Properties

Label 99.2.e.e.67.3
Level $99$
Weight $2$
Character 99.67
Analytic conductor $0.791$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,2,Mod(34,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.34");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 99.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.790518980011\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.508277025.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} - 15x^{5} + 21x^{4} + 3x^{3} - 22x^{2} + 3x + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.3
Root \(0.947217 - 0.807294i\) of defining polynomial
Character \(\chi\) \(=\) 99.67
Dual form 99.2.e.e.34.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.447217 + 0.774602i) q^{2} +(1.22553 - 1.22396i) q^{3} +(0.599994 - 1.03922i) q^{4} +(-1.87447 + 3.24667i) q^{5} +(1.49616 + 0.401921i) q^{6} +(-0.725528 - 1.25665i) q^{7} +2.86218 q^{8} +(0.00384004 - 3.00000i) q^{9} -3.35317 q^{10} +(-0.500000 - 0.866025i) q^{11} +(-0.536655 - 2.00796i) q^{12} +(-2.87831 + 4.98537i) q^{13} +(0.648937 - 1.12399i) q^{14} +(1.67659 + 6.27316i) q^{15} +(0.0800260 + 0.138609i) q^{16} -4.79655 q^{17} +(2.32552 - 1.33868i) q^{18} +0.702126 q^{19} +(2.24934 + 3.89597i) q^{20} +(-2.42725 - 0.652045i) q^{21} +(0.447217 - 0.774602i) q^{22} +(0.825523 - 1.42985i) q^{23} +(3.50768 - 3.50319i) q^{24} +(-4.52724 - 7.84141i) q^{25} -5.14891 q^{26} +(-3.66717 - 3.68128i) q^{27} -1.74125 q^{28} +(2.15278 + 3.72872i) q^{29} +(-4.10941 + 4.10415i) q^{30} +(1.65278 - 2.86269i) q^{31} +(2.79060 - 4.83346i) q^{32} +(-1.67275 - 0.449358i) q^{33} +(-2.14510 - 3.71542i) q^{34} +5.43991 q^{35} +(-3.11535 - 1.80397i) q^{36} +9.73779 q^{37} +(0.314002 + 0.543868i) q^{38} +(2.57445 + 9.63265i) q^{39} +(-5.36505 + 9.29255i) q^{40} +(-2.12380 + 3.67853i) q^{41} +(-0.580431 - 2.17176i) q^{42} +(2.05278 + 3.55552i) q^{43} -1.19999 q^{44} +(9.73280 + 5.63586i) q^{45} +1.47675 q^{46} +(-0.898274 - 1.55586i) q^{47} +(0.267726 + 0.0719207i) q^{48} +(2.44722 - 4.23870i) q^{49} +(4.04932 - 7.01363i) q^{50} +(-5.87831 + 5.87079i) q^{51} +(3.45393 + 5.98239i) q^{52} -1.15318 q^{53} +(1.21151 - 4.48693i) q^{54} +3.74893 q^{55} +(-2.07659 - 3.59676i) q^{56} +(0.860475 - 0.859374i) q^{57} +(-1.92552 + 3.33509i) q^{58} +(2.32552 - 4.02792i) q^{59} +(7.52513 + 2.02152i) q^{60} +(-1.27447 - 2.20745i) q^{61} +2.95660 q^{62} +(-3.77274 + 2.17176i) q^{63} +5.31212 q^{64} +(-10.7906 - 18.6898i) q^{65} +(-0.400006 - 1.49667i) q^{66} +(-4.47062 + 7.74334i) q^{67} +(-2.87790 + 4.98467i) q^{68} +(-0.738375 - 2.76273i) q^{69} +(2.43282 + 4.21377i) q^{70} +5.14204 q^{71} +(0.0109909 - 8.58653i) q^{72} +10.5378 q^{73} +(4.35490 + 7.54291i) q^{74} +(-15.1458 - 4.06871i) q^{75} +(0.421271 - 0.729663i) q^{76} +(-0.725528 + 1.25665i) q^{77} +(-6.31013 + 6.30206i) q^{78} +(0.543371 + 0.941146i) q^{79} -0.600024 q^{80} +(-8.99997 - 0.0230402i) q^{81} -3.79920 q^{82} +(1.90171 + 3.29386i) q^{83} +(-2.13395 + 2.13122i) q^{84} +(8.99096 - 15.5728i) q^{85} +(-1.83608 + 3.18018i) q^{86} +(7.20210 + 1.93474i) q^{87} +(-1.43109 - 2.47872i) q^{88} -4.01536 q^{89} +(-0.0128763 + 10.0595i) q^{90} +8.35317 q^{91} +(-0.990617 - 1.71580i) q^{92} +(-1.47830 - 5.53125i) q^{93} +(0.803446 - 1.39161i) q^{94} +(-1.31611 + 2.27957i) q^{95} +(-2.49601 - 9.33913i) q^{96} +(-1.64550 - 2.85009i) q^{97} +4.37775 q^{98} +(-2.59999 + 1.49667i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 5 q^{3} - 11 q^{4} - 4 q^{5} + 17 q^{6} - q^{7} - 5 q^{9} + 2 q^{10} - 4 q^{11} - 2 q^{12} - 7 q^{13} - q^{14} - q^{15} - 17 q^{16} - 10 q^{17} - 2 q^{18} + 18 q^{19} + 10 q^{20} - 13 q^{21}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.447217 + 0.774602i 0.316230 + 0.547727i 0.979698 0.200478i \(-0.0642495\pi\)
−0.663468 + 0.748205i \(0.730916\pi\)
\(3\) 1.22553 1.22396i 0.707559 0.706654i
\(4\) 0.599994 1.03922i 0.299997 0.519610i
\(5\) −1.87447 + 3.24667i −0.838287 + 1.45195i 0.0530397 + 0.998592i \(0.483109\pi\)
−0.891326 + 0.453362i \(0.850224\pi\)
\(6\) 1.49616 + 0.401921i 0.610805 + 0.164084i
\(7\) −0.725528 1.25665i −0.274224 0.474970i 0.695715 0.718318i \(-0.255088\pi\)
−0.969939 + 0.243348i \(0.921754\pi\)
\(8\) 2.86218 1.01193
\(9\) 0.00384004 3.00000i 0.00128001 0.999999i
\(10\) −3.35317 −1.06037
\(11\) −0.500000 0.866025i −0.150756 0.261116i
\(12\) −0.536655 2.00796i −0.154919 0.579649i
\(13\) −2.87831 + 4.98537i −0.798298 + 1.38269i 0.122425 + 0.992478i \(0.460933\pi\)
−0.920724 + 0.390216i \(0.872400\pi\)
\(14\) 0.648937 1.12399i 0.173436 0.300400i
\(15\) 1.67659 + 6.27316i 0.432892 + 1.61972i
\(16\) 0.0800260 + 0.138609i 0.0200065 + 0.0346523i
\(17\) −4.79655 −1.16333 −0.581667 0.813427i \(-0.697599\pi\)
−0.581667 + 0.813427i \(0.697599\pi\)
\(18\) 2.32552 1.33868i 0.548131 0.315529i
\(19\) 0.702126 0.161079 0.0805393 0.996751i \(-0.474336\pi\)
0.0805393 + 0.996751i \(0.474336\pi\)
\(20\) 2.24934 + 3.89597i 0.502967 + 0.871164i
\(21\) −2.42725 0.652045i −0.529669 0.142288i
\(22\) 0.447217 0.774602i 0.0953470 0.165146i
\(23\) 0.825523 1.42985i 0.172133 0.298144i −0.767032 0.641609i \(-0.778267\pi\)
0.939165 + 0.343465i \(0.111601\pi\)
\(24\) 3.50768 3.50319i 0.716002 0.715086i
\(25\) −4.52724 7.84141i −0.905449 1.56828i
\(26\) −5.14891 −1.00978
\(27\) −3.66717 3.68128i −0.705748 0.708463i
\(28\) −1.74125 −0.329066
\(29\) 2.15278 + 3.72872i 0.399761 + 0.692406i 0.993696 0.112107i \(-0.0357599\pi\)
−0.593935 + 0.804513i \(0.702427\pi\)
\(30\) −4.10941 + 4.10415i −0.750272 + 0.749312i
\(31\) 1.65278 2.86269i 0.296848 0.514155i −0.678565 0.734540i \(-0.737398\pi\)
0.975413 + 0.220385i \(0.0707313\pi\)
\(32\) 2.79060 4.83346i 0.493313 0.854443i
\(33\) −1.67275 0.449358i −0.291188 0.0782233i
\(34\) −2.14510 3.71542i −0.367881 0.637189i
\(35\) 5.43991 0.919513
\(36\) −3.11535 1.80397i −0.519226 0.300662i
\(37\) 9.73779 1.60088 0.800441 0.599411i \(-0.204599\pi\)
0.800441 + 0.599411i \(0.204599\pi\)
\(38\) 0.314002 + 0.543868i 0.0509379 + 0.0882271i
\(39\) 2.57445 + 9.63265i 0.412243 + 1.54246i
\(40\) −5.36505 + 9.29255i −0.848289 + 1.46928i
\(41\) −2.12380 + 3.67853i −0.331682 + 0.574490i −0.982842 0.184450i \(-0.940949\pi\)
0.651160 + 0.758941i \(0.274283\pi\)
\(42\) −0.580431 2.17176i −0.0895625 0.335110i
\(43\) 2.05278 + 3.55552i 0.313046 + 0.542212i 0.979020 0.203763i \(-0.0653171\pi\)
−0.665974 + 0.745975i \(0.731984\pi\)
\(44\) −1.19999 −0.180905
\(45\) 9.73280 + 5.63586i 1.45088 + 0.840144i
\(46\) 1.47675 0.217735
\(47\) −0.898274 1.55586i −0.131027 0.226945i 0.793046 0.609162i \(-0.208494\pi\)
−0.924073 + 0.382217i \(0.875161\pi\)
\(48\) 0.267726 + 0.0719207i 0.0386429 + 0.0103809i
\(49\) 2.44722 4.23870i 0.349602 0.605529i
\(50\) 4.04932 7.01363i 0.572660 0.991877i
\(51\) −5.87831 + 5.87079i −0.823127 + 0.822074i
\(52\) 3.45393 + 5.98239i 0.478974 + 0.829608i
\(53\) −1.15318 −0.158402 −0.0792009 0.996859i \(-0.525237\pi\)
−0.0792009 + 0.996859i \(0.525237\pi\)
\(54\) 1.21151 4.48693i 0.164865 0.610594i
\(55\) 3.74893 0.505506
\(56\) −2.07659 3.59676i −0.277496 0.480637i
\(57\) 0.860475 0.859374i 0.113973 0.113827i
\(58\) −1.92552 + 3.33509i −0.252833 + 0.437919i
\(59\) 2.32552 4.02792i 0.302757 0.524391i −0.674002 0.738729i \(-0.735426\pi\)
0.976759 + 0.214338i \(0.0687595\pi\)
\(60\) 7.52513 + 2.02152i 0.971491 + 0.260977i
\(61\) −1.27447 2.20745i −0.163179 0.282635i 0.772828 0.634616i \(-0.218842\pi\)
−0.936007 + 0.351981i \(0.885508\pi\)
\(62\) 2.95660 0.375489
\(63\) −3.77274 + 2.17176i −0.475320 + 0.273616i
