Base field 5.5.36497.1
Generator \(w\), with minimal polynomial \(x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2, 2, 2, 2]$ |
Level: | $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$ |
Dimension: | $2$ |
CM: | no |
Base change: | no |
Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} - 2 x - 1\) |
Show full eigenvalues Hide large eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, w^{4} - 2 w^{3} - 3 w^{2} + 4 w + 1]$ | $\phantom{-}e$ |
13 | $[13, 13, w^{3} - 2 w^{2} - 2 w + 2]$ | $-e + 4$ |
23 | $[23, 23, 2 w^{4} - 3 w^{3} - 6 w^{2} + 5 w + 1]$ | $-3 e + 1$ |
25 | $[25, 5, -w^{2} + 2 w + 2]$ | $-5 e + 4$ |
29 | $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$ | $\phantom{-}1$ |
31 | $[31, 31, w^{4} - w^{3} - 5 w^{2} + 2 w + 4]$ | $\phantom{-}e + 7$ |
32 | $[32, 2, 2]$ | $\phantom{-}4 e - 4$ |
37 | $[37, 37, w^{4} - 2 w^{3} - 2 w^{2} + 4 w + 1]$ | $-e + 7$ |
47 | $[47, 47, w^{4} - w^{3} - 5 w^{2} + 2 w + 3]$ | $\phantom{-}2 e - 2$ |
47 | $[47, 47, 2 w^{4} - 3 w^{3} - 6 w^{2} + 6 w + 2]$ | $-2 e - 7$ |
49 | $[49, 7, -w^{4} + 2 w^{3} + 4 w^{2} - 6 w - 2]$ | $-e + 5$ |
53 | $[53, 53, -2 w^{4} + 3 w^{3} + 7 w^{2} - 7 w - 2]$ | $-3 e + 10$ |
59 | $[59, 59, -2 w^{4} + 3 w^{3} + 6 w^{2} - 5 w - 2]$ | $\phantom{-}4$ |
67 | $[67, 67, -w^{4} + 3 w^{3} + 2 w^{2} - 7 w]$ | $-5 e - 3$ |
67 | $[67, 67, -w^{4} + 3 w^{3} + w^{2} - 7 w + 1]$ | $-2$ |
71 | $[71, 71, w^{4} - 2 w^{3} - 4 w^{2} + 3 w + 3]$ | $\phantom{-}2$ |
71 | $[71, 71, -w^{2} + 5]$ | $\phantom{-}10 e - 10$ |
79 | $[79, 79, 2 w^{4} - 3 w^{3} - 5 w^{2} + 3 w + 1]$ | $\phantom{-}5 e - 3$ |
81 | $[81, 3, -w^{4} + 3 w^{3} + 3 w^{2} - 8 w - 2]$ | $\phantom{-}5 e - 1$ |
83 | $[83, 83, -3 w^{4} + 3 w^{3} + 10 w^{2} - 2 w - 2]$ | $\phantom{-}e + 3$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$29$ | $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$ | $-1$ |