Properties

Label 99.4.f.d.82.2
Level $99$
Weight $4$
Character 99.82
Analytic conductor $5.841$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [99,4,Mod(37,99)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(99, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("99.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 99 = 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 99.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.84118909057\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 21 x^{10} - 26 x^{9} + 281 x^{8} + 486 x^{7} + 3506 x^{6} + 15102 x^{5} + \cdots + 1936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.2
Root \(0.0936861 - 0.288336i\) of defining polynomial
Character \(\chi\) \(=\) 99.82
Dual form 99.4.f.d.64.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.402703 - 1.23939i) q^{2} +(5.09821 - 3.70407i) q^{4} +(2.50364 - 7.70540i) q^{5} +(-0.439746 + 0.319494i) q^{7} +(-15.0782 - 10.9549i) q^{8} +O(q^{10})\) \(q+(-0.402703 - 1.23939i) q^{2} +(5.09821 - 3.70407i) q^{4} +(2.50364 - 7.70540i) q^{5} +(-0.439746 + 0.319494i) q^{7} +(-15.0782 - 10.9549i) q^{8} -10.5582 q^{10} +(25.3612 + 26.2261i) q^{11} +(-21.5234 - 66.2421i) q^{13} +(0.573065 + 0.416356i) q^{14} +(8.07330 - 24.8471i) q^{16} +(13.1571 - 40.4934i) q^{17} +(-61.0435 - 44.3507i) q^{19} +(-15.7773 - 48.5574i) q^{20} +(22.2914 - 41.9939i) q^{22} -37.9924 q^{23} +(48.0221 + 34.8901i) q^{25} +(-73.4324 + 53.3518i) q^{26} +(-1.05849 + 3.25769i) q^{28} +(97.1697 - 70.5979i) q^{29} +(85.6557 + 263.621i) q^{31} -183.148 q^{32} -55.4856 q^{34} +(1.36087 + 4.18831i) q^{35} +(12.0481 - 8.75344i) q^{37} +(-30.3855 + 93.5170i) q^{38} +(-122.163 + 88.7563i) q^{40} +(230.473 + 167.448i) q^{41} +312.130 q^{43} +(226.440 + 39.7664i) q^{44} +(15.2997 + 47.0875i) q^{46} +(272.897 + 198.272i) q^{47} +(-105.902 + 325.931i) q^{49} +(23.9039 - 73.5686i) q^{50} +(-355.096 - 257.992i) q^{52} +(-52.4474 - 161.417i) q^{53} +(265.578 - 129.758i) q^{55} +10.1306 q^{56} +(-126.629 - 92.0014i) q^{58} +(-648.765 + 471.356i) q^{59} +(-119.521 + 367.847i) q^{61} +(292.236 - 212.322i) q^{62} +(9.16772 + 28.2153i) q^{64} -564.309 q^{65} +981.580 q^{67} +(-82.9126 - 255.179i) q^{68} +(4.64294 - 3.37329i) q^{70} +(165.441 - 509.176i) q^{71} +(-369.585 + 268.520i) q^{73} +(-15.7007 - 11.4073i) q^{74} -475.490 q^{76} +(-19.5316 - 3.43004i) q^{77} +(-191.437 - 589.183i) q^{79} +(-171.244 - 124.416i) q^{80} +(114.722 - 353.079i) q^{82} +(-61.3212 + 188.727i) q^{83} +(-279.077 - 202.762i) q^{85} +(-125.696 - 386.851i) q^{86} +(-95.0962 - 673.273i) q^{88} +1317.67 q^{89} +(30.6287 + 22.2531i) q^{91} +(-193.693 + 140.726i) q^{92} +(135.840 - 418.072i) q^{94} +(-494.571 + 359.327i) q^{95} +(-287.328 - 884.304i) q^{97} +446.604 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 16 q^{4} - 28 q^{5} + 12 q^{7} + 112 q^{8} + 100 q^{10} + 54 q^{11} - 18 q^{13} - 156 q^{14} + 308 q^{16} + 80 q^{17} - 280 q^{19} + 15 q^{20} - 193 q^{22} + 392 q^{23} + 77 q^{25} - 406 q^{26} - 429 q^{28} - 13 q^{29} + 413 q^{31} - 1314 q^{32} + 1060 q^{34} + 1239 q^{35} + 654 q^{37} - 912 q^{38} - 1803 q^{40} + 1490 q^{41} + 416 q^{43} - 695 q^{44} - 2369 q^{46} + 150 q^{47} - 301 q^{49} + 1878 q^{50} - 1661 q^{52} - 1359 q^{53} + 3300 q^{55} + 858 q^{56} + 955 q^{58} - 1262 q^{59} - 1044 q^{61} + 701 q^{62} + 78 q^{64} - 4556 q^{65} - 528 q^{67} - 703 q^{68} + 3050 q^{70} - 558 q^{71} - 699 q^{73} + 3224 q^{74} - 868 q^{76} - 390 q^{77} - 1252 q^{79} + 1914 q^{80} + 2987 q^{82} + 4464 q^{83} - 2170 q^{85} + 3209 q^{86} + 1302 q^{88} - 316 q^{89} + 176 q^{91} - 4595 q^{92} + 1247 q^{94} - 1466 q^{95} + 1608 q^{97} - 2810 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/99\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.402703 1.23939i −0.142377 0.438192i 0.854287 0.519801i \(-0.173994\pi\)
−0.996664 + 0.0816096i \(0.973994\pi\)
\(3\) 0 0
\(4\) 5.09821 3.70407i 0.637276 0.463008i
\(5\) 2.50364 7.70540i 0.223932 0.689192i −0.774466 0.632615i \(-0.781981\pi\)
0.998398 0.0565768i \(-0.0180186\pi\)
\(6\) 0 0
\(7\) −0.439746 + 0.319494i −0.0237440 + 0.0172510i −0.599594 0.800304i \(-0.704671\pi\)
0.575850 + 0.817555i \(0.304671\pi\)
\(8\) −15.0782 10.9549i −0.666368 0.484145i
\(9\) 0 0
\(10\) −10.5582 −0.333881
\(11\) 25.3612 + 26.2261i 0.695155 + 0.718860i
\(12\) 0 0
\(13\) −21.5234 66.2421i −0.459193 1.41325i −0.866141 0.499799i \(-0.833407\pi\)
0.406949 0.913451i \(-0.366593\pi\)
\(14\) 0.573065 + 0.416356i 0.0109399 + 0.00794828i
\(15\) 0 0
\(16\) 8.07330 24.8471i 0.126145 0.388236i
\(17\) 13.1571 40.4934i 0.187710 0.577711i −0.812275 0.583275i \(-0.801771\pi\)
0.999985 + 0.00556378i \(0.00177101\pi\)
\(18\) 0 0
\(19\) −61.0435 44.3507i −0.737070 0.535513i 0.154722 0.987958i \(-0.450552\pi\)
−0.891792 + 0.452445i \(0.850552\pi\)
\(20\) −15.7773 48.5574i −0.176395 0.542888i
\(21\) 0 0
\(22\) 22.2914 41.9939i 0.216024 0.406960i
\(23\) −37.9924 −0.344433 −0.172217 0.985059i \(-0.555093\pi\)
−0.172217 + 0.985059i \(0.555093\pi\)
\(24\) 0 0
\(25\) 48.0221 + 34.8901i 0.384177 + 0.279121i
\(26\) −73.4324 + 53.3518i −0.553896 + 0.402429i
\(27\) 0 0
\(28\) −1.05849 + 3.25769i −0.00714413 + 0.0219874i
\(29\) 97.1697 70.5979i 0.622205 0.452059i −0.231486 0.972838i \(-0.574359\pi\)
0.853691 + 0.520780i \(0.174359\pi\)
\(30\) 0 0
\(31\) 85.6557 + 263.621i 0.496265 + 1.52735i 0.814976 + 0.579495i \(0.196750\pi\)
−0.318711 + 0.947852i \(0.603250\pi\)
\(32\) −183.148 −1.01176
\(33\) 0 0
\(34\) −55.4856 −0.279874
\(35\) 1.36087 + 4.18831i 0.00657224 + 0.0202273i
\(36\) 0 0
\(37\) 12.0481 8.75344i 0.0535322 0.0388934i −0.560697 0.828021i \(-0.689467\pi\)
0.614230 + 0.789127i \(0.289467\pi\)
\(38\) −30.3855 + 93.5170i −0.129715 + 0.399223i
\(39\) 0 0
\(40\) −122.163 + 88.7563i −0.482890 + 0.350840i
\(41\) 230.473 + 167.448i 0.877898 + 0.637831i 0.932695 0.360667i \(-0.117451\pi\)
−0.0547962 + 0.998498i \(0.517451\pi\)
\(42\) 0 0
\(43\) 312.130 1.10696 0.553481 0.832862i \(-0.313299\pi\)
0.553481 + 0.832862i \(0.313299\pi\)
\(44\) 226.440 + 39.7664i 0.775844 + 0.136250i
\(45\) 0 0
\(46\) 15.2997 + 47.0875i 0.0490394 + 0.150928i
\(47\) 272.897 + 198.272i 0.846940 + 0.615338i 0.924301 0.381665i \(-0.124649\pi\)
−0.0773606 + 0.997003i \(0.524649\pi\)
