pi\)
−0.407777 + 0.913082i \(0.633696\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 36.0000i 1.72409i
\(437\) 0 0
\(438\) 0 0
\(439\) 19.0000 0.906821 0.453410 0.891302i \(-0.350207\pi\)
0.453410 + 0.891302i \(0.350207\pi\)
\(440\) 0 0
\(441\) −2.00000 −0.0952381
\(442\) 0 0
\(443\) 21.0000i 0.997740i 0.866677 + 0.498870i \(0.166252\pi\)
−0.866677 + 0.498870i \(0.833748\pi\)
\(444\) 18.0000i 0.854242i
\(445\) 0 0
\(446\) 0 0
\(447\) 3.00000 0.141895
\(448\) −24.0000 −1.13389
\(449\) 15.0000i 0.707894i −0.935266 0.353947i \(-0.884839\pi\)
0.935266 0.353947i \(-0.115161\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 36.0000i 1.69330i
\(453\) 6.00000 0.281905
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.0000 −1.54367 −0.771837 0.635820i \(-0.780662\pi\)
−0.771837 + 0.635820i \(0.780662\pi\)
\(458\) 0 0
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) 9.00000i 0.419172i 0.977790 + 0.209586i \(0.0672116\pi\)
−0.977790 + 0.209586i \(0.932788\pi\)
\(462\) 0 0
\(463\) −15.0000 −0.697109 −0.348555 0.937288i \(-0.613327\pi\)
−0.348555 + 0.937288i \(0.613327\pi\)
\(464\) 24.0000 1.11417
\(465\) 0 0
\(466\) 0 0
\(467\) 15.0000i 0.694117i −0.937843 0.347059i \(-0.887180\pi\)
0.937843 0.347059i \(-0.112820\pi\)
\(468\) −6.00000 4.00000i −0.277350 0.184900i
\(469\) 0 0
\(470\) 0 0
\(471\) 4.00000 0.184310
\(472\) 0 0
\(473\) −30.0000 −1.37940
\(474\) 0 0
\(475\) 0 0
\(476\) 18.0000i 0.825029i
\(477\) 3.00000i 0.137361i
\(478\) 0 0
\(479\) 3.00000i 0.137073i 0.997649 + 0.0685367i \(0.0218330\pi\)
−0.997649 + 0.0685367i \(0.978167\pi\)
\(480\) 0 0
\(481\) 27.0000 + 18.0000i 1.23109 + 0.820729i
\(482\) 0 0
\(483\) −9.00000 −0.409514
\(484\) −4.00000 −0.181818
\(485\) 0 0
\(486\) 0 0
\(487\) 15.0000 0.679715 0.339857 0.940477i \(-0.389621\pi\)
0.339857 + 0.940477i \(0.389621\pi\)
\(488\) 0 0
\(489\) 3.00000i 0.135665i
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) −6.00000 −0.270501
\(493\) 18.0000i 0.810679i
\(494\) 0 0
\(495\) 0 0
\(496\) 24.0000i 1.07763i
\(497\) 27.0000i 1.21112i
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 36.0000i 1.60516i −0.596544 0.802580i \(-0.703460\pi\)
0.596544 0.802580i \(-0.296540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12.0000 + 5.00000i −0.532939 + 0.222058i
\(508\) 4.00000i 0.177471i
\(509\) 15.0000i 0.664863i −0.943127 0.332432i \(-0.892131\pi\)
0.943127 0.332432i \(-0.107869\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 20.0000 0.880451
\(517\) 36.0000i 1.58328i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 12.0000 0.525730 0.262865 0.964833i \(-0.415333\pi\)
0.262865 + 0.964833i \(0.415333\pi\)
\(522\) 0 0
\(523\) 2.00000i 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) −24.0000 −1.04844
\(525\) 0 0
\(526\) 0 0
\(527\) −18.0000 −0.784092
\(528\) −12.0000 −0.522233
\(529\) 14.0000 0.608696
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) −6.00000 + 9.00000i −0.259889 + 0.389833i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 24.0000i 1.03568i
\(538\) 0 0
\(539\) 6.00000i 0.258438i
\(540\) 0 0
\(541\) 12.0000i 0.515920i −0.966156 0.257960i \(-0.916950\pi\)
0.966156 0.257960i \(-0.0830503\pi\)
\(542\) 0 0