\(64\) 5.31212 0.664015
\(65\) −10.7906 18.6898i −1.33841 2.31819i
\(66\) −0.400006 1.49667i −0.0492373 0.184228i
\(67\) −4.47062 + 7.74334i −0.546173 + 0.946000i 0.452359 + 0.891836i \(0.350583\pi\)
−0.998532 + 0.0541636i \(0.982751\pi\)
\(68\) −2.87790 + 4.98467i −0.348997 + 0.604480i
\(69\) −0.738375 2.76273i −0.0888899 0.332593i
\(70\) 2.43282 + 4.21377i 0.290778 + 0.503642i
\(71\) 5.14204 0.610248 0.305124 0.952313i \(-0.401302\pi\)
0.305124 + 0.952313i \(0.401302\pi\)
\(72\) 0.0109909 8.58653i 0.00129529 1.01193i
\(73\) 10.5378 1.23336 0.616678 0.787215i \(-0.288478\pi\)
0.616678 + 0.787215i \(0.288478\pi\)
\(74\) 4.35490 + 7.54291i 0.506247 + 0.876846i
\(75\) −15.1458 4.06871i −1.74889 0.469814i
\(76\) 0.421271 0.729663i 0.0483231 0.0836981i
\(77\) −0.725528 + 1.25665i −0.0826816 + 0.143209i
\(78\) −6.31013 + 6.30206i −0.714482 + 0.713568i
\(79\) 0.543371 + 0.941146i 0.0611340 + 0.105887i 0.894973 0.446121i \(-0.147195\pi\)
−0.833839 + 0.552008i \(0.813862\pi\)
\(80\) −0.600024 −0.0670847
\(81\) −8.99997 0.0230402i −0.999997 0.00256002i
\(82\) −3.79920 −0.419552
\(83\) 1.90171 + 3.29386i 0.208740 + 0.361548i 0.951318 0.308212i \(-0.0997305\pi\)
−0.742578 + 0.669759i \(0.766397\pi\)
\(84\) −2.13395 + 2.13122i −0.232833 + 0.232536i
\(85\) 8.99096 15.5728i 0.975207 1.68911i
\(86\) −1.83608 + 3.18018i −0.197989 + 0.342928i
\(87\) 7.20210 + 1.93474i 0.772146 + 0.207426i
\(88\) −1.43109 2.47872i −0.152555 0.264232i
\(89\) −4.01536 −0.425627 −0.212814 0.977093i \(-0.568263\pi\)
−0.212814 + 0.977093i \(0.568263\pi\)
\(90\) −0.0128763 + 10.0595i −0.00135728 + 1.06036i
\(91\) 8.35317 0.875650
\(92\) −0.990617 1.71580i −0.103279 0.178884i
\(93\) −1.47830 5.53125i −0.153293 0.573564i
\(94\) 0.803446 1.39161i 0.0828692 0.143534i
\(95\) −1.31611 + 2.27957i −0.135030 + 0.233879i
\(96\) −2.49601 9.33913i −0.254748 0.953171i
\(97\) −1.64550 2.85009i −0.167075 0.289383i 0.770315 0.637664i \(-0.220099\pi\)
−0.937390 + 0.348280i \(0.886766\pi\)
\(98\) 4.37775 0.442219
\(99\) −2.59999 + 1.49667i −0.261309 + 0.150421i
\(100\) −10.8653 −1.08653
\(101\) −7.09653 12.2916i −0.706131 1.22305i −0.966282 0.257487i \(-0.917106\pi\)
0.260151 0.965568i \(-0.416228\pi\)
\(102\) −7.17640 1.92783i −0.710570 0.190884i
\(103\) −9.58885 + 16.6084i −0.944817 + 1.63647i −0.188701 + 0.982035i \(0.560428\pi\)
−0.756116 + 0.654437i \(0.772906\pi\)
\(104\) −8.23822 + 14.2690i −0.807824 + 1.39919i
\(105\) 6.66677 6.65824i 0.650610 0.649778i
\(106\) −0.515723 0.893258i −0.0500914 0.0867609i
\(107\) −10.0034 −0.967066 −0.483533 0.875326i \(-0.660647\pi\)
−0.483533 + 0.875326i \(0.660647\pi\)
\(108\) −6.02595 + 1.60225i −0.579847 + 0.154177i
\(109\) −7.40766 −0.709525 −0.354762 0.934956i \(-0.615438\pi\)
−0.354762 + 0.934956i \(0.615438\pi\)
\(110\) 1.67659 + 2.90393i 0.159856 + 0.276879i
\(111\) 11.9339 11.9187i 1.13272 1.13127i
\(112\) 0.116122 0.201130i 0.0109725 0.0190050i
\(113\) −0.821683 + 1.42320i −0.0772974 + 0.133883i −0.902083 0.431563i \(-0.857962\pi\)
0.824786 + 0.565446i \(0.191296\pi\)
\(114\) 1.05049 + 0.282199i 0.0983876 + 0.0264304i
\(115\) 3.09483 + 5.36040i 0.288594 + 0.499860i
\(116\) 5.16661 0.479708
\(117\) 14.9450 + 8.65405i 1.38167 + 0.800068i
\(118\) 4.16005 0.382964
\(119\) 3.48003 + 6.02759i 0.319014 + 0.552548i
\(120\) 4.79869 + 17.9549i 0.438058 + 1.63905i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 1.13993 1.97442i 0.103204 0.178755i
\(123\) 1.89960 + 7.10760i 0.171281 + 0.640871i
\(124\) −1.98331 3.43520i −0.178107 0.308490i
\(125\) 15.2000 1.35953
\(126\) −3.36948 1.95113i −0.300177 0.173820i
\(127\) −22.3309 −1.98155 −0.990773 0.135534i \(-0.956725\pi\)
−0.990773 + 0.135534i \(0.956725\pi\)
\(128\) −3.20553 5.55214i −0.283332 0.490745i
\(129\) 6.86757 + 1.84487i 0.604656 + 0.162432i
\(130\) 9.65145 16.7168i 0.846488 1.46616i
\(131\) 4.89443 8.47741i 0.427629 0.740675i −0.569033 0.822315i \(-0.692682\pi\)
0.996662 + 0.0816400i \(0.0260158\pi\)
\(132\) −1.47062 + 1.46874i −0.128001 + 0.127837i
\(133\) −0.509412 0.882328i −0.0441716 0.0765075i
\(134\) −7.99735 −0.690866
\(135\) 18.8259 5.00566i 1.62028 0.430819i
\(136\) −13.7286 −1.17722
\(137\) 1.18811 + 2.05786i 0.101507 + 0.175815i 0.912306 0.409510i \(-0.134300\pi\)
−0.810799 + 0.585325i \(0.800967\pi\)
\(138\) 1.80980 1.80748i 0.154060 0.153863i
\(139\) 5.74336 9.94779i 0.487145 0.843761i −0.512745 0.858541i \(-0.671372\pi\)
0.999891 + 0.0147802i \(0.00470485\pi\)
\(140\) 3.26392 5.65327i 0.275851 0.477788i
\(141\) −3.00517 0.807294i −0.253081 0.0679864i
\(142\) 2.29961 + 3.98304i 0.192979 + 0.334249i
\(143\) 5.75661 0.481392
\(144\) 0.416134 0.239545i 0.0346778 0.0199621i
\(145\) −16.1412 −1.34046
\(146\) 4.71268 + 8.16260i 0.390024 + 0.675542i
\(147\) −2.18887 8.18995i −0.180535 0.675496i
\(148\) 5.84261 10.1197i 0.480260 0.831835i
\(149\) 0.350657 0.607357i 0.0287270 0.0497566i −0.851305 0.524672i \(-0.824188\pi\)
0.880031 + 0.474915i \(0.157521\pi\)
\(150\) −3.62185 13.5516i −0.295723 1.10648i
\(151\) 1.25277 + 2.16986i 0.101949 + 0.176581i 0.912488 0.409104i \(-0.134159\pi\)
−0.810539 + 0.585685i \(0.800825\pi\)
\(152\) 2.00961 0.163001
\(153\) −0.0184189 + 14.3896i −0.00148908 + 1.16333i
\(154\) −1.29787 −0.104586
\(155\) 6.19615 + 10.7320i 0.497687 + 0.862018i
\(156\) 11.5551 + 3.10411i 0.925148 + 0.248527i
\(157\) −2.21785 + 3.84143i −0.177004 + 0.306579i −0.940853 0.338816i \(-0.889974\pi\)
0.763849 + 0.645395i \(0.223307\pi\)
\(158\) −0.486009 + 0.841793i −0.0386648 + 0.0669694i
\(159\) −1.41326 + 1.41145i −0.112079 + 0.111935i
\(160\) 10.4618 + 18.1203i 0.827075 + 1.43254i
\(161\) −2.39576 −0.188812
\(162\) −4.00709 6.98170i −0.314827 0.548534i
\(163\) 17.6986 1.38626 0.693131 0.720812i \(-0.256231\pi\)
0.693131 + 0.720812i \(0.256231\pi\)
\(164\) 2.54854 + 4.41420i 0.199007 + 0.344691i
\(165\) 4.59442 4.58854i 0.357675 0.357218i
\(166\) −1.70095 + 2.94614i −0.132020 + 0.228664i
\(167\) 4.45065 7.70875i 0.344402 0.596521i −0.640843 0.767672i \(-0.721415\pi\)
0.985245 + 0.171151i \(0.0547484\pi\)
\(168\) −6.94722 1.86627i −0.535989 0.143986i
\(169\) −10.0693 17.4405i −0.774561 1.34158i
\(170\) 16.0836 1.23356
\(171\) 0.00269619 2.10638i 0.000206183 0.161079i
\(172\) 4.92663 0.375652
\(173\) 12.3654 + 21.4176i 0.940126 + 1.62835i 0.765228 + 0.643760i \(0.222626\pi\)
0.174899 + 0.984586i \(0.444040\pi\)
\(174\) 1.72225 + 6.44401i 0.130563 + 0.488519i
\(175\) −6.56929 + 11.3783i −0.496591 + 0.860122i
\(176\) 0.0800260 0.138609i 0.00603218 0.0104480i
\(177\) −2.08003 7.78268i −0.156344 0.584982i
\(178\) −1.79574 3.11031i −0.134596 0.233127i
\(179\) −11.8587 −0.886362 −0.443181 0.896432i \(-0.646150\pi\)
−0.443181 + 0.896432i \(0.646150\pi\)
\(180\) 11.6965 6.73304i 0.871807 0.501851i
\(181\) −4.94546 −0.367593 −0.183796 0.982964i \(-0.558839\pi\)
−0.183796 + 0.982964i \(0.558839\pi\)
\(182\) 3.73568 + 6.47039i 0.276907 + 0.479617i
\(183\) −4.26373 1.14539i −0.315184 0.0846696i
\(184\) 2.36279 4.09248i 0.174187 0.301701i
\(185\) −18.2531 + 31.6154i −1.34200 + 2.32441i
\(186\) 3.62340 3.61876i 0.265680 0.265340i
\(187\) 2.39827 + 4.15393i 0.175379 + 0.303766i
\(188\) −2.15584 −0.157230
\(189\) −1.96545 + 7.27924i −0.142966 + 0.529487i
\(190\) −2.35435 −0.170802
\(191\) −0.161784 0.280218i −0.0117063 0.0202759i 0.860113 0.510104i \(-0.170393\pi\)
−0.871819 + 0.489828i \(0.837060\pi\)
\(192\) 6.51015 6.50182i 0.469830 0.469229i
\(193\) −7.20767 + 12.4840i −0.518819 + 0.898621i 0.480942 + 0.876753i \(0.340295\pi\)