\(48\) 0 0
\(49\) −105.902 + 325.931i −0.308751 + 0.950237i
\(50\) 23.9039 73.5686i 0.0676104 0.208083i
\(51\) 0 0
\(52\) −355.096 257.992i −0.946979 0.688021i
\(53\) −52.4474 161.417i −0.135928 0.418345i 0.859805 0.510623i \(-0.170585\pi\)
−0.995733 + 0.0922780i \(0.970585\pi\)
\(54\) 0 0
\(55\) 265.578 129.758i 0.651100 0.318119i
\(56\) 10.1306 0.0241743
\(57\) 0 0
\(58\) −126.629 92.0014i −0.286676 0.208282i
\(59\) −648.765 + 471.356i −1.43156 + 1.04009i −0.441836 + 0.897096i \(0.645673\pi\)
−0.989724 + 0.142994i \(0.954327\pi\)
\(60\) 0 0
\(61\) −119.521 + 367.847i −0.250870 + 0.772099i 0.743745 + 0.668463i \(0.233048\pi\)
−0.994615 + 0.103636i \(0.966952\pi\)
\(62\) 292.236 212.322i 0.598614 0.434918i
\(63\) 0 0
\(64\) 9.16772 + 28.2153i 0.0179057 + 0.0551081i
\(65\) −564.309 −1.07683
\(66\) 0 0
\(67\) 981.580 1.78984 0.894919 0.446229i \(-0.147233\pi\)
0.894919 + 0.446229i \(0.147233\pi\)
\(68\) −82.9126 255.179i −0.147862 0.455073i
\(69\) 0 0
\(70\) 4.64294 3.37329i 0.00792768 0.00575980i
\(71\) 165.441 509.176i 0.276539 0.851100i −0.712269 0.701907i \(-0.752332\pi\)
0.988808 0.149193i \(-0.0476676\pi\)
\(72\) 0 0
\(73\) −369.585 + 268.520i −0.592558 + 0.430518i −0.843229 0.537554i \(-0.819348\pi\)
0.250672 + 0.968072i \(0.419348\pi\)
\(74\) −15.7007 11.4073i −0.0246645 0.0179198i
\(75\) 0 0
\(76\) −475.490 −0.717664
\(77\) −19.5316 3.43004i −0.0289069 0.00507649i
\(78\) 0 0
\(79\) −191.437 589.183i −0.272637 0.839092i −0.989835 0.142222i \(-0.954575\pi\)
0.717197 0.696870i \(-0.245425\pi\)
\(80\) −171.244 124.416i −0.239321 0.173877i
\(81\) 0 0
\(82\) 114.722 353.079i 0.154499 0.475500i
\(83\) −61.3212 + 188.727i −0.0810948 + 0.249584i −0.983381 0.181553i \(-0.941888\pi\)
0.902286 + 0.431137i \(0.141888\pi\)
\(84\) 0 0
\(85\) −279.077 202.762i −0.356120 0.258736i
\(86\) −125.696 386.851i −0.157606 0.485061i
\(87\) 0 0
\(88\) −95.0962 673.273i −0.115197 0.815581i
\(89\) 1317.67 1.56935 0.784676 0.619906i \(-0.212829\pi\)
0.784676 + 0.619906i \(0.212829\pi\)
\(90\) 0 0
\(91\) 30.6287 + 22.2531i 0.0352831 + 0.0256347i
\(92\) −193.693 + 140.726i −0.219499 + 0.159475i
\(93\) 0 0
\(94\) 135.840 418.072i 0.149051 0.458732i
\(95\) −494.571 + 359.327i −0.534125 + 0.388065i
\(96\) 0 0
\(97\) −287.328 884.304i −0.300760 0.925644i −0.981226 0.192864i \(-0.938222\pi\)
0.680466 0.732780i \(-0.261778\pi\)
\(98\) 446.604 0.460345
\(99\) 0 0
\(100\) 374.062 0.374062
\(101\) −471.033 1449.69i −0.464054 1.42821i −0.860168 0.510011i \(-0.829641\pi\)
0.396113 0.918202i \(-0.370359\pi\)
\(102\) 0 0
\(103\) 115.550 83.9520i 0.110539 0.0803110i −0.531143 0.847282i \(-0.678237\pi\)
0.641681 + 0.766971i \(0.278237\pi\)
\(104\) −401.145 + 1234.60i −0.378226 + 1.16406i
\(105\) 0 0
\(106\) −178.938 + 130.006i −0.163962 + 0.119125i
\(107\) 1252.74 + 910.166i 1.13184 + 0.822327i 0.985961 0.166976i \(-0.0534001\pi\)
0.145875 + 0.989303i \(0.453400\pi\)
\(108\) 0 0
\(109\) −650.244 −0.571395 −0.285697 0.958320i \(-0.592225\pi\)
−0.285697 + 0.958320i \(0.592225\pi\)
\(110\) −267.770 276.901i −0.232099 0.240014i
\(111\) 0 0
\(112\) 4.38829 + 13.5058i 0.00370227 + 0.0113944i
\(113\) 64.3134 + 46.7264i 0.0535406 + 0.0388996i 0.614234 0.789124i \(-0.289465\pi\)
−0.560693 + 0.828024i \(0.689465\pi\)
\(114\) 0 0
\(115\) −95.1191 + 292.747i −0.0771296 + 0.237381i
\(116\) 233.892 719.846i 0.187210 0.576173i
\(117\) 0 0
\(118\) 845.454 + 614.259i 0.659580 + 0.479213i
\(119\) 7.15161 + 22.0104i 0.00550914 + 0.0169554i
\(120\) 0 0
\(121\) −44.6148 + 1330.25i −0.0335198 + 0.999438i
\(122\) 504.039 0.374045
\(123\) 0 0
\(124\) 1413.16 + 1026.72i 1.02343 + 0.743567i
\(125\) 1208.40 877.953i 0.864659 0.628212i
\(126\) 0 0
\(127\) −126.921 + 390.621i −0.0886802 + 0.272930i −0.985555 0.169355i \(-0.945832\pi\)
0.896875 + 0.442284i \(0.145832\pi\)
\(128\) −1154.08 + 838.487i −0.796931 + 0.579004i
\(129\) 0 0
\(130\) 227.249 + 699.400i 0.153316 + 0.471857i
\(131\) −2714.85 −1.81067 −0.905334 0.424699i \(-0.860380\pi\)
−0.905334 + 0.424699i \(0.860380\pi\)
\(132\) 0 0
\(133\) 41.0134 0.0267392
\(134\) −395.285 1216.56i −0.254832 0.784292i
\(135\) 0 0
\(136\) −641.988 + 466.432i −0.404779 + 0.294090i
\(137\) −821.452 + 2528.17i −0.512273 + 1.57661i 0.275917 + 0.961181i \(0.411019\pi\)
−0.788190 + 0.615432i \(0.788981\pi\)
\(138\) 0 0
\(139\) 161.672 117.462i 0.0986538 0.0716762i −0.537365 0.843350i \(-0.680580\pi\)
0.636019 + 0.771674i \(0.280580\pi\)
\(140\) 22.4518 + 16.3122i 0.0135537 + 0.00984736i
\(141\) 0 0
\(142\) −697.693 −0.412318
\(143\) 1191.41 2244.45i 0.696719 1.31252i
\(144\) 0 0
\(145\) −300.708 925.483i −0.172223 0.530049i
\(146\) 481.634 + 349.928i 0.273016 + 0.198358i
\(147\) 0 0
\(148\) 29.0003 89.2537i 0.0161068 0.0495717i
\(149\) −776.768 + 2390.65i −0.427083 + 1.31443i 0.473903 + 0.880577i \(0.342845\pi\)
−0.900986 + 0.433849i \(0.857155\pi\)
\(150\) 0 0
\(151\) 2403.32 + 1746.11i 1.29523 + 0.941038i 0.999897 0.0143566i \(-0.00457000\pi\)
0.295331 + 0.955395i \(0.404570\pi\)
\(152\) 434.566 + 1337.46i 0.231894 + 0.713697i
\(153\) 0 0
\(154\) 3.61425 + 25.5886i 0.00189120 + 0.0133895i
\(155\) 2245.76 1.16377
\(156\) 0 0
\(157\) −1660.59 1206.49i −0.844137 0.613301i 0.0793864 0.996844i \(-0.474704\pi\)
−0.923523 + 0.383543i \(0.874704\pi\)
\(158\) −653.136 + 474.531i −0.328866 + 0.238935i
\(159\) 0 0
\(160\) −458.535 + 1411.23i −0.226565 + 0.697296i
\(161\) 16.7070 12.1383i 0.00817823 0.00594183i
\(162\) 0 0
\(163\) −716.204 2204.25i −0.344156 1.05920i −0.962034 0.272929i \(-0.912008\pi\)
0.617878 0.786274i \(-0.287992\pi\)
\(164\) 1795.24 0.854785
\(165\) 0 0
\(166\) 258.601 0.120912
\(167\) −382.525 1177.29i −0.177249 0.545517i 0.822480 0.568794i \(-0.192590\pi\)
−0.999729 + 0.0232771i \(0.992590\pi\)
\(168\) 0 0
\(169\) −2147.35 + 1560.14i −0.977400 + 0.710123i
\(170\) −138.916 + 427.539i −0.0626727 + 0.192887i
\(171\) 0 0
\(172\) 1591.30 1156.15i 0.705440 0.512532i
\(173\) −1853.26 1346.47i −0.814454 0.591736i 0.100664 0.994920i \(-0.467903\pi\)
−0.915119 + 0.403185i \(0.867903\pi\)
\(174\) 0 0
\(175\) −32.2647 −0.0139370
\(176\) 856.391 418.422i 0.366778 0.179203i
\(177\) 0 0
\(178\) −530.628 1633.11i −0.223440 0.687677i
\(179\) 437.029 + 317.520i 0.182487 + 0.132584i 0.675278 0.737563i \(-0.264024\pi\)