\(543\) 25.0000i 1.07285i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) −36.0000 −1.53784
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.00000 −0.127573
\(554\) 0 0
\(555\) 0 0
\(556\) −26.0000 −1.10265
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 20.0000 30.0000i 0.845910 1.26886i
\(560\) 0 0
\(561\) 9.00000i 0.379980i
\(562\) 0 0
\(563\) 9.00000i 0.379305i −0.981851 0.189652i \(-0.939264\pi\)
0.981851 0.189652i \(-0.0607361\pi\)
\(564\) 24.0000i 1.01058i
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 31.0000 1.29731 0.648655 0.761083i \(-0.275332\pi\)
0.648655 + 0.761083i \(0.275332\pi\)
\(572\) −12.0000 + 18.0000i −0.501745 + 0.752618i
\(573\) 12.0000i 0.501307i
\(574\) 0 0
\(575\) 0 0
\(576\) 8.00000 0.333333
\(577\) −21.0000 −0.874241 −0.437121 0.899403i \(-0.644002\pi\)
−0.437121 + 0.899403i \(0.644002\pi\)
\(578\) 0 0
\(579\) 3.00000i 0.124676i
\(580\) 0 0
\(581\) 18.0000 0.746766
\(582\) 0 0
\(583\) −9.00000 −0.372742
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 4.00000i 0.164957i
\(589\) 0 0
\(590\) 0 0
\(591\) 6.00000i 0.246807i
\(592\) −36.0000 −1.47959
\(593\) −42.0000 −1.72473 −0.862367 0.506284i \(-0.831019\pi\)
−0.862367 + 0.506284i \(0.831019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000i 0.245770i
\(597\) 16.0000i 0.654836i
\(598\) 0 0
\(599\) −48.0000 −1.96123 −0.980613 0.195952i \(-0.937220\pi\)
−0.980613 + 0.195952i \(0.937220\pi\)
\(600\) 0 0
\(601\) −17.0000 −0.693444 −0.346722 0.937968i \(-0.612705\pi\)
−0.346722 + 0.937968i \(0.612705\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.0000i 0.488273i
\(605\) 0 0
\(606\) 0 0
\(607\) 4.00000i 0.162355i −0.996700 0.0811775i \(-0.974132\pi\)
0.996700 0.0811775i \(-0.0258681\pi\)
\(608\) 0 0
\(609\) 18.0000i 0.729397i
\(610\) 0 0
\(611\) 36.0000 + 24.0000i 1.45640 + 0.970936i
\(612\) 6.00000i 0.242536i
\(613\) 21.0000 0.848182 0.424091 0.905620i \(-0.360594\pi\)
0.424091 + 0.905620i \(0.360594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 0 0
\(619\) 30.0000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(620\) 0 0
\(621\) 3.00000 0.120386
\(622\) 0 0
\(623\) 45.0000i 1.80289i
\(624\) 8.00000 12.0000i 0.320256 0.480384i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 8.00000i 0.319235i
\(629\) 27.0000i 1.07656i
\(630\) 0 0
\(631\) 6.00000i 0.238856i −0.992843 0.119428i \(-0.961894\pi\)
0.992843 0.119428i \(-0.0381061\pi\)
\(632\) 0 0
\(633\) 4.00000i 0.158986i
\(634\) 0 0
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −6.00000 4.00000i −0.237729 0.158486i
\(638\) 0 0
\(639\) 9.00000i 0.356034i
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) 27.0000 1.06478 0.532388 0.846500i \(-0.321295\pi\)
0.532388 + 0.846500i \(0.321295\pi\)
\(644\) 18.0000i 0.709299i
\(645\) 0 0
\(646\) 0 0
\(647\) 39.0000i 1.53325i 0.642096 + 0.766624i \(0.278065\pi\)
−0.642096 + 0.766624i \(0.721935\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) 6.00000 0.234978
\(653\) 18.0000i 0.704394i 0.935926 + 0.352197i \(0.114565\pi\)
−0.935926 + 0.352197i \(0.885435\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 12.0000i 0.468521i
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i 0.884391 + 0.466746i \(0.154574\pi\)
−0.884391 + 0.466746i \(0.845426\pi\)
\(662\) 0 0