−0.999761 + 0.0218687i \(0.993038\pi\)
\(194\) 1.47179 2.54922i 0.105669 0.183023i
\(195\) −36.0998 9.69767i −2.58516 0.694464i
\(196\) −2.93663 5.08639i −0.209759 0.363314i
\(197\) −18.3267 −1.30572 −0.652860 0.757478i \(-0.726431\pi\)
−0.652860 + 0.757478i \(0.726431\pi\)
\(198\) −2.32209 1.34462i −0.165024 0.0955583i
\(199\) −1.51211 −0.107190 −0.0535951 0.998563i \(-0.517068\pi\)
−0.0535951 + 0.998563i \(0.517068\pi\)
\(200\) −12.9578 22.4435i −0.916253 1.58700i
\(201\) 3.99867 + 14.9615i 0.282045 + 1.05531i
\(202\) 6.34738 10.9940i 0.446600 0.773534i
\(203\) 3.12380 5.41058i 0.219248 0.379749i
\(204\) 2.57409 + 9.63129i 0.180222 + 0.674325i
\(205\) −7.96199 13.7906i −0.556089 0.963175i
\(206\) −17.1532 −1.19512
\(207\) −4.28637 2.48206i −0.297923 0.172515i
\(208\) −0.921357 −0.0638846
\(209\) −0.351063 0.608059i −0.0242835 0.0420603i
\(210\) 8.13898 + 2.18642i 0.561643 + 0.150877i
\(211\) 5.51111 9.54553i 0.379401 0.657141i −0.611574 0.791187i \(-0.709463\pi\)
0.990975 + 0.134045i \(0.0427968\pi\)
\(212\) −0.691903 + 1.19841i −0.0475201 + 0.0823072i
\(213\) 6.30171 6.29365i 0.431786 0.431234i
\(214\) −4.47369 7.74866i −0.305815 0.529688i
\(215\) −15.3915 −1.04969
\(216\) −10.4961 10.5365i −0.714169 0.716917i
\(217\) −4.79655 −0.325611
\(218\) −3.31283 5.73799i −0.224373 0.388626i
\(219\) 12.9144 12.8979i 0.872672 0.871556i
\(220\) 2.24934 3.89597i 0.151650 0.262666i
\(221\) 13.8059 23.9126i 0.928687 1.60853i
\(222\) 14.5693 + 3.91382i 0.977827 + 0.262679i
\(223\) 11.6566 + 20.1899i 0.780585 + 1.35201i 0.931601 + 0.363481i \(0.118412\pi\)
−0.151017 + 0.988531i \(0.548255\pi\)
\(224\) −8.09864 −0.541113
\(225\) −23.5416 + 13.5516i −1.56944 + 0.903440i
\(226\) −1.46988 −0.0977750
\(227\) −2.98944 5.17787i −0.198416 0.343667i 0.749599 0.661893i \(-0.230246\pi\)
−0.948015 + 0.318225i \(0.896913\pi\)
\(228\) −0.376799 1.40984i −0.0249541 0.0933691i
\(229\) −4.71228 + 8.16190i −0.311396 + 0.539354i −0.978665 0.205463i \(-0.934130\pi\)
0.667269 + 0.744817i \(0.267463\pi\)
\(230\) −2.76812 + 4.79452i −0.182524 + 0.316141i
\(231\) 0.648937 + 2.42808i 0.0426969 + 0.159756i
\(232\) 6.16163 + 10.6723i 0.404531 + 0.700668i
\(233\) 27.1685 1.77987 0.889933 0.456091i \(-0.150751\pi\)
0.889933 + 0.456091i \(0.150751\pi\)
\(234\) −0.0197720 + 15.4467i −0.00129254 + 1.00978i
\(235\) 6.73513 0.439352
\(236\) −2.79060 4.83346i −0.181653 0.314631i
\(237\) 1.81784 + 0.488337i 0.118082 + 0.0317209i
\(238\) −3.11266 + 5.39128i −0.201764 + 0.349465i
\(239\) −0.121289 + 0.210079i −0.00784553 + 0.0135889i −0.869922 0.493190i \(-0.835831\pi\)
0.862076 + 0.506779i \(0.169164\pi\)
\(240\) −0.735346 + 0.734405i −0.0474664 + 0.0474057i
\(241\) 6.35528 + 11.0077i 0.409379 + 0.709066i 0.994820 0.101649i \(-0.0324119\pi\)
−0.585441 + 0.810715i \(0.699079\pi\)
\(242\) −0.894434 −0.0574964
\(243\) −11.0579 + 10.9874i −0.709366 + 0.704840i
\(244\) −3.05870 −0.195813
\(245\) 9.17445 + 15.8906i 0.586134 + 1.01521i
\(246\) −4.65603 + 4.65007i −0.296858 + 0.296478i
\(247\) −2.02093 + 3.50036i −0.128589 + 0.222722i
\(248\) 4.73054 8.19354i 0.300390 0.520290i
\(249\) 6.36215 + 1.70910i 0.403185 + 0.108310i
\(250\) 6.79769 + 11.7739i 0.429924 + 0.744650i
\(251\) 23.6134 1.49046 0.745232 0.666805i \(-0.232339\pi\)
0.745232 + 0.666805i \(0.232339\pi\)
\(252\) −0.00668647 + 5.22375i −0.000421208 + 0.329065i
\(253\) −1.65105 −0.103800
\(254\) −9.98675 17.2976i −0.626624 1.08535i
\(255\) −8.04182 30.0895i −0.503598 1.88428i
\(256\) 8.17925 14.1669i 0.511203 0.885430i
\(257\) −2.05836 + 3.56518i −0.128397 + 0.222390i −0.923056 0.384667i \(-0.874316\pi\)
0.794659 + 0.607056i \(0.207650\pi\)
\(258\) 1.64225 + 6.14469i 0.102242 + 0.382552i
\(259\) −7.06504 12.2370i −0.439000 0.760371i
\(260\) −25.8971 −1.60607
\(261\) 11.1944 6.44401i 0.692917 0.398874i
\(262\) 8.75549 0.540916
\(263\) 5.79614 + 10.0392i 0.357405 + 0.619044i 0.987527 0.157452i \(-0.0503281\pi\)
−0.630121 + 0.776497i \(0.716995\pi\)
\(264\) −4.78769 1.28614i −0.294662 0.0791567i
\(265\) 2.16160 3.74400i 0.132786 0.229992i
\(266\) 0.455635 0.789184i 0.0279368 0.0483880i
\(267\) −4.92094 + 4.91464i −0.301157 + 0.300771i
\(268\) 5.36469 + 9.29192i 0.327701 + 0.567594i
\(269\) −6.82534 −0.416148 −0.208074 0.978113i \(-0.566720\pi\)
−0.208074 + 0.978113i \(0.566720\pi\)
\(270\) 12.2967 + 12.3440i 0.748351 + 0.751230i
\(271\) −7.57539 −0.460172 −0.230086 0.973170i \(-0.573901\pi\)
−0.230086 + 0.973170i \(0.573901\pi\)
\(272\) −0.383848 0.664845i −0.0232742 0.0403121i
\(273\) 10.2370 10.2240i 0.619574 0.618782i
\(274\) −1.06268 + 1.84062i −0.0641989 + 0.111196i
\(275\) −4.52724 + 7.84141i −0.273003 + 0.472855i
\(276\) −3.31410 0.890284i −0.199485 0.0535888i
\(277\) 9.40168 + 16.2842i 0.564892 + 0.978422i 0.997060 + 0.0766286i \(0.0244156\pi\)
−0.432168 + 0.901793i \(0.642251\pi\)
\(278\) 10.2741 0.616200
\(279\) −8.58173 4.96932i −0.513775 0.297505i
\(280\) 15.5700 0.930485
\(281\) −12.4416 21.5495i −0.742205 1.28554i −0.951489 0.307681i \(-0.900447\pi\)
0.209285 0.977855i \(-0.432886\pi\)
\(282\) −0.718630 2.68884i −0.0427938 0.160118i
\(283\) 9.07061 15.7108i 0.539192 0.933908i −0.459756 0.888045i \(-0.652063\pi\)
0.998948 0.0458626i \(-0.0146036\pi\)
\(284\) 3.08519 5.34371i 0.183073 0.317091i
\(285\) 1.17717 + 4.40455i 0.0697297 + 0.260903i
\(286\) 2.57445 + 4.45908i 0.152231 + 0.263671i
\(287\) 6.16352 0.363821
\(288\) −14.4897 8.39035i −0.853811 0.494406i
\(289\) 6.00687 0.353345
\(290\) −7.21863 12.5030i −0.423893 0.734203i
\(291\) −5.50501 1.47884i −0.322710 0.0866912i
\(292\) 6.32262 10.9511i 0.370003 0.640864i
\(293\) 8.03876 13.9235i 0.469630 0.813422i −0.529768 0.848143i \(-0.677721\pi\)
0.999397 + 0.0347207i \(0.0110542\pi\)
\(294\) 5.36505 5.35819i 0.312896 0.312496i
\(295\) 8.71822 + 15.1004i 0.507595 + 0.879180i
\(296\) 27.8713 1.61998
\(297\) −1.35450 + 5.01651i −0.0785959 + 0.291087i
\(298\) 0.627280 0.0363373
\(299\) 4.75221 + 8.23107i 0.274828 + 0.476015i
\(300\) −13.3157 + 13.2987i −0.768783 + 0.767799i
\(301\) 2.97871 5.15927i 0.171690 0.297375i
\(302\) −1.12052 + 1.94080i −0.0644787 + 0.111680i
\(303\) −23.7414 6.37777i −1.36391 0.366393i
\(304\) 0.0561883 + 0.0973209i 0.00322262 + 0.00558174i
\(305\) 9.55581 0.547164
\(306\) −11.1545 + 6.42102i −0.637659 + 0.367065i
\(307\) −20.1343 −1.14913 −0.574563 0.818461i \(-0.694828\pi\)
−0.574563 + 0.818461i \(0.694828\pi\)
\(308\) 0.870626 + 1.50797i 0.0496085 + 0.0859244i
\(309\) 8.57659 + 32.0904i 0.487905 + 1.82556i
\(310\) −5.54204 + 9.59910i −0.314767 + 0.545192i
\(311\) 6.51226 11.2796i 0.369276 0.639605i −0.620176 0.784462i \(-0.712939\pi\)
0.989453 + 0.144857i \(0.0462723\pi\)
\(312\) 7.36854 + 27.5703i 0.417162 + 1.56086i
\(313\) −5.12591 8.87834i −0.289734 0.501833i 0.684012 0.729470i \(-0.260233\pi\)
−0.973746 + 0.227637i \(0.926900\pi\)
\(314\) −3.96744 −0.223895
\(315\) 0.0208895 16.3197i 0.00117699 0.919512i
\(316\) 1.30408 0.0733601
\(317\) 5.50882 + 9.54156i 0.309406 + 0.535908i 0.978233 0.207511i \(-0.0665363\pi\)
−0.668826 + 0.743419i \(0.733203\pi\)
\(318\) −1.72535 0.463489i −0.0967526 0.0259912i
\(319\) 2.15278 3.72872i 0.120532 0.208768i
\(320\) −9.95738 + 17.2467i −0.556635 + 0.964119i
\(321\) −12.2595 + 12.2438i −0.684256 + 0.683381i
\(322\) −1.07142 1.85576i −0.0597082 0.103418i
\(323\) −3.36778 −0.187388
\(324\) −5.42387 + 9.33913i −0.301326 + 0.518840i
\(325\) 52.1232 2.89127
\(326\) 7.91511 + 13.7094i 0.438378 + 0.759292i
\(327\) −9.07829 + 9.06668i −0.502031 + 0.501389i