−0.492792 + 0.870147i \(0.664024\pi\)
\(180\) 0 0
\(181\) −692.312 + 2130.72i −0.284305 + 0.875000i 0.702302 + 0.711880i \(0.252156\pi\)
−0.986606 + 0.163120i \(0.947844\pi\)
\(182\) 15.2460 46.9224i 0.00620940 0.0191106i
\(183\) 0 0
\(184\) 572.856 + 416.204i 0.229519 + 0.166755i
\(185\) −37.2848 114.751i −0.0148175 0.0456034i
\(186\) 0 0
\(187\) 1395.66 681.903i 0.545781 0.266662i
\(188\) 2125.70 0.824642
\(189\) 0 0
\(190\) 644.512 + 468.265i 0.246094 + 0.178798i
\(191\) 511.507 371.632i 0.193777 0.140787i −0.486666 0.873588i \(-0.661787\pi\)
0.680443 + 0.732801i \(0.261787\pi\)
\(192\) 0 0
\(193\) 1274.62 3922.89i 0.475386 1.46309i −0.370051 0.929011i \(-0.620660\pi\)
0.845437 0.534076i \(-0.179340\pi\)
\(194\) −980.292 + 712.224i −0.362788 + 0.263581i
\(195\) 0 0
\(196\) 667.363 + 2053.93i 0.243208 + 0.748518i
\(197\) −3297.43 −1.19255 −0.596274 0.802781i \(-0.703353\pi\)
−0.596274 + 0.802781i \(0.703353\pi\)
\(198\) 0 0
\(199\) 47.3923 0.0168822 0.00844109 0.999964i \(-0.497313\pi\)
0.00844109 + 0.999964i \(0.497313\pi\)
\(200\) −341.867 1052.16i −0.120868 0.371994i
\(201\) 0 0
\(202\) −1607.05 + 1167.59i −0.559760 + 0.406689i
\(203\) −20.1743 + 62.0902i −0.00697517 + 0.0214674i
\(204\) 0 0
\(205\) 1867.28 1356.66i 0.636178 0.462210i
\(206\) −150.582 109.404i −0.0509298 0.0370027i
\(207\) 0 0
\(208\) −1819.69 −0.606599
\(209\) −384.994 2725.72i −0.127419 0.902115i
\(210\) 0 0
\(211\) −469.344 1444.49i −0.153132 0.471293i 0.844834 0.535028i \(-0.179699\pi\)
−0.997967 + 0.0637346i \(0.979699\pi\)
\(212\) −865.286 628.667i −0.280321 0.203665i
\(213\) 0 0
\(214\) 623.572 1919.16i 0.199189 0.613042i
\(215\) 781.459 2405.08i 0.247884 0.762909i
\(216\) 0 0
\(217\) −121.892 88.5598i −0.0381317 0.0277043i
\(218\) 261.855 + 805.907i 0.0813535 + 0.250380i
\(219\) 0 0
\(220\) 873.340 1645.25i 0.267639 0.504195i
\(221\) −2965.55 −0.902645
\(222\) 0 0
\(223\) −827.855 601.472i −0.248598 0.180617i 0.456507 0.889720i \(-0.349100\pi\)
−0.705105 + 0.709103i \(0.749100\pi\)
\(224\) 80.5384 58.5146i 0.0240232 0.0174539i
\(225\) 0 0
\(226\) 32.0132 98.5264i 0.00942250 0.0289995i
\(227\) 2058.48 1495.57i 0.601876 0.437288i −0.244668 0.969607i \(-0.578679\pi\)
0.846544 + 0.532318i \(0.178679\pi\)
\(228\) 0 0
\(229\) −1105.69 3402.95i −0.319065 0.981980i −0.974049 0.226337i \(-0.927325\pi\)
0.654984 0.755642i \(-0.272675\pi\)
\(230\) 401.133 0.115000
\(231\) 0 0
\(232\) −2238.54 −0.633479
\(233\) −534.492 1645.00i −0.150282 0.462521i 0.847370 0.531003i \(-0.178185\pi\)
−0.997652 + 0.0684817i \(0.978185\pi\)
\(234\) 0 0
\(235\) 2211.00 1606.38i 0.613743 0.445911i
\(236\) −1561.61 + 4806.14i −0.430729 + 1.32565i
\(237\) 0 0
\(238\) 24.3996 17.7273i 0.00664533 0.00482811i
\(239\) 4356.80 + 3165.40i 1.17916 + 0.856707i 0.992076 0.125638i \(-0.0400978\pi\)
0.187079 + 0.982345i \(0.440098\pi\)
\(240\) 0 0
\(241\) −3515.37 −0.939605 −0.469803 0.882771i \(-0.655675\pi\)
−0.469803 + 0.882771i \(0.655675\pi\)
\(242\) 1666.67 480.401i 0.442718 0.127609i
\(243\) 0 0
\(244\) 753.189 + 2318.08i 0.197615 + 0.608195i
\(245\) 2246.29 + 1632.03i 0.585757 + 0.425577i
\(246\) 0 0
\(247\) −1624.02 + 4998.22i −0.418356 + 1.28757i
\(248\) 1596.42 4913.28i 0.408762 1.25804i
\(249\) 0 0
\(250\) −1574.75 1144.13i −0.398385 0.289443i
\(251\) 445.948 + 1372.49i 0.112143 + 0.345141i 0.991340 0.131317i \(-0.0419204\pi\)
−0.879197 + 0.476458i \(0.841920\pi\)
\(252\) 0 0
\(253\) −963.534 996.391i −0.239434 0.247599i
\(254\) 535.245 0.132221
\(255\) 0 0
\(256\) 1695.98 + 1232.20i 0.414057 + 0.300830i
\(257\) −4955.96 + 3600.72i −1.20290 + 0.873956i −0.994567 0.104103i \(-0.966803\pi\)
−0.208330 + 0.978059i \(0.566803\pi\)
\(258\) 0 0
\(259\) −2.50142 + 7.69857i −0.000600118 + 0.00184697i
\(260\) −2876.96 + 2090.24i −0.686238 + 0.498581i
\(261\) 0 0
\(262\) 1093.28 + 3364.77i 0.257798 + 0.793420i
\(263\) −2135.26 −0.500631 −0.250315 0.968164i \(-0.580534\pi\)
−0.250315 + 0.968164i \(0.580534\pi\)
\(264\) 0 0
\(265\) −1375.09 −0.318759
\(266\) −16.5162 50.8317i −0.00380704 0.0117169i
\(267\) 0 0
\(268\) 5004.30 3635.84i 1.14062 0.828710i
\(269\) 0.642583 1.97767i 0.000145647 0.000448255i −0.950984 0.309241i \(-0.899925\pi\)
0.951129 + 0.308793i \(0.0999250\pi\)
\(270\) 0 0
\(271\) −3652.12 + 2653.42i −0.818637 + 0.594775i −0.916322 0.400442i \(-0.868856\pi\)
0.0976844 + 0.995217i \(0.468856\pi\)
\(272\) −899.921 653.831i −0.200609 0.145751i
\(273\) 0 0
\(274\) 3464.20 0.763795
\(275\) 302.869 + 2144.29i 0.0664135 + 0.470201i
\(276\) 0 0
\(277\) 1493.35 + 4596.05i 0.323922 + 0.996930i 0.971925 + 0.235292i \(0.0756046\pi\)
−0.648002 + 0.761638i \(0.724395\pi\)
\(278\) −210.687 153.073i −0.0454539 0.0330242i
\(279\) 0 0
\(280\) 25.3633 78.0604i 0.00541339 0.0166607i
\(281\) −60.8452 + 187.262i −0.0129172 + 0.0397549i −0.957307 0.289072i \(-0.906653\pi\)
0.944390 + 0.328827i \(0.106653\pi\)
\(282\) 0 0
\(283\) 2215.82 + 1609.89i 0.465430 + 0.338155i 0.795658 0.605747i \(-0.207125\pi\)
−0.330228 + 0.943901i \(0.607125\pi\)
\(284\) −1042.57 3208.69i −0.217835 0.670426i
\(285\) 0 0
\(286\) −3261.55 572.778i −0.674333 0.118423i
\(287\) −154.848 −0.0318481
\(288\) 0 0
\(289\) 2508.09 + 1822.24i 0.510502 + 0.370901i
\(290\) −1025.94 + 745.390i −0.207742 + 0.150934i
\(291\) 0 0
\(292\) −889.610 + 2737.94i −0.178289 + 0.548718i
\(293\) 5372.42 3903.29i 1.07120 0.778269i 0.0950687 0.995471i \(-0.469693\pi\)
0.976127 + 0.217202i \(0.0696929\pi\)
\(294\) 0 0
\(295\) 2007.71 + 6179.10i 0.396249 + 1.21953i
\(296\) −277.556 −0.0545022
\(297\) 0 0
\(298\) 3275.76 0.636777
\(299\) 817.724 + 2516.69i 0.158161 + 0.486770i
\(300\) 0 0
\(301\) −137.258 + 99.7235i −0.0262837 + 0.0190962i
\(302\) 1196.30 3681.82i 0.227944 0.701540i
\(303\) 0 0
\(304\) −1594.81 + 1158.70i −0.300883 + 0.218604i
\(305\) 2535.18 + 1841.91i 0.475947 + 0.345795i
\(306\) 0 0
\(307\) 3278.70 0.609530 0.304765 0.952428i \(-0.401422\pi\)
0.304765 + 0.952428i \(0.401422\pi\)
\(308\) −112.281 + 54.8591i −0.0207721 + 0.0101490i
\(309\) 0 0
\(310\) −904.374 2783.38i −0.165693 0.509952i
\(311\) 5309.42 + 3857.52i 0.968069 + 0.703343i 0.955011 0.296572i \(-0.0958433\pi\)
0.0130582 + 0.999915i \(0.495843\pi\)
\(312\) 0 0
\(313\) 209.313 644.199i 0.0377989 0.116333i −0.930377 0.366605i \(-0.880520\pi\)