\(663\) 9.00000 + 6.00000i 0.349531 + 0.233021i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.0000i 0.696963i
\(668\) −24.0000 −0.928588
\(669\) 24.0000i 0.927894i
\(670\) 0 0
\(671\) 3.00000i 0.115814i
\(672\) 0 0
\(673\) 44.0000i 1.69608i −0.529936 0.848038i \(-0.677784\pi\)
0.529936 0.848038i \(-0.322216\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −10.0000 24.0000i −0.384615 0.923077i
\(677\) 39.0000i 1.49889i −0.662066 0.749446i \(-0.730320\pi\)
0.662066 0.749446i \(-0.269680\pi\)
\(678\) 0 0
\(679\) −27.0000 −1.03616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 40.0000i 1.52499i
\(689\) 6.00000 9.00000i 0.228582 0.342873i
\(690\) 0 0
\(691\) 30.0000i 1.14125i −0.821209 0.570627i \(-0.806700\pi\)
0.821209 0.570627i \(-0.193300\pi\)
\(692\) 12.0000i 0.456172i
\(693\) 9.00000i 0.341882i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.00000 0.340899
\(698\) 0 0
\(699\) −15.0000 −0.567352
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 24.0000i 0.904534i
\(705\) 0 0
\(706\) 0 0
\(707\) 54.0000 2.03088
\(708\) 24.0000 0.901975
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 1.00000 0.0375029
\(712\) 0 0
\(713\) −18.0000 −0.674105
\(714\) 0 0
\(715\) 0 0
\(716\) −48.0000 −1.79384
\(717\) −27.0000 −1.00833
\(718\) 0 0
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 12.0000i 0.446903i
\(722\) 0 0
\(723\) 30.0000 1.11571
\(724\) 50.0000 1.85824
\(725\) 0 0
\(726\) 0 0
\(727\) 26.0000i 0.964287i −0.876092 0.482143i \(-0.839858\pi\)
0.876092 0.482143i \(-0.160142\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −30.0000 −1.10959
\(732\) 2.00000i 0.0739221i
\(733\) 15.0000 0.554038 0.277019 0.960864i \(-0.410654\pi\)
0.277019 + 0.960864i \(0.410654\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 30.0000i 1.10357i 0.833987 + 0.551784i \(0.186053\pi\)
−0.833987 + 0.551784i \(0.813947\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.0000 1.32071 0.660356 0.750953i \(-0.270405\pi\)
0.660356 + 0.750953i \(0.270405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 18.0000 0.658145
\(749\) 27.0000i 0.986559i
\(750\) 0 0
\(751\) 5.00000 0.182453 0.0912263 0.995830i \(-0.470921\pi\)
0.0912263 + 0.995830i \(0.470921\pi\)
\(752\) −48.0000 −1.75038
\(753\) 6.00000i 0.218652i
\(754\) 0 0
\(755\) 0 0
\(756\) 6.00000i 0.218218i
\(757\) 16.0000i 0.581530i 0.956795 + 0.290765i \(0.0939098\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(758\) 0 0
\(759\) 9.00000i 0.326679i
\(760\) 0 0
\(761\) 18.0000i 0.652499i 0.945284 + 0.326250i \(0.105785\pi\)
−0.945284 + 0.326250i \(0.894215\pi\)
\(762\) 0 0
\(763\) 54.0000i 1.95493i
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000 36.0000i 0.866590 1.29988i
\(768\) 16.0000i 0.577350i
\(769\) 12.0000i 0.432731i −0.976312 0.216366i \(-0.930580\pi\)
0.976312 0.216366i \(-0.0694203\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 6.00000 0.215945
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 27.0000i 0.968620i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −27.0000 −0.966136
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 8.00000 0.285714
\(785\) 0 0
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 12.0000 0.427482