\(328\) −6.07870 + 10.5286i −0.335640 + 0.581346i
\(329\) −1.30345 + 2.25764i −0.0718613 + 0.124467i
\(330\) 5.60900 + 1.50678i 0.308765 + 0.0829453i
\(331\) 9.07216 + 15.7134i 0.498651 + 0.863689i 0.999999 0.00155679i \(-0.000495541\pi\)
−0.501348 + 0.865246i \(0.667162\pi\)
\(332\) 4.56406 0.250485
\(333\) 0.0373935 29.2133i 0.00204915 1.60088i
\(334\) 7.96163 0.435641
\(335\) −16.7600 29.0293i −0.915699 1.58604i
\(336\) −0.103864 0.388619i −0.00566623 0.0212009i
\(337\) 0.839543 1.45413i 0.0457328 0.0792115i −0.842253 0.539083i \(-0.818771\pi\)
0.887986 + 0.459871i \(0.152104\pi\)
\(338\) 9.00631 15.5994i 0.489879 0.848495i
\(339\) 0.734941 + 2.74987i 0.0399165 + 0.149353i
\(340\) −10.7891 18.6872i −0.585118 1.01345i
\(341\) −3.30555 −0.179006
\(342\) 1.63281 0.939918i 0.0882922 0.0508250i
\(343\) −17.2595 −0.931925
\(344\) 5.87543 + 10.1765i 0.316782 + 0.548682i
\(345\) 10.3537 + 2.78137i 0.557425 + 0.149744i
\(346\) −11.0601 + 19.1566i −0.594592 + 1.02986i
\(347\) 9.39059 16.2650i 0.504113 0.873150i −0.495875 0.868394i \(-0.665153\pi\)
0.999989 0.00475637i \(-0.00151401\pi\)
\(348\) 6.33183 6.32373i 0.339422 0.338988i
\(349\) −16.2545 28.1536i −0.870082 1.50703i −0.861911 0.507060i \(-0.830732\pi\)
−0.00817109 0.999967i \(-0.502601\pi\)
\(350\) −11.7516 −0.628149
\(351\) 28.9078 7.68637i 1.54298 0.410268i
\(352\) −5.58120 −0.297479
\(353\) −3.35487 5.81081i −0.178562 0.309278i 0.762826 0.646603i \(-0.223811\pi\)
−0.941388 + 0.337325i \(0.890478\pi\)
\(354\) 5.09826 5.09174i 0.270970 0.270623i
\(355\) −9.63857 + 16.6945i −0.511562 + 0.886052i
\(356\) −2.40919 + 4.17284i −0.127687 + 0.221160i
\(357\) 11.6424 + 3.12756i 0.616182 + 0.165528i
\(358\) −5.30342 9.18579i −0.280294 0.485484i
\(359\) 14.7797 0.780040 0.390020 0.920806i \(-0.372468\pi\)
0.390020 + 0.920806i \(0.372468\pi\)
\(360\) 27.8570 + 16.1308i 1.46819 + 0.850169i
\(361\) −18.5070 −0.974054
\(362\) −2.21169 3.83076i −0.116244 0.201340i
\(363\) 0.447217 + 1.67332i 0.0234728 + 0.0878265i
\(364\) 5.01185 8.68078i 0.262692 0.454997i
\(365\) −19.7527 + 34.2128i −1.03391 + 1.79078i
\(366\) −1.01959 3.81493i −0.0532949 0.199410i
\(367\) −13.2934 23.0249i −0.693912 1.20189i −0.970546 0.240916i \(-0.922552\pi\)
0.276634 0.960975i \(-0.410781\pi\)
\(368\) 0.264253 0.0137751
\(369\) 11.0274 + 6.38553i 0.574065 + 0.332417i
\(370\) −32.6525 −1.69752
\(371\) 0.836667 + 1.44915i 0.0434376 + 0.0752361i
\(372\) −6.63516 1.78244i −0.344017 0.0924150i
\(373\) −11.7781 + 20.4003i −0.609848 + 1.05629i 0.381417 + 0.924403i \(0.375436\pi\)
−0.991265 + 0.131885i \(0.957897\pi\)
\(374\) −2.14510 + 3.71542i −0.110920 + 0.192120i
\(375\) 18.6280 18.6042i 0.961947 0.960716i
\(376\) −2.57102 4.45314i −0.132590 0.229653i
\(377\) −24.7854 −1.27651
\(378\) −6.51750 + 1.73295i −0.335224 + 0.0891335i
\(379\) 31.6536 1.62594 0.812969 0.582307i \(-0.197850\pi\)
0.812969 + 0.582307i \(0.197850\pi\)
\(380\) 1.57932 + 2.73546i 0.0810173 + 0.140326i
\(381\) −27.3671 + 27.3321i −1.40206 + 1.40027i
\(382\) 0.144705 0.250637i 0.00740375 0.0128237i
\(383\) 17.9220 31.0419i 0.915773 1.58616i 0.110006 0.993931i \(-0.464913\pi\)
0.805766 0.592234i \(-0.201754\pi\)
\(384\) −10.7241 2.88086i −0.547261 0.147013i
\(385\) −2.71996 4.71110i −0.138622 0.240100i
\(386\) −12.8936 −0.656265
\(387\) 10.6744 6.14469i 0.542613 0.312352i
\(388\) −3.94917 −0.200489
\(389\) −1.96084 3.39628i −0.0994188 0.172198i 0.812025 0.583622i \(-0.198365\pi\)
−0.911444 + 0.411424i \(0.865032\pi\)
\(390\) −8.63258 32.2999i −0.437128 1.63557i
\(391\) −3.95966 + 6.85833i −0.200249 + 0.346841i
\(392\) 7.00437 12.1319i 0.353774 0.612755i
\(393\) −4.37775 16.3799i −0.220828 0.826257i
\(394\) −8.19599 14.1959i −0.412908 0.715178i
\(395\) −4.07412 −0.204991
\(396\) −0.00460800 + 3.59996i −0.000231561 + 0.180905i
\(397\) −3.90292 −0.195882 −0.0979411 0.995192i \(-0.531226\pi\)
−0.0979411 + 0.995192i \(0.531226\pi\)
\(398\) −0.676239 1.17128i −0.0338968 0.0587110i
\(399\) −1.70423 0.457817i −0.0853184 0.0229195i
\(400\) 0.724594 1.25503i 0.0362297 0.0627517i
\(401\) −15.8378 + 27.4318i −0.790900 + 1.36988i 0.134511 + 0.990912i \(0.457054\pi\)
−0.925411 + 0.378966i \(0.876280\pi\)
\(402\) −9.80098 + 9.78844i −0.488828 + 0.488203i
\(403\) 9.51440 + 16.4794i 0.473946 + 0.820898i
\(404\) −17.0315 −0.847349
\(405\) 16.9449 29.1767i 0.842001 1.44980i
\(406\) 5.58807 0.277331
\(407\) −4.86889 8.43317i −0.241342 0.418017i
\(408\) −16.8248 + 16.8032i −0.832949 + 0.831884i
\(409\) 6.45815 11.1858i 0.319335 0.553104i −0.661015 0.750373i \(-0.729874\pi\)
0.980349 + 0.197269i \(0.0632072\pi\)
\(410\) 7.12147 12.3348i 0.351704 0.609170i
\(411\) 3.97480 + 1.06777i 0.196062 + 0.0526692i
\(412\) 11.5065 + 19.9299i 0.566885 + 0.981873i
\(413\) −6.74893 −0.332093
\(414\) 0.00567078 4.43025i 0.000278703 0.217735i
\(415\) −14.2587 −0.699934
\(416\) 16.0644 + 27.8244i 0.787622 + 1.36420i
\(417\) −5.13705 19.2209i −0.251563 0.941254i
\(418\) 0.314002 0.543868i 0.0153584 0.0266015i
\(419\) −13.6804 + 23.6951i −0.668331 + 1.15758i 0.310040 + 0.950724i \(0.399658\pi\)
−0.978371 + 0.206860i \(0.933676\pi\)
\(420\) −2.91936 10.9231i −0.142450 0.532995i
\(421\) 9.78884 + 16.9548i 0.477079 + 0.826325i 0.999655 0.0262679i \(-0.00836230\pi\)
−0.522576 + 0.852593i \(0.675029\pi\)
\(422\) 9.85865 0.479912
\(423\) −4.67101 + 2.68884i −0.227112 + 0.130736i
\(424\) −3.30061 −0.160292
\(425\) 21.7151 + 37.6117i 1.05334 + 1.82444i
\(426\) 7.69331 + 2.06669i 0.372742 + 0.100132i
\(427\) −1.84933 + 3.20313i −0.0894954 + 0.155011i
\(428\) −6.00198 + 10.3957i −0.290117 + 0.502497i
\(429\) 7.05489 7.04587i 0.340613 0.340178i
\(430\) −6.88333 11.9223i −0.331944 0.574943i
\(431\) 9.80495 0.472288 0.236144 0.971718i \(-0.424116\pi\)
0.236144 + 0.971718i \(0.424116\pi\)
\(432\) 0.216790 0.802901i 0.0104303 0.0386296i
\(433\) −1.98391 −0.0953409 −0.0476704 0.998863i \(-0.515180\pi\)
−0.0476704 + 0.998863i \(0.515180\pi\)
\(434\) −2.14510 3.71542i −0.102968 0.178346i
\(435\) −19.7815 + 19.7562i −0.948452 + 0.947239i
\(436\) −4.44455 + 7.69819i −0.212855 + 0.368676i
\(437\) 0.579621 1.00393i 0.0277270 0.0480246i
\(438\) 15.7662 + 4.23537i 0.753340 + 0.202374i
\(439\) −17.5309 30.3644i −0.836703 1.44921i −0.892636 0.450777i \(-0.851147\pi\)
0.0559337 0.998434i \(-0.482186\pi\)
\(440\) 10.7301 0.511538
\(441\) −12.7067 7.35792i −0.605081 0.350377i
\(442\) 24.6970 1.17472
\(443\) −11.8560 20.5353i −0.563298 0.975660i −0.997206 0.0747032i \(-0.976199\pi\)
0.433908 0.900957i \(-0.357134\pi\)
\(444\) −5.22583 19.5531i −0.248007 0.927950i
\(445\) 7.52665 13.0365i 0.356798 0.617992i
\(446\) −10.4261 + 18.0585i −0.493689 + 0.855094i
\(447\) −0.313640 1.17352i −0.0148347 0.0555058i
\(448\) −3.85409 6.67548i −0.182089 0.315387i
\(449\) −11.6575 −0.550154 −0.275077 0.961422i \(-0.588703\pi\)
−0.275077 + 0.961422i \(0.588703\pi\)
\(450\) −21.0253 12.1749i −0.991143 0.573929i
\(451\) 4.24760 0.200012
\(452\) 0.986009 + 1.70782i 0.0463780 + 0.0803290i
\(453\) 4.19113 + 1.12589i 0.196917 + 0.0528988i
\(454\) 2.67386 4.63126i 0.125490 0.217356i
\(455\) −15.6577 + 27.1200i −0.734046 + 1.27140i
\(456\) 2.46283 2.45968i 0.115333 0.115185i
\(457\) −6.60015 11.4318i −0.308742 0.534757i 0.669346 0.742951i \(-0.266575\pi\)
−0.978087 + 0.208195i \(0.933241\pi\)
\(458\) −8.42964 −0.393891
\(459\) 17.5898 + 17.6574i 0.821020 + 0.824179i
\(460\) 7.42751 0.346310
\(461\) 15.1456 + 26.2330i 0.705402 + 1.22179i 0.966546 + 0.256493i \(0.0825669\pi\)