0.968176 + 0.250272i \(0.0805200\pi\)
\(314\) −826.589 + 2543.98i −0.148558 + 0.457214i
\(315\) 0 0
\(316\) −3158.36 2294.68i −0.562252 0.408500i
\(317\) −1176.03 3619.46i −0.208368 0.641290i −0.999558 0.0297204i \(-0.990538\pi\)
0.791190 0.611570i \(-0.209462\pi\)
\(318\) 0 0
\(319\) 4315.85 + 757.929i 0.757496 + 0.133028i
\(320\) 240.363 0.0419897
\(321\) 0 0
\(322\) −21.7721 15.8184i −0.00376805 0.00273765i
\(323\) −2599.06 + 1888.33i −0.447727 + 0.325293i
\(324\) 0 0
\(325\) 1277.60 3932.04i 0.218056 0.671108i
\(326\) −2443.51 + 1775.32i −0.415134 + 0.301612i
\(327\) 0 0
\(328\) −1640.73 5049.64i −0.276201 0.850060i
\(329\) −183.352 −0.0307250
\(330\) 0 0
\(331\) 3339.46 0.554542 0.277271 0.960792i \(-0.410570\pi\)
0.277271 + 0.960792i \(0.410570\pi\)
\(332\) 386.430 + 1189.31i 0.0638798 + 0.196602i
\(333\) 0 0
\(334\) −1305.08 + 948.196i −0.213805 + 0.155338i
\(335\) 2457.52 7563.47i 0.400802 1.23354i
\(336\) 0 0
\(337\) −7795.17 + 5663.52i −1.26003 + 0.915465i −0.998759 0.0498006i \(-0.984141\pi\)
−0.261270 + 0.965266i \(0.584141\pi\)
\(338\) 2798.37 + 2033.14i 0.450329 + 0.327183i
\(339\) 0 0
\(340\) −2173.84 −0.346744
\(341\) −4741.42 + 8932.17i −0.752968 + 1.41849i
\(342\) 0 0
\(343\) −115.176 354.476i −0.0181310 0.0558015i
\(344\) −4706.35 3419.36i −0.737643 0.535929i
\(345\) 0 0
\(346\) −922.493 + 2839.14i −0.143334 + 0.441137i
\(347\) −822.954 + 2532.79i −0.127315 + 0.391837i −0.994316 0.106471i \(-0.966045\pi\)
0.867000 + 0.498307i \(0.166045\pi\)
\(348\) 0 0
\(349\) −4363.82 3170.50i −0.669312 0.486284i 0.200483 0.979697i \(-0.435749\pi\)
−0.869795 + 0.493413i \(0.835749\pi\)
\(350\) 12.9931 + 39.9886i 0.00198431 + 0.00610709i
\(351\) 0 0
\(352\) −4644.85 4803.25i −0.703328 0.727312i
\(353\) −3003.14 −0.452807 −0.226403 0.974034i \(-0.572697\pi\)
−0.226403 + 0.974034i \(0.572697\pi\)
\(354\) 0 0
\(355\) −3509.20 2549.58i −0.524645 0.381177i
\(356\) 6717.74 4880.72i 1.00011 0.726623i
\(357\) 0 0
\(358\) 217.539 669.517i 0.0321154 0.0988410i
\(359\) 1640.26 1191.72i 0.241141 0.175199i −0.460650 0.887582i \(-0.652384\pi\)
0.701792 + 0.712382i \(0.252384\pi\)
\(360\) 0 0
\(361\) −360.225 1108.66i −0.0525185 0.161635i
\(362\) 2919.59 0.423896
\(363\) 0 0
\(364\) 238.579 0.0343542
\(365\) 1143.74 + 3520.08i 0.164017 + 0.504793i
\(366\) 0 0
\(367\) 1975.14 1435.02i 0.280930 0.204107i −0.438393 0.898783i \(-0.644452\pi\)
0.719323 + 0.694676i \(0.244452\pi\)
\(368\) −306.724 + 944.000i −0.0434486 + 0.133721i
\(369\) 0 0
\(370\) −127.206 + 92.4209i −0.0178734 + 0.0129858i
\(371\) 74.6351 + 54.2256i 0.0104444 + 0.00758828i
\(372\) 0 0
\(373\) 10410.5 1.44513 0.722565 0.691302i \(-0.242963\pi\)
0.722565 + 0.691302i \(0.242963\pi\)
\(374\) −1407.18 1455.17i −0.194556 0.201190i
\(375\) 0 0
\(376\) −1942.74 5979.15i −0.266461 0.820083i
\(377\) −6767.97 4917.22i −0.924584 0.671750i
\(378\) 0 0
\(379\) 1508.05 4641.31i 0.204389 0.629045i −0.795349 0.606152i \(-0.792712\pi\)
0.999738 0.0228927i \(-0.00728761\pi\)
\(380\) −1190.46 + 3663.85i −0.160708 + 0.494609i
\(381\) 0 0
\(382\) −666.583 484.301i −0.0892810 0.0648665i
\(383\) −3695.60 11373.9i −0.493045 1.51744i −0.819982 0.572389i \(-0.806017\pi\)
0.326937 0.945046i \(-0.393983\pi\)
\(384\) 0 0
\(385\) −75.3298 + 141.911i −0.00997185 + 0.0187856i
\(386\) −5375.30 −0.708796
\(387\) 0 0
\(388\) −4740.38 3444.09i −0.620248 0.450637i
\(389\) 5806.74 4218.84i 0.756846 0.549881i −0.141095 0.989996i \(-0.545062\pi\)
0.897941 + 0.440115i \(0.145062\pi\)
\(390\) 0 0
\(391\) −499.870 + 1538.44i −0.0646534 + 0.198983i
\(392\) 5167.36 3754.31i 0.665794 0.483728i
\(393\) 0 0
\(394\) 1327.88 + 4086.81i 0.169791 + 0.522564i
\(395\) −5019.18 −0.639348
\(396\) 0 0
\(397\) −2881.37 −0.364262 −0.182131 0.983274i \(-0.558299\pi\)
−0.182131 + 0.983274i \(0.558299\pi\)
\(398\) −19.0850 58.7377i −0.00240364 0.00739763i
\(399\) 0 0
\(400\) 1254.61 911.530i 0.156827 0.113941i
\(401\) 1224.69 3769.21i 0.152514 0.469389i −0.845387 0.534155i \(-0.820630\pi\)
0.997901 + 0.0647655i \(0.0206299\pi\)
\(402\) 0 0
\(403\) 15619.2 11348.0i 1.93064 1.40269i
\(404\) −7771.17 5646.09i −0.957005 0.695305i
\(405\) 0 0
\(406\) 85.0784 0.0103999
\(407\) 535.122 + 93.9757i 0.0651721 + 0.0114452i
\(408\) 0 0
\(409\) 2794.07 + 8599.27i 0.337795 + 1.03962i 0.965329 + 0.261036i \(0.0840641\pi\)
−0.627534 + 0.778589i \(0.715936\pi\)
\(410\) −2433.39 1767.96i −0.293114 0.212959i
\(411\) 0 0
\(412\) 278.135 856.010i 0.0332590 0.102361i
\(413\) 134.696 414.553i 0.0160484 0.0493918i
\(414\) 0 0
\(415\) 1300.69 + 945.008i 0.153852 + 0.111780i
\(416\) 3941.95 + 12132.1i 0.464592 + 1.42987i
\(417\) 0 0
\(418\) −3223.20 + 1574.81i −0.377157 + 0.184274i
\(419\) 840.109 0.0979523 0.0489761 0.998800i \(-0.484404\pi\)
0.0489761 + 0.998800i \(0.484404\pi\)
\(420\) 0 0
\(421\) −1622.04 1178.48i −0.187775 0.136427i 0.489926 0.871764i \(-0.337024\pi\)
−0.677701 + 0.735337i \(0.737024\pi\)
\(422\) −1601.29 + 1163.40i −0.184714 + 0.134203i
\(423\) 0 0
\(424\) −977.497 + 3008.43i −0.111961 + 0.344581i
\(425\) 2044.65 1485.52i 0.233365 0.169550i
\(426\) 0 0
\(427\) −64.9662 199.945i −0.00736285 0.0226605i
\(428\) 9758.02 1.10204
\(429\) 0 0
\(430\) −3295.54 −0.369593
\(431\) 3683.31 + 11336.0i 0.411644 + 1.26691i 0.915218 + 0.402958i \(0.132018\pi\)
−0.503574 + 0.863952i \(0.667982\pi\)
\(432\) 0 0
\(433\) −777.349 + 564.777i −0.0862749 + 0.0626824i −0.630087 0.776525i \(-0.716981\pi\)
0.543812 + 0.839207i \(0.316981\pi\)
\(434\) −60.6740 + 186.735i −0.00671070 + 0.0206534i
\(435\) 0 0
\(436\) −3315.08 + 2408.55i −0.364137 + 0.264561i
\(437\) 2319.19 + 1684.99i 0.253871 + 0.184448i
\(438\) 0 0
\(439\) −7590.46 −0.825223 −0.412611 0.910907i \(-0.635383\pi\)
−0.412611 + 0.910907i \(0.635383\pi\)
\(440\) −5425.92 952.875i −0.587888 0.103242i
\(441\) 0 0
\(442\) 1194.24 + 3675.48i 0.128516 + 0.395531i
\(443\) 343.603 + 249.642i 0.0368512 + 0.0267739i 0.606058 0.795420i \(-0.292750\pi\)
−0.569207 + 0.822194i \(0.692750\pi\)
\(444\) 0 0
\(445\) 3298.96 10153.1i 0.351428 1.08158i
\(446\) −412.080 + 1268.25i −0.0437501 + 0.134649i
\(447\) 0 0
\(448\) −13.0461 9.47853i −0.00137582 0.000999595i
\(449\) 1462.74 + 4501.85i 0.153744 + 0.473175i 0.998031 0.0627155i \(-0.0199761\pi\)
