Properties

Label 2.2.12.1-37.1-a
Base field \(\Q(\sqrt{3}) \)
Weight $[2, 2]$
Level norm $37$
Level $[37, 37, 2 w - 7]$
Dimension $4$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{3}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[37, 37, 2 w - 7]$
Dimension: $4$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{4} - 5 x^{2} + 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 1]$ $\phantom{-}e$
3 $[3, 3, w]$ $-e^{3} + 4 e$
11 $[11, 11, -2 w + 1]$ $\phantom{-}e^{3} - 5 e$
11 $[11, 11, 2 w + 1]$ $\phantom{-}e^{3} - 5 e$
13 $[13, 13, w + 4]$ $-e^{2} + 4$
13 $[13, 13, -w + 4]$ $\phantom{-}2 e^{2} - 4$
23 $[23, 23, -3 w + 2]$ $-2 e^{3} + 7 e$
23 $[23, 23, 3 w + 2]$ $\phantom{-}2 e^{3} - 10 e$
25 $[25, 5, 5]$ $-2 e^{2} + 6$
37 $[37, 37, 2 w - 7]$ $-1$
37 $[37, 37, -2 w - 7]$ $-3 e^{2} + 8$
47 $[47, 47, -4 w - 1]$ $-2 e^{3} + 15 e$
47 $[47, 47, 4 w - 1]$ $\phantom{-}3 e^{3} - 11 e$
49 $[49, 7, -7]$ $\phantom{-}5 e^{2} - 14$
59 $[59, 59, 5 w - 4]$ $-7 e^{3} + 26 e$
59 $[59, 59, -5 w - 4]$ $\phantom{-}3 e^{3} - 7 e$
61 $[61, 61, -w - 8]$ $\phantom{-}e^{2} - 4$
61 $[61, 61, w - 8]$ $-2 e^{2} + 4$
71 $[71, 71, 5 w - 2]$ $\phantom{-}5 e$
71 $[71, 71, -5 w - 2]$ $\phantom{-}2 e^{3} - 13 e$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$37$ $[37, 37, 2 w - 7]$ $1$