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 54.0000i 1.92002i
\(792\) 0 0
\(793\) −3.00000 2.00000i −0.106533 0.0710221i
\(794\) 0 0
\(795\) 0 0
\(796\) 32.0000 1.13421
\(797\) 51.0000i 1.80651i −0.429101 0.903256i \(-0.641170\pi\)
0.429101 0.903256i \(-0.358830\pi\)
\(798\) 0 0
\(799\) 36.0000i 1.27359i
\(800\) 0 0
\(801\) 15.0000i 0.529999i
\(802\) 0 0
\(803\) 18.0000i 0.635206i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000i 0.844840i
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 42.0000i 1.47482i −0.675446 0.737410i \(-0.736049\pi\)
0.675446 0.737410i \(-0.263951\pi\)
\(812\) −36.0000 −1.26335
\(813\) 6.00000 0.210429
\(814\) 0 0
\(815\) 0 0
\(816\) −12.0000 −0.420084
\(817\) 0 0
\(818\) 0 0
\(819\) 9.00000 + 6.00000i 0.314485 + 0.209657i
\(820\) 0 0
\(821\) 33.0000i 1.15171i 0.817553 + 0.575854i \(0.195330\pi\)
−0.817553 + 0.575854i \(0.804670\pi\)
\(822\) 0 0
\(823\) 14.0000i 0.488009i −0.969774 0.244005i \(-0.921539\pi\)
0.969774 0.244005i \(-0.0784612\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 6.00000i 0.208514i
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 24.0000 + 16.0000i 0.832050 + 0.554700i
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) 0 0
\(839\) 9.00000i 0.310715i 0.987858 + 0.155357i \(0.0496529\pi\)
−0.987858 + 0.155357i \(0.950347\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −6.00000 −0.206651
\(844\) −8.00000 −0.275371
\(845\) 0 0
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 12.0000i 0.412082i
\(849\) 22.0000 0.755038
\(850\) 0 0
\(851\) 27.0000i 0.925548i
\(852\) 18.0000 0.616670
\(853\) −9.00000 −0.308154 −0.154077 0.988059i \(-0.549240\pi\)
−0.154077 + 0.988059i \(0.549240\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.0000i 0.717346i 0.933463 + 0.358673i \(0.116771\pi\)
−0.933463 + 0.358673i \(0.883229\pi\)
\(858\) 0 0
\(859\) 5.00000 0.170598 0.0852989 0.996355i \(-0.472815\pi\)
0.0852989 + 0.996355i \(0.472815\pi\)
\(860\) 0 0
\(861\) 9.00000 0.306719
\(862\) 0 0
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8.00000i 0.271694i
\(868\) 36.0000i 1.22192i
\(869\) 3.00000i 0.101768i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 9.00000 0.304604
\(874\) 0 0
\(875\) 0 0
\(876\) 12.0000i 0.405442i
\(877\) 30.0000 1.01303 0.506514 0.862232i \(-0.330934\pi\)
0.506514 + 0.862232i \(0.330934\pi\)
\(878\) 0 0
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 16.0000i 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) −12.0000 + 18.0000i −0.403604 + 0.605406i
\(885\) 0 0
\(886\) 0 0
\(887\) 33.0000i 1.10803i 0.832506 + 0.554016i \(0.186905\pi\)
−0.832506 + 0.554016i \(0.813095\pi\)
\(888\) 0 0
\(889\) 6.00000i 0.201234i
\(890\) 0 0
\(891\) 3.00000i 0.100504i
\(892\) −48.0000 −1.60716
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.00000 + 6.00000i 0.300501 + 0.200334i
\(898\) 0 0
\(899\) 36.0000i 1.20067i
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) 0 0
\(903\) −30.0000 −0.998337
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 8.00000i 0.265636i −0.991140 0.132818i \(-0.957597\pi\)
0.991140 0.132818i \(-0.0424025\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) 18.0000i 0.595713i
\(914\) 0 0
\(915\) 0 0
\(916\) 12.0000i 0.396491i