−0.844288 + 0.535890i \(0.819976\pi\)
\(450\) 0 0
\(451\) 1453.57 + 10291.1i 0.151764 + 1.07448i
\(452\) 500.961 0.0521310
\(453\) 0 0
\(454\) −2682.55 1948.99i −0.277309 0.201477i
\(455\) 248.152 180.293i 0.0255683 0.0185764i
\(456\) 0 0
\(457\) −4688.02 + 14428.2i −0.479861 + 1.47686i 0.359428 + 0.933173i \(0.382972\pi\)
−0.839288 + 0.543687i \(0.817028\pi\)
\(458\) −3772.33 + 2740.76i −0.384868 + 0.279623i
\(459\) 0 0
\(460\) 599.416 + 1844.81i 0.0607563 + 0.186989i
\(461\) 12952.3 1.30856 0.654282 0.756251i \(-0.272971\pi\)
0.654282 + 0.756251i \(0.272971\pi\)
\(462\) 0 0
\(463\) −6774.30 −0.679975 −0.339988 0.940430i \(-0.610423\pi\)
−0.339988 + 0.940430i \(0.610423\pi\)
\(464\) −969.671 2984.34i −0.0970169 0.298587i
\(465\) 0 0
\(466\) −1823.56 + 1324.89i −0.181276 + 0.131705i
\(467\) −1602.94 + 4933.34i −0.158834 + 0.488839i −0.998529 0.0542181i \(-0.982733\pi\)
0.839696 + 0.543057i \(0.182733\pi\)
\(468\) 0 0
\(469\) −431.645 + 313.609i −0.0424979 + 0.0308766i
\(470\) −2881.32 2093.40i −0.282777 0.205450i
\(471\) 0 0
\(472\) 14945.9 1.45750
\(473\) 7916.00 + 8185.94i 0.769509 + 0.795750i
\(474\) 0 0
\(475\) −1384.04 4259.62i −0.133692 0.411463i
\(476\) 117.988 + 85.7236i 0.0113613 + 0.00825449i
\(477\) 0 0
\(478\) 2168.68 6674.51i 0.207517 0.638671i
\(479\) 850.728 2618.27i 0.0811498 0.249753i −0.902248 0.431218i \(-0.858084\pi\)
0.983397 + 0.181465i \(0.0580839\pi\)
\(480\) 0 0
\(481\) −839.161 609.686i −0.0795477 0.0577948i
\(482\) 1415.65 + 4356.92i 0.133778 + 0.411727i
\(483\) 0 0
\(484\) 4699.89 + 6947.16i 0.441387 + 0.652438i
\(485\) −7533.28 −0.705296
\(486\) 0 0
\(487\) 7540.35 + 5478.38i 0.701614 + 0.509752i 0.880457 0.474125i \(-0.157236\pi\)
−0.178844 + 0.983877i \(0.557236\pi\)
\(488\) 5831.90 4237.13i 0.540979 0.393044i
\(489\) 0 0
\(490\) 1118.13 3441.26i 0.103086 0.317266i
\(491\) −7918.15 + 5752.87i −0.727782 + 0.528765i −0.888861 0.458177i \(-0.848503\pi\)
0.161079 + 0.986942i \(0.448503\pi\)
\(492\) 0 0
\(493\) −1580.28 4863.59i −0.144365 0.444311i
\(494\) 6848.76 0.623766
\(495\) 0 0
\(496\) 7241.74 0.655572
\(497\) 89.9265 + 276.765i 0.00811621 + 0.0249791i
\(498\) 0 0
\(499\) −7078.28 + 5142.67i −0.635005 + 0.461358i −0.858130 0.513432i \(-0.828374\pi\)
0.223126 + 0.974790i \(0.428374\pi\)
\(500\) 2908.67 8951.98i 0.260160 0.800689i
\(501\) 0 0
\(502\) 1521.46 1105.41i 0.135271 0.0982805i
\(503\) −16851.6 12243.4i −1.49379 1.08530i −0.972774 0.231757i \(-0.925553\pi\)
−0.521018 0.853546i \(-0.674447\pi\)
\(504\) 0 0
\(505\) −12349.7 −1.08823
\(506\) −846.902 + 1595.45i −0.0744059 + 0.140170i
\(507\) 0 0
\(508\) 799.820 + 2461.59i 0.0698549 + 0.214991i
\(509\) −2020.32 1467.85i −0.175931 0.127822i 0.496335 0.868131i \(-0.334679\pi\)
−0.672266 + 0.740310i \(0.734679\pi\)
\(510\) 0 0
\(511\) 76.7332 236.161i 0.00664281 0.0204445i
\(512\) −2682.35 + 8255.42i −0.231531 + 0.712581i
\(513\) 0 0
\(514\) 6458.49 + 4692.36i 0.554225 + 0.402668i
\(515\) −357.589 1100.54i −0.0305966 0.0941666i
\(516\) 0 0
\(517\) 1721.13 + 12185.4i 0.146412 + 1.03659i
\(518\) 10.5489 0.000894770
\(519\) 0 0
\(520\) 8508.75 + 6181.97i 0.717564 + 0.521341i
\(521\) 1260.27 915.642i 0.105976 0.0769961i −0.533535 0.845778i \(-0.679137\pi\)
0.639511 + 0.768782i \(0.279137\pi\)
\(522\) 0 0
\(523\) 209.566 644.979i 0.0175214 0.0539254i −0.941914 0.335855i \(-0.890975\pi\)
0.959435 + 0.281930i \(0.0909746\pi\)
\(524\) −13840.9 + 10056.0i −1.15390 + 0.838355i
\(525\) 0 0
\(526\) 859.876 + 2646.43i 0.0712783 + 0.219372i
\(527\) 11801.9 0.975519
\(528\) 0 0
\(529\) −10723.6 −0.881366
\(530\) 553.753 + 1704.28i 0.0453839 + 0.139677i
\(531\) 0 0
\(532\) 209.095 151.916i 0.0170402 0.0123805i
\(533\) 6131.58 18871.1i 0.498289 1.53358i
\(534\) 0 0
\(535\) 10149.6 7374.11i 0.820196 0.595907i
\(536\) −14800.4 10753.2i −1.19269 0.866540i
\(537\) 0 0
\(538\) −2.70988 −0.000217158
\(539\) −11233.7 + 5488.64i −0.897717 + 0.438613i
\(540\) 0 0
\(541\) 3113.03 + 9580.92i 0.247393 + 0.761397i 0.995234 + 0.0975190i \(0.0310907\pi\)
−0.747841 + 0.663878i \(0.768909\pi\)
\(542\) 4759.36 + 3457.87i 0.377181 + 0.274038i
\(543\) 0 0
\(544\) −2409.69 + 7416.27i −0.189917 + 0.584504i
\(545\) −1627.97 + 5010.39i −0.127954 + 0.393801i
\(546\) 0 0
\(547\) −7192.79 5225.87i −0.562233 0.408486i 0.270042 0.962848i \(-0.412962\pi\)
−0.832276 + 0.554362i \(0.812962\pi\)
\(548\) 5176.57 + 15931.9i 0.403526 + 1.24193i
\(549\) 0 0
\(550\) 2535.65 1238.89i 0.196583 0.0960477i
\(551\) −9062.64 −0.700692
\(552\) 0 0
\(553\) 272.424 + 197.928i 0.0209487 + 0.0152201i
\(554\) 5094.93 3701.68i 0.390727 0.283880i
\(555\) 0 0
\(556\) 389.154 1197.69i 0.0296831 0.0913551i
\(557\) 10783.4 7834.61i 0.820302 0.595984i −0.0964971 0.995333i \(-0.530764\pi\)
0.916799 + 0.399349i \(0.130764\pi\)
\(558\) 0 0
\(559\) −6718.08 20676.1i −0.508309 1.56441i
\(560\) 115.054 0.00868200
\(561\) 0 0
\(562\) 256.594 0.0192594
\(563\) 4277.13 + 13163.7i 0.320177 + 0.985403i 0.973571 + 0.228385i \(0.0733446\pi\)
−0.653394 + 0.757018i \(0.726655\pi\)
\(564\) 0 0
\(565\) 521.063 378.574i 0.0387987 0.0281889i
\(566\) 1102.96 3394.57i 0.0819100 0.252093i
\(567\) 0 0
\(568\) −8072.55 + 5865.05i −0.596332 + 0.433261i
\(569\) 696.201 + 505.820i 0.0512940 + 0.0372673i 0.613137 0.789977i \(-0.289907\pi\)
−0.561843 + 0.827244i \(0.689907\pi\)
\(570\) 0 0
\(571\) −20409.1 −1.49579 −0.747895 0.663817i \(-0.768935\pi\)
−0.747895 + 0.663817i \(0.768935\pi\)
\(572\) −2239.55 15855.8i −0.163706 1.15903i
\(573\) 0 0
\(574\) 62.3579 + 191.918i 0.00453444 + 0.0139556i
\(575\) −1824.47 1325.56i −0.132323 0.0961384i
\(576\) 0 0
\(577\) 5400.99 16622.5i 0.389681 1.19932i −0.543345 0.839509i \(-0.682843\pi\)
0.933027 0.359807i \(-0.117157\pi\)
\(578\) 1248.45 3842.34i 0.0898420 0.276505i
\(579\) 0 0
\(580\) −4961.12 3604.47i −0.355171 0.258047i
\(581\) −33.3314 102.584i −0.00238007 0.00732511i
\(582\) 0 0
\(583\) 2903.19 5469.22i 0.206240 0.388528i
\(584\) 8514.29 0.603294
\(585\) 0 0
\(586\) −7001.20 5086.67i −0.493545 0.358581i
\(587\) −4427.82 + 3217.00i −0.311339 + 0.226201i −0.732471 0.680798i \(-0.761633\pi\)
0.421132 + 0.906999i \(0.361633\pi\)
\(588\) 0 0
\(589\) 6463.06 19891.2i 0.452132 1.39152i
\(590\) 6849.82 4976.69i 0.477971 0.347266i
\(591\) 0 0