−0.261144 + 0.965300i \(0.584100\pi\)
\(462\) −1.59058 + 1.58855i −0.0740006 + 0.0739059i
\(463\) 13.6059 23.5662i 0.632322 1.09521i −0.354754 0.934960i \(-0.615435\pi\)
0.987076 0.160254i \(-0.0512313\pi\)
\(464\) −0.344556 + 0.596789i −0.0159956 + 0.0277052i
\(465\) 20.7292 + 5.56858i 0.961292 + 0.258237i
\(466\) 12.1502 + 21.0448i 0.562847 + 0.974880i
\(467\) 31.1873 1.44318 0.721588 0.692322i \(-0.243412\pi\)
0.721588 + 0.692322i \(0.243412\pi\)
\(468\) 17.9604 10.3388i 0.830220 0.477912i
\(469\) 12.9742 0.599095
\(470\) 3.01207 + 5.21705i 0.138936 + 0.240645i
\(471\) 1.98372 + 7.42234i 0.0914049 + 0.342003i
\(472\) 6.65606 11.5286i 0.306370 0.530648i
\(473\) 2.05278 3.55552i 0.0943871 0.163483i
\(474\) 0.434703 + 1.62650i 0.0199666 + 0.0747075i
\(475\) −3.17869 5.50566i −0.145848 0.252617i
\(476\) 8.35199 0.382813
\(477\) −0.00442826 + 3.45954i −0.000202756 + 0.158402i
\(478\) −0.216970 −0.00992397
\(479\) 19.1386 + 33.1490i 0.874464 + 1.51462i 0.857333 + 0.514762i \(0.172120\pi\)
0.0171309 + 0.999853i \(0.494547\pi\)
\(480\) 34.9997 + 9.40217i 1.59751 + 0.429148i
\(481\) −28.0283 + 48.5465i −1.27798 + 2.21353i
\(482\) −5.68438 + 9.84563i −0.258916 + 0.448456i
\(483\) −2.93607 + 2.93232i −0.133596 + 0.133425i
\(484\) 0.599994 + 1.03922i 0.0272725 + 0.0472373i
\(485\) 12.3378 0.560228
\(486\) −13.4561 3.65175i −0.610383 0.165647i
\(487\) −15.8602 −0.718697 −0.359348 0.933204i \(-0.617001\pi\)
−0.359348 + 0.933204i \(0.617001\pi\)
\(488\) −3.64776 6.31811i −0.165127 0.286008i
\(489\) 21.6901 21.6624i 0.980862 0.979607i
\(490\) −8.20594 + 14.2131i −0.370706 + 0.642082i
\(491\) 3.50114 6.06416i 0.158004 0.273672i −0.776145 0.630555i \(-0.782827\pi\)
0.934149 + 0.356883i \(0.116161\pi\)
\(492\) 8.52611 + 2.29041i 0.384387 + 0.103260i
\(493\) −10.3259 17.8850i −0.465055 0.805499i
\(494\) −3.61518 −0.162655
\(495\) 0.0143960 11.2468i 0.000647054 0.505505i
\(496\) 0.529060 0.0237555
\(497\) −3.73070 6.46175i −0.167345 0.289849i
\(498\) 1.52139 + 5.69247i 0.0681751 + 0.255086i
\(499\) −12.3353 + 21.3653i −0.552202 + 0.956443i 0.445913 + 0.895076i \(0.352879\pi\)
−0.998115 + 0.0613663i \(0.980454\pi\)
\(500\) 9.11990 15.7961i 0.407854 0.706425i
\(501\) −3.98081 14.8947i −0.177850 0.665447i
\(502\) 10.5603 + 18.2910i 0.471330 + 0.816367i
\(503\) 6.05183 0.269838 0.134919 0.990857i \(-0.456923\pi\)
0.134919 + 0.990857i \(0.456923\pi\)
\(504\) −10.7983 + 6.21596i −0.480992 + 0.276881i
\(505\) 53.2088 2.36776
\(506\) −0.738375 1.27890i −0.0328248 0.0568542i
\(507\) −33.6867 9.04944i −1.49608 0.401900i
\(508\) −13.3984 + 23.2067i −0.594458 + 1.02963i
\(509\) 10.0280 17.3690i 0.444482 0.769866i −0.553534 0.832827i \(-0.686721\pi\)
0.998016 + 0.0629607i \(0.0200543\pi\)
\(510\) 19.7110 19.6857i 0.872816 0.871700i
\(511\) −7.64547 13.2423i −0.338216 0.585807i
\(512\) 1.80948 0.0799683
\(513\) −2.57482 2.58472i −0.113681 0.114118i
\(514\) −3.68212 −0.162412
\(515\) −35.9479 62.2637i −1.58406 2.74366i
\(516\) 6.03773 6.03000i 0.265796 0.265456i
\(517\) −0.898274 + 1.55586i −0.0395060 + 0.0684265i
\(518\) 6.31921 10.9452i 0.277650 0.480904i
\(519\) 41.3684 + 11.1130i 1.81587 + 0.487807i
\(520\) −30.8845 53.4936i −1.35438 2.34585i
\(521\) 18.8721 0.826804 0.413402 0.910549i \(-0.364340\pi\)
0.413402 + 0.910549i \(0.364340\pi\)
\(522\) 9.99788 + 5.78935i 0.437595 + 0.253393i
\(523\) −16.0568 −0.702114 −0.351057 0.936354i \(-0.614178\pi\)
−0.351057 + 0.936354i \(0.614178\pi\)
\(524\) −5.87326 10.1728i −0.256575 0.444400i
\(525\) 5.87579 + 21.9850i 0.256441 + 0.959505i
\(526\) −5.18427 + 8.97941i −0.226045 + 0.391521i
\(527\) −7.92762 + 13.7310i −0.345333 + 0.598134i
\(528\) −0.0715779 0.267818i −0.00311503 0.0116553i
\(529\) 10.1370 + 17.5578i 0.440740 + 0.763384i
\(530\) 3.86682 0.167964
\(531\) −12.0748 6.99203i −0.524003 0.303428i
\(532\) −1.22258 −0.0530054
\(533\) −12.2259 21.1759i −0.529563 0.917230i
\(534\) −6.00762 1.61386i −0.259975 0.0698385i
\(535\) 18.7510 32.4778i 0.810678 1.40414i
\(536\) −12.7957 + 22.1628i −0.552690 + 0.957288i
\(537\) −14.5332 + 14.5146i −0.627153 + 0.626351i
\(538\) −3.05241 5.28692i −0.131599 0.227935i
\(539\) −4.89443 −0.210818
\(540\) 6.09344 22.5676i 0.262220 0.971156i
\(541\) 18.4357 0.792614 0.396307 0.918118i \(-0.370292\pi\)
0.396307 + 0.918118i \(0.370292\pi\)
\(542\) −3.38784 5.86791i −0.145520 0.252048i
\(543\) −6.06080 + 6.05304i −0.260094 + 0.259761i
\(544\) −13.3852 + 23.1839i −0.573888 + 0.994002i
\(545\) 13.8854 24.0502i 0.594785 1.03020i
\(546\) 12.4977 + 3.35732i 0.534851 + 0.143680i
\(547\) 14.4834 + 25.0860i 0.619267 + 1.07260i 0.989620 + 0.143711i \(0.0459035\pi\)
−0.370353 + 0.928891i \(0.620763\pi\)
\(548\) 2.85143 0.121807
\(549\) −6.62724 + 3.81493i −0.282844 + 0.162817i
\(550\) −8.09864 −0.345327
\(551\) 1.51152 + 2.61803i 0.0643929 + 0.111532i
\(552\) −2.11336 7.90741i −0.0899506 0.336562i
\(553\) 0.788462 1.36566i 0.0335288 0.0580736i
\(554\) −8.40918 + 14.5651i −0.357272 + 0.618813i
\(555\) 16.3262 + 61.0867i 0.693010 + 2.59299i
\(556\) −6.89196 11.9372i −0.292284 0.506251i
\(557\) −11.7584 −0.498219 −0.249110 0.968475i \(-0.580138\pi\)
−0.249110 + 0.968475i \(0.580138\pi\)
\(558\) 0.0113535 8.86979i 0.000480630 0.375488i
\(559\) −23.6341 −0.999618
\(560\) 0.435334 + 0.754021i 0.0183962 + 0.0318632i
\(561\) 8.02340 + 2.15537i 0.338748 + 0.0909997i
\(562\) 11.1282 19.2746i 0.469415 0.813050i
\(563\) 0.282557 0.489403i 0.0119084 0.0206259i −0.860010 0.510277i \(-0.829543\pi\)
0.871918 + 0.489652i \(0.162876\pi\)
\(564\) −2.64204 + 2.63866i −0.111250 + 0.111108i
\(565\) −3.08043 5.33546i −0.129595 0.224465i
\(566\) 16.2261 0.682035
\(567\) 6.50078 + 11.3265i 0.273007 + 0.475670i
\(568\) 14.7174 0.617530
\(569\) −3.11671 5.39830i −0.130659 0.226309i 0.793272 0.608868i \(-0.208376\pi\)
−0.923931 + 0.382559i \(0.875043\pi\)
\(570\) −2.88532 + 2.88163i −0.120853 + 0.120698i
\(571\) 14.1967 24.5894i 0.594114 1.02904i −0.399558 0.916708i \(-0.630836\pi\)
0.993671 0.112327i \(-0.0358304\pi\)
\(572\) 3.45393 5.98239i 0.144416 0.250136i
\(573\) −0.541247 0.145398i −0.0226109 0.00607409i
\(574\) 2.75643 + 4.77427i 0.115051 + 0.199274i
\(575\) −14.9494 −0.623432
\(576\) 0.0203987 15.9363i 0.000849947 0.664014i
\(577\) −25.5623 −1.06417 −0.532087 0.846690i \(-0.678592\pi\)
−0.532087 + 0.846690i \(0.678592\pi\)
\(578\) 2.68637 + 4.65294i 0.111738 + 0.193537i
\(579\) 6.44678 + 24.1215i 0.267919 + 1.00245i
\(580\) −9.68464 + 16.7743i −0.402133 + 0.696515i
\(581\) 2.75949 4.77957i 0.114483 0.198290i
\(582\) −1.31642 4.92556i −0.0545674 0.204171i
\(583\) 0.576591 + 0.998685i 0.0238800 + 0.0413613i
\(584\) 30.1611 1.24807
\(585\) −56.1108 + 32.2999i −2.31990 + 1.33544i
\(586\) 14.3803 0.594044
\(587\) 17.5932 + 30.4724i 0.726151 + 1.25773i 0.958498 + 0.285098i \(0.0920260\pi\)
−0.232347 + 0.972633i \(0.574641\pi\)
\(588\) −9.82447 2.63920i −0.405154 0.108839i
\(589\) 1.16046 2.00997i 0.0478158 0.0828194i
\(590\) −7.79787 + 13.5063i −0.321033 + 0.556046i
\(591\) −22.4599 + 22.4311i −0.923875 + 0.922693i
\(592\) 0.779276 + 1.34975i 0.0320280 + 0.0554742i
\(593\) −40.8141 −1.67604 −0.838018 0.545643i \(-0.816286\pi\)
−0.838018 + 0.545643i \(0.816286\pi\)
\(594\) −4.49155 + 1.19427i −0.184291 + 0.0490015i
\(595\) −26.0928 −1.06970
\(596\) −0.420785 0.728821i −0.0172360 0.0298537i
\(597\) −1.85313 + 1.85076i −0.0758435 + 0.0757465i
\(598\) −4.25054 + 7.36215i −0.173817 + 0.301061i
\(599\) −23.2063 + 40.1945i −0.948184 + 1.64230i −0.198938 + 0.980012i \(0.563749\pi\)
