Properties

Label 5.5.36497.1-29.1-a
Base field 5.5.36497.1
Weight $[2, 2, 2, 2, 2]$
Level norm $29$
Level $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$
Dimension $2$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 5.5.36497.1

Generator \(w\), with minimal polynomial \(x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2, 2, 2]$
Level: $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$
Dimension: $2$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

\(x^{2} - 2 x - 1\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w^{4} - 2 w^{3} - 3 w^{2} + 4 w + 1]$ $\phantom{-}e$
13 $[13, 13, w^{3} - 2 w^{2} - 2 w + 2]$ $-e + 4$
23 $[23, 23, 2 w^{4} - 3 w^{3} - 6 w^{2} + 5 w + 1]$ $-3 e + 1$
25 $[25, 5, -w^{2} + 2 w + 2]$ $-5 e + 4$
29 $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$ $\phantom{-}1$
31 $[31, 31, w^{4} - w^{3} - 5 w^{2} + 2 w + 4]$ $\phantom{-}e + 7$
32 $[32, 2, 2]$ $\phantom{-}4 e - 4$
37 $[37, 37, w^{4} - 2 w^{3} - 2 w^{2} + 4 w + 1]$ $-e + 7$
47 $[47, 47, w^{4} - w^{3} - 5 w^{2} + 2 w + 3]$ $\phantom{-}2 e - 2$
47 $[47, 47, 2 w^{4} - 3 w^{3} - 6 w^{2} + 6 w + 2]$ $-2 e - 7$
49 $[49, 7, -w^{4} + 2 w^{3} + 4 w^{2} - 6 w - 2]$ $-e + 5$
53 $[53, 53, -2 w^{4} + 3 w^{3} + 7 w^{2} - 7 w - 2]$ $-3 e + 10$
59 $[59, 59, -2 w^{4} + 3 w^{3} + 6 w^{2} - 5 w - 2]$ $\phantom{-}4$
67 $[67, 67, -w^{4} + 3 w^{3} + 2 w^{2} - 7 w]$ $-5 e - 3$
67 $[67, 67, -w^{4} + 3 w^{3} + w^{2} - 7 w + 1]$ $-2$
71 $[71, 71, w^{4} - 2 w^{3} - 4 w^{2} + 3 w + 3]$ $\phantom{-}2$
71 $[71, 71, -w^{2} + 5]$ $\phantom{-}10 e - 10$
79 $[79, 79, 2 w^{4} - 3 w^{3} - 5 w^{2} + 3 w + 1]$ $\phantom{-}5 e - 3$
81 $[81, 3, -w^{4} + 3 w^{3} + 3 w^{2} - 8 w - 2]$ $\phantom{-}5 e - 1$
83 $[83, 83, -3 w^{4} + 3 w^{3} + 10 w^{2} - 2 w - 2]$ $\phantom{-}e + 3$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$29$ $[29, 29, -w^{4} + w^{3} + 4 w^{2} - 3 w - 1]$ $-1$