\(592\) −120.230 370.029i −0.00834697 0.0256893i
\(593\) 5410.65 0.374686 0.187343 0.982295i \(-0.440012\pi\)
0.187343 + 0.982295i \(0.440012\pi\)
\(594\) 0 0
\(595\) 187.504 0.0129192
\(596\) 4894.99 + 15065.2i 0.336420 + 1.03540i
\(597\) 0 0
\(598\) 2789.87 2026.96i 0.190780 0.138610i
\(599\) −312.658 + 962.262i −0.0213270 + 0.0656377i −0.961154 0.276014i \(-0.910986\pi\)
0.939827 + 0.341652i \(0.110986\pi\)
\(600\) 0 0
\(601\) 4898.46 3558.94i 0.332466 0.241551i −0.409010 0.912530i \(-0.634126\pi\)
0.741476 + 0.670979i \(0.234126\pi\)
\(602\) 178.871 + 129.957i 0.0121100 + 0.00879843i
\(603\) 0 0
\(604\) 18720.4 1.26113
\(605\) 10138.4 + 3674.24i 0.681299 + 0.246908i
\(606\) 0 0
\(607\) −2138.42 6581.38i −0.142991 0.440082i 0.853756 0.520674i \(-0.174319\pi\)
−0.996747 + 0.0805912i \(0.974319\pi\)
\(608\) 11180.0 + 8122.73i 0.745736 + 0.541809i
\(609\) 0 0
\(610\) 1261.93 3883.82i 0.0837608 0.257789i
\(611\) 7260.25 22344.8i 0.480718 1.47950i
\(612\) 0 0
\(613\) 5859.67 + 4257.30i 0.386084 + 0.280507i 0.763849 0.645395i \(-0.223307\pi\)
−0.377765 + 0.925902i \(0.623307\pi\)
\(614\) −1320.34 4063.60i −0.0867830 0.267091i
\(615\) 0 0
\(616\) 256.925 + 265.686i 0.0168048 + 0.0173779i
\(617\) −26187.8 −1.70872 −0.854361 0.519680i \(-0.826051\pi\)
−0.854361 + 0.519680i \(0.826051\pi\)
\(618\) 0 0
\(619\) −6821.27 4955.94i −0.442924 0.321803i 0.343872 0.939017i \(-0.388261\pi\)
−0.786796 + 0.617214i \(0.788261\pi\)
\(620\) 11449.3 8318.44i 0.741640 0.538833i
\(621\) 0 0
\(622\) 2642.86 8133.89i 0.170368 0.524339i
\(623\) −579.438 + 420.986i −0.0372627 + 0.0270730i
\(624\) 0 0
\(625\) −1446.74 4452.60i −0.0925912 0.284966i
\(626\) −882.706 −0.0563579
\(627\) 0 0
\(628\) −12935.0 −0.821912
\(629\) −195.939 603.037i −0.0124206 0.0382268i
\(630\) 0 0
\(631\) −9244.96 + 6716.85i −0.583258 + 0.423762i −0.839897 0.542745i \(-0.817385\pi\)
0.256639 + 0.966507i \(0.417385\pi\)
\(632\) −3567.94 + 10981.0i −0.224565 + 0.691140i
\(633\) 0 0
\(634\) −4012.34 + 2915.13i −0.251341 + 0.182610i
\(635\) 2692.13 + 1955.95i 0.168243 + 0.122235i
\(636\) 0 0
\(637\) 23869.7 1.48470
\(638\) −798.634 5654.25i −0.0495583 0.350868i
\(639\) 0 0
\(640\) 3571.49 + 10991.9i 0.220587 + 0.678896i
\(641\) −18412.5 13377.5i −1.13456 0.824305i −0.148206 0.988956i \(-0.547350\pi\)
−0.986352 + 0.164652i \(0.947350\pi\)
\(642\) 0 0
\(643\) −223.272 + 687.160i −0.0136936 + 0.0421445i −0.957670 0.287869i \(-0.907053\pi\)
0.943976 + 0.330013i \(0.107053\pi\)
\(644\) 40.2145 123.768i 0.00246067 0.00757318i
\(645\) 0 0
\(646\) 3387.04 + 2460.83i 0.206287 + 0.149876i
\(647\) −4013.07 12351.0i −0.243849 0.750490i −0.995824 0.0912978i \(-0.970898\pi\)
0.751975 0.659192i \(-0.229102\pi\)
\(648\) 0 0
\(649\) −28815.3 5060.41i −1.74283 0.306068i
\(650\) −5387.83 −0.325120
\(651\) 0 0
\(652\) −11816.0 8584.86i −0.709742 0.515658i
\(653\) −14462.7 + 10507.7i −0.866720 + 0.629709i −0.929705 0.368306i \(-0.879938\pi\)
0.0629852 + 0.998014i \(0.479938\pi\)
\(654\) 0 0
\(655\) −6797.00 + 20919.0i −0.405467 + 1.24790i
\(656\) 6021.28 4374.72i 0.358371 0.260372i
\(657\) 0 0
\(658\) 73.8364 + 227.245i 0.00437453 + 0.0134634i
\(659\) −14584.5 −0.862114 −0.431057 0.902325i \(-0.641859\pi\)
−0.431057 + 0.902325i \(0.641859\pi\)
\(660\) 0 0
\(661\) 28799.8 1.69468 0.847340 0.531051i \(-0.178203\pi\)
0.847340 + 0.531051i \(0.178203\pi\)
\(662\) −1344.81 4138.90i −0.0789540 0.242996i
\(663\) 0 0
\(664\) 2992.11 2173.89i 0.174874 0.127053i
\(665\) 102.683 316.024i 0.00598776 0.0184284i
\(666\) 0 0
\(667\) −3691.71 + 2682.18i −0.214308 + 0.155704i
\(668\) −6310.95 4585.17i −0.365536 0.265577i
\(669\) 0 0
\(670\) −10363.8 −0.597593
\(671\) −12678.4 + 6194.50i −0.729425 + 0.356388i
\(672\) 0 0
\(673\) 2962.02 + 9116.16i 0.169655 + 0.522143i 0.999349 0.0360746i \(-0.0114854\pi\)
−0.829695 + 0.558218i \(0.811485\pi\)
\(674\) 10158.5 + 7380.56i 0.580548 + 0.421793i
\(675\) 0 0
\(676\) −5168.77 + 15907.8i −0.294081 + 0.905089i
\(677\) 302.293 930.362i 0.0171611 0.0528164i −0.942109 0.335306i \(-0.891160\pi\)
0.959270 + 0.282490i \(0.0911603\pi\)
\(678\) 0 0
\(679\) 408.881 + 297.069i 0.0231096 + 0.0167901i
\(680\) 1986.74 + 6114.55i 0.112041 + 0.344827i
\(681\) 0 0
\(682\) 12979.9 + 2279.46i 0.728775 + 0.127984i
\(683\) 32472.0 1.81919 0.909594 0.415499i \(-0.136393\pi\)
0.909594 + 0.415499i \(0.136393\pi\)
\(684\) 0 0
\(685\) 17423.9 + 12659.2i 0.971876 + 0.706109i
\(686\) −392.953 + 285.497i −0.0218703 + 0.0158897i
\(687\) 0 0
\(688\) 2519.92 7755.51i 0.139638 0.429762i
\(689\) −9563.73 + 6948.45i −0.528808 + 0.384202i
\(690\) 0 0
\(691\) 9145.60 + 28147.3i 0.503495 + 1.54960i 0.803286 + 0.595594i \(0.203083\pi\)
−0.299791 + 0.954005i \(0.596917\pi\)
\(692\) −14435.7 −0.793011
\(693\) 0 0
\(694\) 3470.53 0.189826
\(695\) −500.322 1539.83i −0.0273069 0.0840420i
\(696\) 0 0
\(697\) 9812.91 7129.50i 0.533272 0.387445i
\(698\) −2172.17 + 6685.26i −0.117791 + 0.362523i
\(699\) 0 0
\(700\) −164.492 + 119.510i −0.00888174 + 0.00645296i
\(701\) 21631.7 + 15716.4i 1.16550 + 0.846788i 0.990464 0.137773i \(-0.0439945\pi\)
0.175040 + 0.984561i \(0.443994\pi\)
\(702\) 0 0
\(703\) −1123.68 −0.0602849
\(704\) −507.473 + 956.009i −0.0271678 + 0.0511803i
\(705\) 0 0
\(706\) 1209.37 + 3722.06i 0.0644693 + 0.198416i
\(707\) 670.301 + 487.002i 0.0356567 + 0.0259061i
\(708\) 0 0
\(709\) 971.474 2989.89i 0.0514591 0.158375i −0.922025 0.387131i \(-0.873466\pi\)
0.973484 + 0.228757i \(0.0734660\pi\)
\(710\) −1746.77 + 5376.01i −0.0923311 + 0.284166i
\(711\) 0 0
\(712\) −19868.0 14435.0i −1.04577 0.759793i
\(713\) −3254.26 10015.6i −0.170930 0.526069i
\(714\) 0 0
\(715\) −14311.6 14799.6i −0.748563 0.774089i
\(716\) 3404.18 0.177682
\(717\) 0 0
\(718\) −2137.55 1553.02i −0.111104 0.0807217i
\(719\) −6899.82 + 5013.01i −0.357886 + 0.260019i −0.752170 0.658969i \(-0.770993\pi\)
0.394284 + 0.918989i \(0.370993\pi\)
\(720\) 0 0
\(721\) −23.9905 + 73.8350i −0.00123918 + 0.00381381i
\(722\) −1229.00 + 892.919i −0.0633498 + 0.0460263i
\(723\) 0 0
\(724\) 4362.77 + 13427.2i 0.223952 + 0.689252i
\(725\) 7129.46 0.365216
\(726\) 0 0
\(727\) −34617.2 −1.76600 −0.882999 0.469374i \(-0.844480\pi\)
−0.882999 + 0.469374i \(0.844480\pi\)
\(728\) −218.045 671.072i −0.0111006 0.0341643i
\(729\) 0 0