−0.749247 + 0.662291i \(0.769584\pi\)
\(600\) −43.3501 11.6454i −1.76976 0.475420i
\(601\) −7.64723 13.2454i −0.311937 0.540291i 0.666844 0.745197i \(-0.267645\pi\)
−0.978782 + 0.204906i \(0.934311\pi\)
\(602\) 5.32851 0.217174
\(603\) 23.2128 + 13.4416i 0.945300 + 0.547384i
\(604\) 3.00662 0.122338
\(605\) −1.87447 3.24667i −0.0762079 0.131996i
\(606\) −5.67731 21.2424i −0.230625 0.862912i
\(607\) 17.2474 29.8734i 0.700051 1.21252i −0.268397 0.963308i \(-0.586494\pi\)
0.968448 0.249216i \(-0.0801729\pi\)
\(608\) 1.95935 3.39370i 0.0794622 0.137633i
\(609\) −2.79403 10.4542i −0.113220 0.423627i
\(610\) 4.27352 + 7.40196i 0.173030 + 0.299696i
\(611\) 10.3420 0.418394
\(612\) 14.9429 + 8.65284i 0.604033 + 0.349770i
\(613\) 19.6568 0.793931 0.396965 0.917834i \(-0.370063\pi\)
0.396965 + 0.917834i \(0.370063\pi\)
\(614\) −9.00440 15.5961i −0.363388 0.629406i
\(615\) −26.6368 7.15557i −1.07410 0.288541i
\(616\) −2.07659 + 3.59676i −0.0836682 + 0.144918i
\(617\) 18.0267 31.2231i 0.725726 1.25699i −0.232949 0.972489i \(-0.574837\pi\)
0.958675 0.284505i \(-0.0918292\pi\)
\(618\) −21.0217 + 20.9948i −0.845617 + 0.844536i
\(619\) 4.40997 + 7.63830i 0.177252 + 0.307009i 0.940938 0.338578i \(-0.109946\pi\)
−0.763686 + 0.645587i \(0.776613\pi\)
\(620\) 14.8706 0.597218
\(621\) −8.29101 + 2.20452i −0.332707 + 0.0884641i
\(622\) 11.6496 0.467105
\(623\) 2.91326 + 5.04591i 0.116717 + 0.202160i
\(624\) −1.12915 + 1.12770i −0.0452021 + 0.0451443i
\(625\) −5.85564 + 10.1423i −0.234226 + 0.405691i
\(626\) 4.58479 7.94108i 0.183245 0.317390i
\(627\) −1.17448 0.315506i −0.0469041 0.0126001i
\(628\) 2.66139 + 4.60967i 0.106201 + 0.183946i
\(629\) −46.7078 −1.86236
\(630\) 12.6506 7.28228i 0.504014 0.290133i
\(631\) −0.823111 −0.0327675 −0.0163838 0.999866i \(-0.505215\pi\)
−0.0163838 + 0.999866i \(0.505215\pi\)
\(632\) 1.55522 + 2.69373i 0.0618635 + 0.107151i
\(633\) −4.92933 18.4437i −0.195923 0.733072i
\(634\) −4.92728 + 8.53430i −0.195687 + 0.338940i
\(635\) 41.8585 72.5010i 1.66110 2.87711i
\(636\) 0.618861 + 2.31555i 0.0245394 + 0.0918175i
\(637\) 14.0877 + 24.4006i 0.558174 + 0.966786i
\(638\) 3.85103 0.152464
\(639\) 0.0197456 15.4261i 0.000781125 0.610247i
\(640\) 24.0346 0.950052
\(641\) −15.5236 26.8877i −0.613145 1.06200i −0.990707 0.136014i \(-0.956571\pi\)
0.377562 0.925984i \(-0.376763\pi\)
\(642\) −14.9667 4.02058i −0.590688 0.158680i
\(643\) 0.282962 0.490105i 0.0111589 0.0193279i −0.860392 0.509633i \(-0.829781\pi\)
0.871551 + 0.490305i \(0.163115\pi\)
\(644\) −1.43744 + 2.48972i −0.0566432 + 0.0981088i
\(645\) −18.8627 + 18.8386i −0.742718 + 0.741768i
\(646\) −1.50613 2.60869i −0.0592578 0.102638i
\(647\) −32.7343 −1.28692 −0.643458 0.765481i \(-0.722501\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(648\) −25.7595 0.0659452i −1.01193 0.00259057i
\(649\) −4.65105 −0.182569
\(650\) 23.3104 + 40.3747i 0.914307 + 1.58363i
\(651\) −5.87831 + 5.87079i −0.230389 + 0.230094i
\(652\) 10.6191 18.3927i 0.415874 0.720316i
\(653\) 3.61631 6.26362i 0.141517 0.245115i −0.786551 0.617525i \(-0.788135\pi\)
0.928068 + 0.372411i \(0.121469\pi\)
\(654\) −11.0830 2.97730i −0.433381 0.116421i
\(655\) 18.3489 + 31.7812i 0.716951 + 1.24180i
\(656\) −0.679837 −0.0265432
\(657\) 0.0404655 31.6134i 0.00157871 1.23336i
\(658\) −2.33169 −0.0908989
\(659\) −18.2545 31.6177i −0.711093 1.23165i −0.964447 0.264276i \(-0.914867\pi\)
0.253354 0.967374i \(-0.418466\pi\)
\(660\) −2.01188 7.52772i −0.0783124 0.293016i
\(661\) −7.07158 + 12.2483i −0.275053 + 0.476405i −0.970148 0.242512i \(-0.922029\pi\)
0.695096 + 0.718917i \(0.255362\pi\)
\(662\) −8.11445 + 14.0546i −0.315377 + 0.546249i
\(663\) −12.3485 46.2035i −0.479576 1.79439i
\(664\) 5.44303 + 9.42760i 0.211230 + 0.365862i
\(665\) 3.81950 0.148114
\(666\) 22.6454 13.0357i 0.877493 0.505124i
\(667\) 7.10866 0.275249
\(668\) −5.34073 9.25041i −0.206639 0.357909i
\(669\) 38.9971 + 10.4760i 1.50772 + 0.405025i
\(670\) 14.9908 25.9647i 0.579143 1.00311i
\(671\) −1.27447 + 2.20745i −0.0492004 + 0.0852176i
\(672\) −9.92511 + 9.91242i −0.382869 + 0.382380i
\(673\) −7.78212 13.4790i −0.299979 0.519578i 0.676152 0.736762i \(-0.263646\pi\)
−0.976131 + 0.217184i \(0.930313\pi\)
\(674\) 1.50183 0.0578484
\(675\) −12.2643 + 45.4219i −0.472052 + 1.74829i
\(676\) −24.1661 −0.929464
\(677\) 17.0779 + 29.5798i 0.656357 + 1.13684i 0.981552 + 0.191196i \(0.0612366\pi\)
−0.325195 + 0.945647i \(0.605430\pi\)
\(678\) −1.80138 + 1.79908i −0.0691816 + 0.0690931i
\(679\) −2.38772 + 4.13565i −0.0916322 + 0.158712i
\(680\) 25.7337 44.5721i 0.986844 1.70926i
\(681\) −10.0012 2.68666i −0.383245 0.102953i
\(682\) −1.47830 2.56049i −0.0566070 0.0980462i
\(683\) −48.8978 −1.87102 −0.935512 0.353295i \(-0.885061\pi\)
−0.935512 + 0.353295i \(0.885061\pi\)
\(684\) −2.18737 1.26661i −0.0836362 0.0484302i
\(685\) −8.90825 −0.340367
\(686\) −7.71874 13.3693i −0.294703 0.510440i
\(687\) 4.21482 + 15.7703i 0.160805 + 0.601674i
\(688\) −0.328552 + 0.569068i −0.0125259 + 0.0216955i
\(689\) 3.31921 5.74904i 0.126452 0.219021i
\(690\) 2.47590 + 9.26389i 0.0942558 + 0.352670i
\(691\) 17.0662 + 29.5596i 0.649230 + 1.12450i 0.983307 + 0.181954i \(0.0582420\pi\)
−0.334077 + 0.942546i \(0.608425\pi\)
\(692\) 29.6767 1.12814
\(693\) 3.76717 + 2.18141i 0.143103 + 0.0828649i
\(694\) 16.7985 0.637663
\(695\) 21.5315 + 37.2936i 0.816735 + 1.41463i
\(696\) 20.6137 + 5.53756i 0.781359 + 0.209901i
\(697\) 10.1869 17.6443i 0.385857 0.668324i
\(698\) 14.5386 25.1815i 0.550292 0.953134i
\(699\) 33.2958 33.2532i 1.25936 1.25775i
\(700\) 7.88307 + 13.6539i 0.297952 + 0.516068i
\(701\) −22.2291 −0.839581 −0.419791 0.907621i \(-0.637896\pi\)
−0.419791 + 0.907621i \(0.637896\pi\)
\(702\) 18.8819 + 18.9546i 0.712653 + 0.715395i
\(703\) 6.83715 0.257868
\(704\) −2.65606 4.60043i −0.100104 0.173385i
\(705\) 8.25410 8.24354i 0.310867 0.310470i
\(706\) 3.00071 5.19739i 0.112933 0.195606i
\(707\) −10.2975 + 17.8357i −0.387276 + 0.670782i
\(708\) −9.33593 2.50796i −0.350866 0.0942549i
\(709\) 10.2198 + 17.7012i 0.383812 + 0.664781i 0.991604 0.129315i \(-0.0412779\pi\)
−0.607792 + 0.794096i \(0.707945\pi\)
\(710\) −17.2421 −0.647086
\(711\) 2.82552 1.62650i 0.105965 0.0609984i
\(712\) −11.4927 −0.430706
\(713\) −2.72881 4.72644i −0.102195 0.177006i
\(714\) 2.78407 + 10.4169i 0.104191 + 0.389844i
\(715\) −10.7906 + 18.6898i −0.403544 + 0.698959i
\(716\) −7.11516 + 12.3238i −0.265906 + 0.460563i
\(717\) 0.108485 + 0.405910i 0.00405144 + 0.0151590i
\(718\) 6.60971 + 11.4484i 0.246672 + 0.427249i
\(719\) 19.8844 0.741563 0.370782 0.928720i \(-0.379090\pi\)
0.370782 + 0.928720i \(0.379090\pi\)
\(720\) −0.00230411 + 1.80007i −8.58692e−5 + 0.0670846i
\(721\) 27.8279 1.03637
\(722\) −8.27665 14.3356i −0.308025 0.533515i
\(723\) 21.2615 + 5.71160i 0.790725 + 0.212417i
\(724\) −2.96724 + 5.13942i −0.110277 + 0.191005i
\(725\) 19.4923 33.7616i 0.723925 1.25388i
\(726\) −1.09615 + 1.09475i −0.0406821 + 0.0406301i
\(727\) −0.143365 0.248316i −0.00531712 0.00920951i 0.863355 0.504598i \(-0.168359\pi\)
−0.868672 + 0.495388i \(0.835026\pi\)
\(728\) 23.9083 0.886099
\(729\) −0.103681 + 26.9998i −0.00384003 + 0.999993i
\(730\) −35.3350 −1.30781
\(731\) −9.84627 17.0542i −0.364178 0.630774i
\(732\) −3.74853 + 3.74373i −0.138550 + 0.138372i
\(733\) −5.10058 + 8.83447i −0.188394 + 0.326309i −0.944715 0.327892i \(-0.893662\pi\)
0.756321 + 0.654201i \(0.226995\pi\)
\(734\) 11.8901 20.5943i 0.438872 0.760148i
