Base field 5.5.36497.1
Generator \(w\), with minimal polynomial \(x^5 - 2 x^4 - 3 x^3 + 5 x^2 + x - 1\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[23, 23, 2 w^4 - 3 w^3 - 6 w^2 + 5 w + 1]$ |
Dimension: | $2$ |
CM: | no |
Base change: | no |
Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^2 + 2 x - 2\) |
Show full eigenvalues Hide large eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, w^4 - 2 w^3 - 3 w^2 + 4 w + 1]$ | $\phantom{-}e$ |
13 | $[13, 13, w^3 - 2 w^2 - 2 w + 2]$ | $-e - 4$ |
23 | $[23, 23, 2 w^4 - 3 w^3 - 6 w^2 + 5 w + 1]$ | $\phantom{-}1$ |
25 | $[25, 5, -w^2 + 2 w + 2]$ | $\phantom{-}4$ |
29 | $[29, 29, -w^4 + w^3 + 4 w^2 - 3 w - 1]$ | $\phantom{-}2 e$ |
31 | $[31, 31, w^4 - w^3 - 5 w^2 + 2 w + 4]$ | $-2 e - 4$ |
32 | $[32, 2, 2]$ | $\phantom{-}2 e + 3$ |
37 | $[37, 37, w^4 - 2 w^3 - 2 w^2 + 4 w + 1]$ | $\phantom{-}2 e + 8$ |
47 | $[47, 47, w^4 - w^3 - 5 w^2 + 2 w + 3]$ | $\phantom{-}4$ |
47 | $[47, 47, 2 w^4 - 3 w^3 - 6 w^2 + 6 w + 2]$ | $\phantom{-}4$ |
49 | $[49, 7, -w^4 + 2 w^3 + 4 w^2 - 6 w - 2]$ | $-4 e$ |
53 | $[53, 53, -2 w^4 + 3 w^3 + 7 w^2 - 7 w - 2]$ | $-2 e - 4$ |
59 | $[59, 59, -2 w^4 + 3 w^3 + 6 w^2 - 5 w - 2]$ | $-2 e + 2$ |
67 | $[67, 67, -w^4 + 3 w^3 + 2 w^2 - 7 w]$ | $\phantom{-}4 e + 8$ |
67 | $[67, 67, -w^4 + 3 w^3 + w^2 - 7 w + 1]$ | $-2 e - 12$ |
71 | $[71, 71, w^4 - 2 w^3 - 4 w^2 + 3 w + 3]$ | $-4 e$ |
71 | $[71, 71, -w^2 + 5]$ | $\phantom{-}4 e + 12$ |
79 | $[79, 79, 2 w^4 - 3 w^3 - 5 w^2 + 3 w + 1]$ | $\phantom{-}2 e + 6$ |
81 | $[81, 3, -w^4 + 3 w^3 + 3 w^2 - 8 w - 2]$ | $\phantom{-}3 e + 4$ |
83 | $[83, 83, -3 w^4 + 3 w^3 + 10 w^2 - 2 w - 2]$ | $\phantom{-}8 e + 8$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$23$ | $[23, 23, 2 w^4 - 3 w^3 - 6 w^2 + 5 w + 1]$ | $-1$ |