\(730\) 3902.17 2835.09i 0.197844 0.143742i
\(731\) 4106.72 12639.2i 0.207787 0.639504i
\(732\) 0 0
\(733\) −7928.59 + 5760.46i −0.399521 + 0.290269i −0.769346 0.638832i \(-0.779418\pi\)
0.369825 + 0.929102i \(0.379418\pi\)
\(734\) −2573.95 1870.08i −0.129436 0.0940408i
\(735\) 0 0
\(736\) 6958.22 0.348483
\(737\) 24894.1 + 25743.0i 1.24421 + 1.28664i
\(738\) 0 0
\(739\) −570.498 1755.81i −0.0283980 0.0874000i 0.935853 0.352391i \(-0.114631\pi\)
−0.964251 + 0.264991i \(0.914631\pi\)
\(740\) −615.130 446.918i −0.0305576 0.0222014i
\(741\) 0 0
\(742\) 37.1510 114.339i 0.00183808 0.00565703i
\(743\) −6702.83 + 20629.2i −0.330959 + 1.01859i 0.637719 + 0.770269i \(0.279878\pi\)
−0.968678 + 0.248319i \(0.920122\pi\)
\(744\) 0 0
\(745\) 16476.2 + 11970.6i 0.810254 + 0.588684i
\(746\) −4192.33 12902.7i −0.205753 0.633244i
\(747\) 0 0
\(748\) 4589.57 8646.12i 0.224347 0.422638i
\(749\) −841.677 −0.0410604
\(750\) 0 0
\(751\) 9879.50 + 7177.88i 0.480038 + 0.348768i 0.801340 0.598209i \(-0.204121\pi\)
−0.321303 + 0.946977i \(0.604121\pi\)
\(752\) 7129.65 5180.00i 0.345734 0.251190i
\(753\) 0 0
\(754\) −3368.88 + 10368.3i −0.162715 + 0.500787i
\(755\) 19471.6 14146.9i 0.938599 0.681932i
\(756\) 0 0
\(757\) −230.800 710.330i −0.0110813 0.0341049i 0.945363 0.326020i \(-0.105708\pi\)
−0.956444 + 0.291915i \(0.905708\pi\)
\(758\) −6359.70 −0.304742
\(759\) 0 0
\(760\) 11393.6 0.543803
\(761\) −1525.80 4695.94i −0.0726811 0.223689i 0.908117 0.418717i \(-0.137520\pi\)
−0.980798 + 0.195028i \(0.937520\pi\)
\(762\) 0 0
\(763\) 285.942 207.749i 0.0135672 0.00985716i
\(764\) 1231.22 3789.31i 0.0583038 0.179441i
\(765\) 0 0
\(766\) −12608.5 + 9160.59i −0.594729 + 0.432096i
\(767\) 45187.2 + 32830.4i 2.12727 + 1.54555i
\(768\) 0 0
\(769\) −2022.76 −0.0948538 −0.0474269 0.998875i \(-0.515102\pi\)
−0.0474269 + 0.998875i \(0.515102\pi\)
\(770\) 206.219 + 36.2152i 0.00965145 + 0.00169494i
\(771\) 0 0
\(772\) −8032.35 24721.0i −0.374469 1.15250i
\(773\) −8789.54 6385.97i −0.408975 0.297138i 0.364212 0.931316i \(-0.381338\pi\)
−0.773187 + 0.634178i \(0.781338\pi\)
\(774\) 0 0
\(775\) −5084.40 + 15648.2i −0.235661 + 0.725289i
\(776\) −5355.12 + 16481.4i −0.247729 + 0.762431i
\(777\) 0 0
\(778\) −7567.19 5497.89i −0.348711 0.253353i
\(779\) −6642.42 20443.3i −0.305506 0.940252i
\(780\) 0 0
\(781\) 17549.5 8574.46i 0.804059 0.392853i
\(782\) 2108.03 0.0963977
\(783\) 0 0
\(784\) 7243.47 + 5262.69i 0.329968 + 0.239736i
\(785\) −13454.0 + 9774.90i −0.611712 + 0.444435i
\(786\) 0 0
\(787\) −5828.24 + 17937.5i −0.263983 + 0.812455i 0.727943 + 0.685637i \(0.240476\pi\)
−0.991926 + 0.126818i \(0.959524\pi\)
\(788\) −16811.0 + 12213.9i −0.759982 + 0.552160i
\(789\) 0 0
\(790\) 2021.24 + 6220.73i 0.0910284 + 0.280157i
\(791\) −43.2103 −0.00194233
\(792\) 0 0
\(793\) 26939.5 1.20637
\(794\) 1160.34 + 3571.15i 0.0518625 + 0.159616i
\(795\) 0 0
\(796\) 241.616 175.544i 0.0107586 0.00781659i
\(797\) −11087.4 + 34123.6i −0.492769 + 1.51659i 0.327635 + 0.944804i \(0.393748\pi\)
−0.820405 + 0.571784i \(0.806252\pi\)
\(798\) 0 0
\(799\) 11619.2 8441.86i 0.514467 0.373782i
\(800\) −8795.14 6390.04i −0.388694 0.282403i
\(801\) 0 0
\(802\) −5164.71 −0.227397
\(803\) −16415.4 2882.79i −0.721402 0.126689i
\(804\) 0 0
\(805\) −51.7025 159.124i −0.00226369 0.00696694i
\(806\) −20354.6 14788.5i −0.889527 0.646279i
\(807\) 0 0
\(808\) −8778.95 + 27018.8i −0.382230 + 1.17638i
\(809\) 10924.1 33621.1i 0.474750 1.46113i −0.371545 0.928415i \(-0.621172\pi\)
0.846295 0.532715i \(-0.178828\pi\)
\(810\) 0 0
\(811\) 7545.06 + 5481.81i 0.326687 + 0.237352i 0.739023 0.673680i \(-0.235287\pi\)
−0.412337 + 0.911032i \(0.635287\pi\)
\(812\) 127.133 + 391.276i 0.00549446 + 0.0169102i
\(813\) 0 0
\(814\) −99.0226 701.071i −0.00426381 0.0301874i
\(815\) −18777.7 −0.807062
\(816\) 0 0
\(817\) −19053.5 13843.2i −0.815908 0.592792i
\(818\) 9532.69 6925.91i 0.407461 0.296037i
\(819\) 0 0
\(820\) 4494.63 13833.1i 0.191414 0.589111i
\(821\) 37644.4 27350.3i 1.60024 1.16265i 0.713200 0.700961i \(-0.247245\pi\)
0.887044 0.461684i \(-0.152755\pi\)
\(822\) 0 0
\(823\) 5557.40 + 17103.9i 0.235381 + 0.724430i 0.997071 + 0.0764869i \(0.0243704\pi\)
−0.761689 + 0.647943i \(0.775630\pi\)
\(824\) −2661.97 −0.112542
\(825\) 0 0
\(826\) −568.037 −0.0239280
\(827\) −13371.2 41152.2i −0.562226 1.73035i −0.676053 0.736853i \(-0.736311\pi\)
0.113826 0.993501i \(-0.463689\pi\)
\(828\) 0 0
\(829\) 29047.1 21104.0i 1.21695 0.884163i 0.221103 0.975250i \(-0.429034\pi\)
0.995843 + 0.0910873i \(0.0290342\pi\)
\(830\) 647.444 1992.63i 0.0270760 0.0833314i
\(831\) 0 0
\(832\) 1671.72 1214.58i 0.0696593 0.0506104i
\(833\) 11804.7 + 8576.62i 0.491007 + 0.356738i
\(834\) 0 0
\(835\) −10029.2 −0.415658
\(836\) −12059.0 12470.3i −0.498888 0.515900i
\(837\) 0 0
\(838\) −338.314 1041.22i −0.0139462 0.0429219i
\(839\) 23775.0 + 17273.6i 0.978314 + 0.710787i 0.957331 0.288993i \(-0.0933204\pi\)
0.0209831 + 0.999780i \(0.493320\pi\)
\(840\) 0 0
\(841\) −3078.74 + 9475.37i −0.126235 + 0.388510i
\(842\) −807.400 + 2484.92i −0.0330461 + 0.101706i
\(843\) 0 0
\(844\) −7743.31 5625.84i −0.315800 0.229442i
\(845\) 6645.33 + 20452.2i 0.270540 + 0.832636i
\(846\) 0 0
\(847\) −405.388 599.227i −0.0164455 0.0243089i
\(848\) −4434.15 −0.179563
\(849\) 0 0
\(850\) −2664.54 1935.90i −0.107521 0.0781185i
\(851\) −457.735 + 332.564i −0.0184383 + 0.0133962i
\(852\) 0 0
\(853\) 5340.34 16435.9i 0.214361 0.659735i −0.784838 0.619702i \(-0.787254\pi\)
0.999198 0.0400331i \(-0.0127463\pi\)
\(854\) −221.649 + 161.037i −0.00888134 + 0.00645267i
\(855\) 0 0
\(856\) −8918.16 27447.3i −0.356094 1.09595i
\(857\) −25834.0 −1.02972 −0.514862 0.857273i \(-0.672157\pi\)
−0.514862 + 0.857273i \(0.672157\pi\)
\(858\) 0 0
\(859\) −29861.7 −1.18611 −0.593055 0.805162i \(-0.702078\pi\)
−0.593055 + 0.805162i \(0.702078\pi\)
\(860\) −4924.55 15156.2i −0.195263 0.600956i
\(861\) 0 0
\(862\) 12566.5 9130.12i 0.496541 0.360758i
\(863\) 488.835 1504.48i 0.0192817 0.0593430i −0.940953 0.338538i \(-0.890068\pi\)
0.960234 + 0.279195i \(0.0900676\pi\)
\(864\) 0 0
\(865\) −15015.0 + 10909.0i −0.590202 + 0.428807i
\(866\) 1013.02 + 736.003i 0.0397504 + 0.0288804i
\(867\) 0 0
\(868\) −949.463 −0.0371277
\(869\) 10596.9 19963.1i 0.413664 0.779287i