\(917\) 36.0000 1.18882
\(918\) 0 0
\(919\) 11.0000 0.362857 0.181428 0.983404i \(-0.441928\pi\)
0.181428 + 0.983404i \(0.441928\pi\)
\(920\) 0 0
\(921\) 15.0000i 0.494267i
\(922\) 0 0
\(923\) 18.0000 27.0000i 0.592477 0.888716i
\(924\) 18.0000 0.592157
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 27.0000i 0.885841i −0.896561 0.442921i \(-0.853942\pi\)
0.896561 0.442921i \(-0.146058\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 30.0000i 0.982683i
\(933\) 6.00000i 0.196431i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0000i 1.11073i 0.831606 + 0.555366i \(0.187422\pi\)
−0.831606 + 0.555366i \(0.812578\pi\)
\(938\) 0 0
\(939\) −8.00000 −0.261070
\(940\) 0 0
\(941\) 9.00000i 0.293392i −0.989182 0.146696i \(-0.953136\pi\)
0.989182 0.146696i \(-0.0468638\pi\)
\(942\) 0 0
\(943\) 9.00000 0.293080
\(944\) 48.0000i 1.56227i
\(945\) 0 0
\(946\) 0 0
\(947\) −24.0000 −0.779895 −0.389948 0.920837i \(-0.627507\pi\)
−0.389948 + 0.920837i \(0.627507\pi\)
\(948\) 2.00000i 0.0649570i
\(949\) 18.0000 + 12.0000i 0.584305 + 0.389536i
\(950\) 0 0
\(951\) 6.00000i 0.194563i
\(952\) 0 0
\(953\) 27.0000i 0.874616i −0.899312 0.437308i \(-0.855932\pi\)
0.899312 0.437308i \(-0.144068\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 54.0000i 1.74648i
\(957\) −18.0000 −0.581857
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) 0 0
\(961\) −5.00000 −0.161290
\(962\) 0 0
\(963\) 9.00000i 0.290021i
\(964\) 60.0000i 1.93247i
\(965\) 0 0
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −18.0000 −0.577647 −0.288824 0.957382i \(-0.593264\pi\)
−0.288824 + 0.957382i \(0.593264\pi\)
\(972\) 2.00000i 0.0641500i
\(973\) 39.0000 1.25028
\(974\) 0 0
\(975\) 0 0
\(976\) 4.00000 0.128037
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 0 0
\(981\) 18.0000i 0.574696i
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 36.0000i 1.14589i
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 24.0000 0.761617
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000i 0.380235i
\(997\) 8.00000i 0.253363i 0.991943 + 0.126681i \(0.0404325\pi\)
−0.991943 + 0.126681i \(0.959567\pi\)
\(998\) 0 0
\(999\) 9.00000i 0.284747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.h.c.649.2 2
5.2 odd 4 975.2.b.e.376.2 2
5.3 odd 4 195.2.b.a.181.1 2
5.4 even 2 975.2.h.b.649.1 2
13.12 even 2 975.2.h.b.649.2 2
15.8 even 4 585.2.b.d.181.2 2
20.3 even 4 3120.2.g.j.961.1 2
65.8 even 4 2535.2.a.g.1.1 1
65.12 odd 4 975.2.b.e.376.1 2
65.18 even 4 2535.2.a.f.1.1 1
65.38 odd 4 195.2.b.a.181.2 yes 2
65.64 even 2 inner 975.2.h.c.649.1 2
195.8 odd 4 7605.2.a.i.1.1 1
195.38 even 4 585.2.b.d.181.1 2
195.83 odd 4 7605.2.a.n.1.1 1
260.103 even 4 3120.2.g.j.961.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.b.a.181.1 2 5.3 odd 4
195.2.b.a.181.2 yes 2 65.38 odd 4
585.2.b.d.181.1 2 195.38 even 4
585.2.b.d.181.2 2 15.8 even 4
975.2.b.e.376.1 2 65.12 odd 4
975.2.b.e.376.2 2 5.2 odd 4
975.2.h.b.649.1 2 5.4 even 2
975.2.h.b.649.2 2 13.12 even 2
975.2.h.c.649.1 2 65.64 even 2 inner
975.2.h.c.649.2 2 1.1 even 1 trivial
2535.2.a.f.1.1 1 65.18 even 4
2535.2.a.g.1.1 1 65.8 even 4
3120.2.g.j.961.1 2 20.3 even 4
3120.2.g.j.961.2 2 260.103 even 4
7605.2.a.i.1.1 1 195.8 odd 4
7605.2.a.n.1.1 1 195.83 odd 4