\(735\) 30.6930 + 8.24523i 1.13213 + 0.304130i
\(736\) −4.60741 7.98026i −0.169831 0.294156i
\(737\) 8.94124 0.329355
\(738\) −0.0145891 + 11.3976i −0.000537031 + 0.419551i
\(739\) 29.3420 1.07936 0.539681 0.841870i \(-0.318545\pi\)
0.539681 + 0.841870i \(0.318545\pi\)
\(740\) 21.9036 + 37.9381i 0.805191 + 1.39463i
\(741\) 1.80759 + 6.76333i 0.0664035 + 0.248457i
\(742\) −0.748343 + 1.29617i −0.0274725 + 0.0475838i
\(743\) −23.9113 + 41.4155i −0.877219 + 1.51939i −0.0228399 + 0.999739i \(0.507271\pi\)
−0.854380 + 0.519650i \(0.826063\pi\)
\(744\) −4.23116 15.8314i −0.155122 0.580408i
\(745\) 1.31459 + 2.27694i 0.0481629 + 0.0834205i
\(746\) −21.0695 −0.771410
\(747\) 9.88886 5.69247i 0.361815 0.208277i
\(748\) 5.75580 0.210453
\(749\) 7.25776 + 12.5708i 0.265193 + 0.459327i
\(750\) 22.7416 + 6.10920i 0.830406 + 0.223076i
\(751\) 10.0234 17.3610i 0.365758 0.633512i −0.623139 0.782111i \(-0.714143\pi\)
0.988898 + 0.148599i \(0.0474764\pi\)
\(752\) 0.143770 0.249018i 0.00524277 0.00908074i
\(753\) 28.9389 28.9019i 1.05459 1.05324i
\(754\) −11.0845 19.1988i −0.403672 0.699180i
\(755\) −9.39311 −0.341850
\(756\) 6.38547 + 6.41004i 0.232237 + 0.233131i
\(757\) −34.7845 −1.26427 −0.632133 0.774860i \(-0.717820\pi\)
−0.632133 + 0.774860i \(0.717820\pi\)
\(758\) 14.1560 + 24.5190i 0.514171 + 0.890570i
\(759\) −2.02340 + 2.02081i −0.0734449 + 0.0733509i
\(760\) −3.76694 + 6.52453i −0.136641 + 0.236670i
\(761\) 3.27617 5.67450i 0.118761 0.205700i −0.800516 0.599312i \(-0.795441\pi\)
0.919277 + 0.393611i \(0.128774\pi\)
\(762\) −33.4106 8.97526i −1.21034 0.325139i
\(763\) 5.37447 + 9.30885i 0.194569 + 0.337003i
\(764\) −0.388278 −0.0140474
\(765\) −46.6839 27.0327i −1.68786 0.977368i
\(766\) 32.0601 1.15838
\(767\) 13.3871 + 23.1872i 0.483381 + 0.837241i
\(768\) −7.31580 27.3730i −0.263986 0.987738i
\(769\) 17.0111 29.4641i 0.613435 1.06250i −0.377221 0.926123i \(-0.623120\pi\)
0.990657 0.136378i \(-0.0435462\pi\)
\(770\) 2.43282 4.21377i 0.0876728 0.151854i
\(771\) 1.84106 + 6.88857i 0.0663042 + 0.248086i
\(772\) 8.64912 + 14.9807i 0.311289 + 0.539168i
\(773\) 5.09752 0.183345 0.0916725 0.995789i \(-0.470779\pi\)
0.0916725 + 0.995789i \(0.470779\pi\)
\(774\) 9.53349 + 5.52044i 0.342674 + 0.198428i
\(775\) −29.9301 −1.07512
\(776\) −4.70972 8.15747i −0.169069 0.292836i
\(777\) −23.6360 6.34947i −0.847938 0.227786i
\(778\) 1.75385 3.03775i 0.0628784 0.108909i
\(779\) −1.49118 + 2.58279i −0.0534269 + 0.0925382i
\(780\) −31.7377 + 31.6971i −1.13639 + 1.13494i
\(781\) −2.57102 4.45314i −0.0919983 0.159346i
\(782\) −7.08330 −0.253298
\(783\) 5.83186 21.5988i 0.208414 0.771880i
\(784\) 0.783363 0.0279773
\(785\) −8.31456 14.4012i −0.296759 0.514002i
\(786\) 10.7301 10.7164i 0.382730 0.382241i
\(787\) 12.5535 21.7433i 0.447485 0.775066i −0.550737 0.834679i \(-0.685653\pi\)
0.998222 + 0.0596127i \(0.0189866\pi\)
\(788\) −10.9959 + 19.0454i −0.391712 + 0.678466i
\(789\) 19.3909 + 5.20909i 0.690336 + 0.185449i
\(790\) −1.82202 3.15582i −0.0648244 0.112279i
\(791\) 2.38462 0.0847872
\(792\) −7.44164 + 4.28374i −0.264427 + 0.152216i
\(793\) 14.6733 0.521063
\(794\) −1.74545 3.02321i −0.0619438 0.107290i
\(795\) −1.93341 7.23410i −0.0685710 0.256567i
\(796\) −0.907254 + 1.57141i −0.0321568 + 0.0556972i
\(797\) 3.39784 5.88523i 0.120358 0.208466i −0.799551 0.600598i \(-0.794929\pi\)
0.919909 + 0.392133i \(0.128263\pi\)
\(798\) −0.407536 1.52485i −0.0144266 0.0539790i
\(799\) 4.30861 + 7.46274i 0.152428 + 0.264013i
\(800\) −50.5349 −1.78668
\(801\) −0.0154191 + 12.0461i −0.000544808 + 0.425627i
\(802\) −28.3316 −1.00042
\(803\) −5.26890 9.12600i −0.185935 0.322050i
\(804\) 17.9475 + 4.82134i 0.632960 + 0.170035i
\(805\) 4.49077 7.77824i 0.158279 0.274147i
\(806\) −8.51000 + 14.7397i −0.299752 + 0.519185i
\(807\) −8.36465 + 8.35395i −0.294450 + 0.294073i
\(808\) −20.3115 35.1806i −0.714557 1.23765i
\(809\) 17.0314 0.598792 0.299396 0.954129i \(-0.403215\pi\)
0.299396 + 0.954129i \(0.403215\pi\)
\(810\) 30.1784 + 0.0772577i 1.06036 + 0.00271456i
\(811\) 2.28561 0.0802587 0.0401294 0.999194i \(-0.487223\pi\)
0.0401294 + 0.999194i \(0.487223\pi\)
\(812\) −3.74853 6.49264i −0.131547 0.227847i
\(813\) −9.28385 + 9.27198i −0.325599 + 0.325182i
\(814\) 4.35490 7.54291i 0.152639 0.264379i
\(815\) −33.1754 + 57.4615i −1.16208 + 2.01279i
\(816\) −1.28416 0.344971i −0.0449546 0.0120764i
\(817\) 1.44131 + 2.49643i 0.0504251 + 0.0873389i
\(818\) 11.5528 0.403933
\(819\) 0.0320765 25.0595i 0.00112084 0.875650i
\(820\) −19.1086 −0.667301
\(821\) −11.0263 19.0981i −0.384821 0.666530i 0.606923 0.794761i \(-0.292404\pi\)
−0.991744 + 0.128231i \(0.959070\pi\)
\(822\) 0.950498 + 3.55641i 0.0331524 + 0.124044i
\(823\) 12.3556 21.4006i 0.430691 0.745978i −0.566242 0.824239i \(-0.691603\pi\)
0.996933 + 0.0782608i \(0.0249367\pi\)
\(824\) −27.4450 + 47.5361i −0.956092 + 1.65600i
\(825\) 4.04932 + 15.1510i 0.140979 + 0.527492i
\(826\) −3.01824 5.22774i −0.105018 0.181896i
\(827\) 19.8452 0.690085 0.345043 0.938587i \(-0.387864\pi\)
0.345043 + 0.938587i \(0.387864\pi\)
\(828\) −5.15120 + 2.96526i −0.179017 + 0.103050i
\(829\) 32.9988 1.14610 0.573048 0.819522i \(-0.305761\pi\)
0.573048 + 0.819522i \(0.305761\pi\)
\(830\) −6.37675 11.0449i −0.221340 0.383373i
\(831\) 31.4532 + 8.44945i 1.09110 + 0.293108i
\(832\) −15.2899 + 26.4829i −0.530082 + 0.918129i
\(833\) −11.7382 + 20.3311i −0.406704 + 0.704432i
\(834\) 12.5912 12.5751i 0.435998 0.435440i
\(835\) 16.6852 + 28.8996i 0.577415 + 1.00011i
\(836\) −0.842543 −0.0291399
\(837\) −16.5994 + 4.41366i −0.573759 + 0.152558i
\(838\) −24.4724 −0.845386
\(839\) 10.1382 + 17.5598i 0.350008 + 0.606232i 0.986251 0.165257i \(-0.0528454\pi\)
−0.636242 + 0.771489i \(0.719512\pi\)
\(840\) 19.0815 19.0571i 0.658373 0.657531i
\(841\) 5.23110 9.06053i 0.180383 0.312432i
\(842\) −8.75547 + 15.1649i −0.301733 + 0.522617i
\(843\) −41.6233 11.1815i −1.43358 0.385111i
\(844\) −6.61327 11.4545i −0.227638 0.394281i
\(845\) 75.4981 2.59721
\(846\) −4.17174 2.41568i −0.143427 0.0830528i
\(847\) 1.45106 0.0498589
\(848\) −0.0922845 0.159842i −0.00316906 0.00548898i
\(849\) −8.11306 30.3561i −0.278440 1.04182i
\(850\) −19.4228 + 33.6412i −0.666195 + 1.15388i
\(851\) 8.03876 13.9235i 0.275565 0.477293i
\(852\) −2.75950 10.3250i −0.0945389 0.353729i
\(853\) 3.76447 + 6.52026i 0.128893 + 0.223249i 0.923248 0.384205i \(-0.125524\pi\)
−0.794355 + 0.607454i \(0.792191\pi\)
\(854\) −3.30821 −0.113205
\(855\) 6.83365 + 3.95708i 0.233706 + 0.135329i
\(856\) −28.6315 −0.978605
\(857\) 5.76395 + 9.98345i 0.196893 + 0.341028i 0.947519 0.319699i \(-0.103582\pi\)
−0.750627 + 0.660727i \(0.770248\pi\)
\(858\) 8.61281 + 2.31370i 0.294037 + 0.0789886i
\(859\) 1.31075 2.27029i 0.0447222 0.0774612i −0.842798 0.538230i \(-0.819093\pi\)
0.887520 + 0.460769i \(0.152426\pi\)
\(860\) −9.23480 + 15.9951i −0.314904 + 0.545430i
\(861\) 7.55356 7.54390i 0.257425 0.257095i
\(862\) 4.38494 + 7.59494i 0.149352 + 0.258685i
\(863\) 29.7385 1.01231 0.506156 0.862442i \(-0.331066\pi\)
0.506156 + 0.862442i \(0.331066\pi\)
\(864\) −28.0269 + 7.45215i −0.953496 + 0.253527i
\(865\) −92.7143 −3.15238
\(866\) −0.887240 1.53675i −0.0301496 0.0522207i
\(867\) 7.36159 7.35217i 0.250013 0.249693i
\(868\) −2.87790 + 4.98467i −0.0976823 + 0.169191i
\(869\) 0.543371 0.941146i 0.0184326 0.0319262i
\(870\) −24.1499 6.48750i −0.818757 0.219947i
\(871\) −25.7356 44.5754i −0.872018 1.51038i
\(872\) −21.2020 −0.717991
\(873\) −8.55659 + 4.92556i −0.289597 + 0.166705i