\(870\) 0 0
\(871\) −21126.9 65021.9i −0.821880 2.52949i
\(872\) 9804.49 + 7123.38i 0.380759 + 0.276638i
\(873\) 0 0
\(874\) 1154.42 3552.93i 0.0446782 0.137505i
\(875\) −250.887 + 772.151i −0.00969318 + 0.0298325i
\(876\) 0 0
\(877\) 17706.6 + 12864.6i 0.681765 + 0.495331i 0.873943 0.486029i \(-0.161555\pi\)
−0.192178 + 0.981360i \(0.561555\pi\)
\(878\) 3056.70 + 9407.56i 0.117493 + 0.361606i
\(879\) 0 0
\(880\) −1080.02 7646.41i −0.0413720 0.292910i
\(881\) 2989.02 0.114305 0.0571524 0.998365i \(-0.481798\pi\)
0.0571524 + 0.998365i \(0.481798\pi\)
\(882\) 0 0
\(883\) −7314.67 5314.42i −0.278775 0.202542i 0.439608 0.898190i \(-0.355117\pi\)
−0.718383 + 0.695648i \(0.755117\pi\)
\(884\) −15119.0 + 10984.6i −0.575235 + 0.417932i
\(885\) 0 0
\(886\) 171.035 526.391i 0.00648535 0.0199599i
\(887\) −26473.9 + 19234.4i −1.00215 + 0.728103i −0.962548 0.271113i \(-0.912608\pi\)
−0.0396001 + 0.999216i \(0.512608\pi\)
\(888\) 0 0
\(889\) −68.9884 212.324i −0.00260270 0.00801027i
\(890\) −13912.2 −0.523977
\(891\) 0 0
\(892\) −6448.47 −0.242052
\(893\) −7865.13 24206.4i −0.294733 0.907095i
\(894\) 0 0
\(895\) 3540.79 2572.53i 0.132241 0.0960785i
\(896\) 239.609 737.442i 0.00893392 0.0274958i
\(897\) 0 0
\(898\) 4990.51 3625.82i 0.185452 0.134738i
\(899\) 26934.2 + 19568.9i 0.999229 + 0.725982i
\(900\) 0 0
\(901\) −7226.36 −0.267198
\(902\) 12169.4 5945.80i 0.449219 0.219483i
\(903\) 0 0
\(904\) −457.844 1409.10i −0.0168448 0.0518428i
\(905\) 14684.7 + 10669.1i 0.539378 + 0.391881i
\(906\) 0 0
\(907\) −3369.67 + 10370.8i −0.123361 + 0.379665i −0.993599 0.112966i \(-0.963965\pi\)
0.870238 + 0.492631i \(0.163965\pi\)
\(908\) 4954.85 15249.5i 0.181093 0.557347i
\(909\) 0 0
\(910\) −323.386 234.953i −0.0117804 0.00855893i
\(911\) −7341.32 22594.2i −0.266991 0.821713i −0.991228 0.132162i \(-0.957808\pi\)
0.724237 0.689551i \(-0.242192\pi\)
\(912\) 0 0
\(913\) −6504.75 + 3178.14i −0.235790 + 0.115204i
\(914\) 19770.1 0.715468
\(915\) 0 0
\(916\) −18241.8 13253.4i −0.657997 0.478063i
\(917\) 1193.84 867.378i 0.0429926 0.0312359i
\(918\) 0 0
\(919\) 5238.38 16122.1i 0.188028 0.578692i −0.811959 0.583715i \(-0.801599\pi\)
0.999987 + 0.00502241i \(0.00159869\pi\)
\(920\) 4641.25 3372.06i 0.166323 0.120841i
\(921\) 0 0
\(922\) −5215.92 16053.0i −0.186309 0.573401i
\(923\) −37289.7 −1.32980
\(924\) 0 0
\(925\) 883.982 0.0314218
\(926\) 2728.03 + 8396.02i 0.0968129 + 0.297959i
\(927\) 0 0
\(928\) −17796.4 + 12929.8i −0.629521 + 0.457374i
\(929\) −11895.8 + 36611.5i −0.420117 + 1.29299i 0.487476 + 0.873136i \(0.337918\pi\)
−0.907593 + 0.419851i \(0.862082\pi\)
\(930\) 0 0
\(931\) 20919.9 15199.2i 0.736435 0.535052i
\(932\) −8818.13 6406.75i −0.309922 0.225172i
\(933\) 0 0
\(934\) 6759.86 0.236819
\(935\) −1760.11 12461.4i −0.0615632 0.435862i
\(936\) 0 0
\(937\) 15072.7 + 46389.1i 0.525512 + 1.61736i 0.763301 + 0.646043i \(0.223577\pi\)
−0.237789 + 0.971317i \(0.576423\pi\)
\(938\) 562.509 + 408.687i 0.0195806 + 0.0142261i
\(939\) 0 0
\(940\) 5321.98 16379.4i 0.184664 0.568337i
\(941\) −2427.23 + 7470.24i −0.0840865 + 0.258792i −0.984256 0.176748i \(-0.943442\pi\)
0.900170 + 0.435539i \(0.143442\pi\)
\(942\) 0 0
\(943\) −8756.22 6361.77i −0.302377 0.219690i
\(944\) 6474.13 + 19925.3i 0.223215 + 0.686985i
\(945\) 0 0
\(946\) 6957.80 13107.5i 0.239131 0.450489i
\(947\) 38877.6 1.33406 0.667029 0.745032i \(-0.267566\pi\)
0.667029 + 0.745032i \(0.267566\pi\)
\(948\) 0 0
\(949\) 25742.0 + 18702.7i 0.880528 + 0.639741i
\(950\) −4721.99 + 3430.73i −0.161265 + 0.117166i
\(951\) 0 0
\(952\) 133.289 410.222i 0.00453774 0.0139657i
\(953\) −10438.9 + 7584.32i −0.354827 + 0.257797i −0.750891 0.660426i \(-0.770376\pi\)
0.396064 + 0.918223i \(0.370376\pi\)
\(954\) 0 0
\(955\) −1582.94 4871.80i −0.0536365 0.165076i
\(956\) 33936.8 1.14811
\(957\) 0 0
\(958\) −3587.66 −0.120994
\(959\) −446.505 1374.20i −0.0150348 0.0462724i
\(960\) 0 0
\(961\) −38057.8 + 27650.6i −1.27749 + 0.928153i
\(962\) −417.708 + 1285.57i −0.0139994 + 0.0430858i
\(963\) 0 0
\(964\) −17922.1 + 13021.2i −0.598788 + 0.435045i
\(965\) −27036.3 19643.0i −0.901894 0.655264i
\(966\) 0 0
\(967\) −5006.71 −0.166499 −0.0832497 0.996529i \(-0.526530\pi\)
−0.0832497 + 0.996529i \(0.526530\pi\)
\(968\) 15245.5 19569.0i 0.506209 0.649765i
\(969\) 0 0
\(970\) 3033.68 + 9336.69i 0.100418 + 0.309055i
\(971\) −12665.8 9202.27i −0.418605 0.304135i 0.358471 0.933541i \(-0.383298\pi\)
−0.777076 + 0.629406i \(0.783298\pi\)
\(972\) 0 0
\(973\) −33.5664 + 103.307i −0.00110595 + 0.00340376i
\(974\) 3753.35 11551.6i 0.123475 0.380018i
\(975\) 0 0
\(976\) 8175.00 + 5939.49i 0.268110 + 0.194793i
\(977\) 3454.62 + 10632.2i 0.113125 + 0.348163i 0.991551 0.129715i \(-0.0414062\pi\)
−0.878426 + 0.477878i \(0.841406\pi\)
\(978\) 0 0
\(979\) 33417.6 + 34557.2i 1.09094 + 1.12814i
\(980\) 17497.2 0.570335
\(981\) 0 0
\(982\) 10318.7 + 7497.00i 0.335320 + 0.243624i
\(983\) −21979.6 + 15969.1i −0.713165 + 0.518145i −0.884193 0.467121i \(-0.845291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(984\) 0 0
\(985\) −8255.56 + 25408.0i −0.267050 + 0.821895i
\(986\) −5391.52 + 3917.17i −0.174139 + 0.126519i
\(987\) 0 0
\(988\) 10234.2 + 31497.5i 0.329546 + 1.01424i
\(989\) −11858.6 −0.381274
\(990\) 0 0
\(991\) 59150.4 1.89604 0.948020 0.318212i \(-0.103082\pi\)
0.948020 + 0.318212i \(0.103082\pi\)
\(992\) −15687.6 48281.6i −0.502100 1.54531i
\(993\) 0 0
\(994\) 306.807 222.909i 0.00979008 0.00711291i
\(995\) 118.653 365.177i 0.00378046 0.0116351i
\(996\) 0 0
\(997\) 35480.0 25777.8i 1.12705 0.818846i 0.141783 0.989898i \(-0.454716\pi\)
0.985262 + 0.171051i \(0.0547164\pi\)
\(998\) 9224.24 + 6701.80i 0.292573 + 0.212567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 99.4.f.d.82.2 12
3.2 odd 2 33.4.e.c.16.2 12
11.3 even 5 1089.4.a.bi.1.4 6
11.8 odd 10 1089.4.a.bk.1.3 6
11.9 even 5 inner 99.4.f.d.64.2 12
33.8 even 10 363.4.a.u.1.4 6
33.14 odd 10 363.4.a.v.1.3 6
33.20 odd 10 33.4.e.c.31.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.e.c.16.2 12 3.2 odd 2
33.4.e.c.31.2 yes 12 33.20 odd 10
99.4.f.d.64.2 12 11.9 even 5 inner
99.4.f.d.82.2 12 1.1 even 1 trivial
363.4.a.u.1.4 6 33.8 even 10
363.4.a.v.1.3 6 33.14 odd 10
1089.4.a.bi.1.4 6 11.3 even 5
1089.4.a.bk.1.3 6 11.8 odd 10