\(874\) 1.03686 0.0350725
\(875\) −11.0280 19.1011i −0.372815 0.645735i
\(876\) −5.65516 21.1595i −0.191070 0.714914i
\(877\) −1.06123 + 1.83811i −0.0358352 + 0.0620684i −0.883387 0.468645i \(-0.844742\pi\)
0.847552 + 0.530713i \(0.178076\pi\)
\(878\) 15.6802 27.1589i 0.529181 0.916569i
\(879\) −7.19014 26.9028i −0.242517 0.907410i
\(880\) 0.300012 + 0.519636i 0.0101134 + 0.0175169i
\(881\) 14.0627 0.473783 0.236892 0.971536i \(-0.423871\pi\)
0.236892 + 0.971536i \(0.423871\pi\)
\(882\) 0.0168107 13.1332i 0.000566046 0.442219i
\(883\) −20.5227 −0.690645 −0.345323 0.938484i \(-0.612231\pi\)
−0.345323 + 0.938484i \(0.612231\pi\)
\(884\) −16.5670 28.6948i −0.557207 0.965111i
\(885\) 29.1667 + 7.83521i 0.980429 + 0.263378i
\(886\) 10.6044 18.3674i 0.356263 0.617066i
\(887\) −1.25686 + 2.17695i −0.0422013 + 0.0730949i −0.886355 0.463007i \(-0.846770\pi\)
0.844153 + 0.536102i \(0.180104\pi\)
\(888\) 34.1570 34.1133i 1.14624 1.14477i
\(889\) 16.2017 + 28.0622i 0.543387 + 0.941174i
\(890\) 13.4642 0.451321
\(891\) 4.48003 + 7.80572i 0.150087 + 0.261502i
\(892\) 27.9756 0.936693
\(893\) −0.630701 1.09241i −0.0211056 0.0365560i
\(894\) 0.768749 0.767766i 0.0257108 0.0256779i
\(895\) 22.2288 38.5013i 0.743025 1.28696i
\(896\) −4.65141 + 8.05647i −0.155393 + 0.269148i
\(897\) 15.8985 + 4.27089i 0.530835 + 0.142601i
\(898\) −5.21345 9.02997i −0.173975 0.301334i
\(899\) 14.2322 0.474672
\(900\) −0.0417231 + 32.5958i −0.00139077 + 1.08653i
\(901\) 5.53130 0.184274
\(902\) 1.89960 + 3.29020i 0.0632498 + 0.109552i
\(903\) −2.66425 9.96865i −0.0886608 0.331736i
\(904\) −2.35180 + 4.07344i −0.0782197 + 0.135481i
\(905\) 9.27009 16.0563i 0.308148 0.533728i
\(906\) 1.00223 + 3.74998i 0.0332969 + 0.124585i
\(907\) −16.6153 28.7786i −0.551703 0.955577i −0.998152 0.0607683i \(-0.980645\pi\)
0.446449 0.894809i \(-0.352688\pi\)
\(908\) −7.17460 −0.238097
\(909\) −36.9019 + 21.2424i −1.22396 + 0.704565i
\(910\) −28.0096 −0.928509
\(911\) −2.77447 4.80553i −0.0919223 0.159214i 0.816398 0.577490i \(-0.195968\pi\)
−0.908320 + 0.418276i \(0.862634\pi\)
\(912\) 0.187977 + 0.0504973i 0.00622455 + 0.00167213i
\(913\) 1.90171 3.29386i 0.0629374 0.109011i
\(914\) 5.90339 10.2250i 0.195267 0.338212i
\(915\) 11.7109 11.6959i 0.387151 0.386656i
\(916\) 5.65468 + 9.79419i 0.186836 + 0.323609i
\(917\) −14.2042 −0.469064
\(918\) −5.81106 + 21.5218i −0.191793 + 0.710325i
\(919\) −46.9009 −1.54712 −0.773560 0.633724i \(-0.781526\pi\)
−0.773560 + 0.633724i \(0.781526\pi\)
\(920\) 8.85795 + 15.3424i 0.292038 + 0.505824i
\(921\) −24.6752 + 24.6436i −0.813074 + 0.812034i
\(922\) −13.5468 + 23.4637i −0.446139 + 0.772735i
\(923\) −14.8004 + 25.6350i −0.487160 + 0.843785i
\(924\) 2.91267 + 0.782446i 0.0958198 + 0.0257406i
\(925\) −44.0853 76.3580i −1.44952 2.51064i
\(926\) 24.3392 0.799837
\(927\) 49.7883 + 28.8303i 1.63526 + 0.946911i
\(928\) 24.0302 0.788829
\(929\) 15.5050 + 26.8554i 0.508702 + 0.881098i 0.999949 + 0.0100775i \(0.00320784\pi\)
−0.491247 + 0.871020i \(0.663459\pi\)
\(930\) 4.95699 + 18.5472i 0.162546 + 0.608187i
\(931\) 1.71825 2.97610i 0.0563135 0.0975378i
\(932\) 16.3009 28.2340i 0.533955 0.924837i
\(933\) −5.82478 21.7942i −0.190695 0.713509i
\(934\) 13.9475 + 24.1578i 0.456376 + 0.790466i
\(935\) −17.9819 −0.588072
\(936\) 42.7754 + 24.7694i 1.39816 + 0.809614i
\(937\) −44.0640 −1.43951 −0.719755 0.694229i \(-0.755746\pi\)
−0.719755 + 0.694229i \(0.755746\pi\)
\(938\) 5.80230 + 10.0499i 0.189452 + 0.328140i
\(939\) −17.1487 4.60674i −0.559626 0.150335i
\(940\) 4.04104 6.99929i 0.131804 0.228292i
\(941\) −1.06028 + 1.83646i −0.0345642 + 0.0598669i −0.882790 0.469768i \(-0.844338\pi\)
0.848226 + 0.529635i \(0.177671\pi\)
\(942\) −4.86221 + 4.85599i −0.158419 + 0.158217i
\(943\) 3.50649 + 6.07342i 0.114187 + 0.197778i
\(944\) 0.744409 0.0242284
\(945\) −19.9491 20.0259i −0.648944 0.651441i
\(946\) 3.67216 0.119392
\(947\) 7.66234 + 13.2716i 0.248993 + 0.431268i 0.963247 0.268619i \(-0.0865672\pi\)
−0.714254 + 0.699887i \(0.753234\pi\)
\(948\) 1.59818 1.59614i 0.0519066 0.0518402i
\(949\) −30.3310 + 52.5348i −0.984586 + 1.70535i
\(950\) 2.84313 4.92445i 0.0922433 0.159770i
\(951\) 18.4297 + 4.95087i 0.597625 + 0.160543i
\(952\) 9.96047 + 17.2520i 0.322821 + 0.559142i
\(953\) 31.7696 1.02912 0.514559 0.857455i \(-0.327955\pi\)
0.514559 + 0.857455i \(0.327955\pi\)
\(954\) −2.68175 + 1.54374i −0.0868249 + 0.0499803i
\(955\) 1.21303 0.0392529
\(956\) 0.145545 + 0.252092i 0.00470727 + 0.00815323i
\(957\) −1.92552 7.20457i −0.0622431 0.232891i
\(958\) −17.1182 + 29.6496i −0.553064 + 0.957934i
\(959\) 1.72401 2.98607i 0.0556711 0.0964253i
\(960\) 8.90622 + 33.3238i 0.287447 + 1.07552i
\(961\) 10.0367 + 17.3840i 0.323763 + 0.560774i
\(962\) −50.1390 −1.61655
\(963\) −0.0384134 + 30.0102i −0.00123786 + 0.967065i
\(964\) 15.2525 0.491251
\(965\) −27.0211 46.8018i −0.869838 1.50660i
\(966\) −3.58444 0.962907i −0.115327 0.0309810i
\(967\) −2.35911 + 4.08609i −0.0758637 + 0.131400i −0.901462 0.432859i \(-0.857505\pi\)
0.825598 + 0.564259i \(0.190838\pi\)
\(968\) −1.43109 + 2.47872i −0.0459969 + 0.0796690i
\(969\) −4.12731 + 4.12203i −0.132588 + 0.132419i
\(970\) 5.51765 + 9.55685i 0.177161 + 0.306852i
\(971\) −2.48946 −0.0798905 −0.0399452 0.999202i \(-0.512718\pi\)
−0.0399452 + 0.999202i \(0.512718\pi\)
\(972\) 4.78362 + 18.0840i 0.153435 + 0.580044i
\(973\) −16.6679 −0.534348
\(974\) −7.09297 12.2854i −0.227273 0.393649i
\(975\) 63.8784 63.7967i 2.04575 2.04313i
\(976\) 0.203982 0.353306i 0.00652929 0.0113091i
\(977\) −23.9951 + 41.5608i −0.767672 + 1.32965i 0.171150 + 0.985245i \(0.445252\pi\)
−0.938822 + 0.344403i \(0.888081\pi\)
\(978\) 26.4799 + 7.11345i 0.846735 + 0.227463i
\(979\) 2.00768 + 3.47740i 0.0641657 + 0.111138i
\(980\) 22.0185 0.703354
\(981\) −0.0284457 + 22.2230i −0.000908201 + 0.709524i
\(982\) 6.26308 0.199863
\(983\) 0.248569 + 0.430534i 0.00792811 + 0.0137319i 0.869962 0.493118i \(-0.164143\pi\)
−0.862034 + 0.506850i \(0.830810\pi\)
\(984\) 5.43699 + 20.3432i 0.173325 + 0.648518i
\(985\) 34.3527 59.5006i 1.09457 1.89585i
\(986\) 9.23583 15.9969i 0.294129 0.509446i
\(987\) 1.16585 + 4.36216i 0.0371093 + 0.138849i
\(988\) 2.42509 + 4.20039i 0.0771525 + 0.133632i
\(989\) 6.77848 0.215543
\(990\) 8.71822 5.01860i 0.277083 0.159502i
\(991\) 56.7182 1.80171 0.900856 0.434118i \(-0.142940\pi\)
0.900856 + 0.434118i \(0.142940\pi\)
\(992\) −9.22448 15.9773i −0.292878 0.507279i
\(993\) 30.3508 + 8.15331i 0.963155 + 0.258737i
\(994\) 3.33686 5.77961i 0.105839 0.183318i
\(995\) 2.83439 4.90931i 0.0898562 0.155635i
\(996\) 5.59338 5.58622i 0.177233 0.177006i
\(997\) −25.5948 44.3314i −0.810594 1.40399i −0.912449 0.409191i \(-0.865811\pi\)
0.101855 0.994799i \(-0.467522\pi\)
\(998\) −22.0662 −0.698492
\(999\) −35.7102 35.8475i −1.12982 1.13417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.2.e.e.67.3 yes 8
3.2 odd 2 297.2.e.e.199.2 8
9.2 odd 6 297.2.e.e.100.2 8
9.4 even 3 891.2.a.q.1.2 4
9.5 odd 6 891.2.a.p.1.3 4
9.7 even 3 inner 99.2.e.e.34.3 8
11.10 odd 2 1089.2.e.i.364.2 8
99.32 even 6 9801.2.a.bl.1.2 4
99.43 odd 6 1089.2.e.i.727.2 8
99.76 odd 6 9801.2.a.bi.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.e.34.3 8 9.7 even 3 inner
99.2.e.e.67.3 yes 8 1.1 even 1 trivial
297.2.e.e.100.2 8 9.2 odd 6
297.2.e.e.199.2 8 3.2 odd 2
891.2.a.p.1.3 4 9.5 odd 6
891.2.a.q.1.2 4 9.4 even 3
1089.2.e.i.364.2 8 11.10 odd 2
1089.2.e.i.727.2 8 99.43 odd 6
9801.2.a.bi.1.3 4 99.76 odd 6
9801.2.a.bl.1.2 4 99.32 even 6