⌂
→
Modular forms
→
Hilbert
→
Search results
Citation
·
Feedback
·
Hide Menu
Hilbert modular form search results
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Hilbert modular form labels
Refine search
Base field
Base field degree
Base field discriminant
CM
Field bad primes
include
exclude
exactly
subset
exclude
only
Weight
Level norm
Dimension
Base change
Level bad primes
include
exclude
exactly
subset
exclude
only
Sort order
Select
Search again
Random form
▲ base field
level norm
dimension
columns to display
✓ label
✓ base field
field degree
field discriminant
✓ level
level norm
weight
✓ dimension
CM
base change
show all
Results (1-50 of 11110 matches)
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Base field
Field degree
Field discriminant
Level
Level norm
Weight
Dimension
CM
Base change
4.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[4, 2, 2]$
$4$
$[2, 2]$
$1$
✓
9.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[9, 3, 3]$
$9$
$[2, 2]$
$1$
✓
13.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[13, 13, -2w + 1]$
$13$
$[2, 2]$
$2$
17.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[17, 17, w + 4]$
$17$
$[2, 2]$
$1$
17.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[17,17,-w + 5]$
$17$
$[2, 2]$
$1$
23.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[23, 23, 3w + 1]$
$23$
$[2, 2]$
$1$
23.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[23,23,-3w + 4]$
$23$
$[2, 2]$
$1$
25.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[25, 5, 5]$
$25$
$[2, 2]$
$3$
✓
27.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[27, 9, -3w]$
$27$
$[2, 2]$
$1$
27.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[27,9,3w - 3]$
$27$
$[2, 2]$
$1$
27.3-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[27, 27, w + 5]$
$27$
$[2, 2]$
$2$
27.4-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[27,27,-w + 6]$
$27$
$[2, 2]$
$2$
29.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[29, 29, 3w - 2]$
$29$
$[2, 2]$
$2$
29.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[29,29,-3w + 1]$
$29$
$[2, 2]$
$2$
36.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[36, 6, 6]$
$36$
$[2, 2]$
$1$
✓
36.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[36, 18, 2w + 6]$
$36$
$[2, 2]$
$1$
36.3-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[36,18,-2w + 8]$
$36$
$[2, 2]$
$1$
39.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[39, 39, w + 6]$
$39$
$[2, 2]$
$1$
39.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[39,39,-w + 7]$
$39$
$[2, 2]$
$1$
43.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[43, 43, -4w - 1]$
$43$
$[2, 2]$
$2$
43.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[43, 43, -4w - 1]$
$43$
$[2, 2]$
$2$
43.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[43,43,4w - 5]$
$43$
$[2, 2]$
$2$
43.2-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[43,43,4w - 5]$
$43$
$[2, 2]$
$2$
48.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[48, 12, -4w]$
$48$
$[2, 2]$
$1$
48.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[48, 12, -4w]$
$48$
$[2, 2]$
$2$
48.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[48,12,4w - 4]$
$48$
$[2, 2]$
$1$
48.2-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[48,12,4w - 4]$
$48$
$[2, 2]$
$2$
49.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[49, 7, -7]$
$49$
$[2, 2]$
$2$
49.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[49, 7, -7]$
$49$
$[2, 2]$
$3$
✓
51.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51, 51, -4w + 3]$
$51$
$[2, 2]$
$1$
51.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51, 51, -4w + 3]$
$51$
$[2, 2]$
$1$
51.1-c
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51, 51, -4w + 3]$
$51$
$[2, 2]$
$1$
51.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51, 51, -2w + 9]$
$51$
$[2, 2]$
$1$
51.2-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51, 51, -2w + 9]$
$51$
$[2, 2]$
$2$
51.3-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51,51,2w + 7]$
$51$
$[2, 2]$
$1$
51.3-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51,51,2w + 7]$
$51$
$[2, 2]$
$2$
51.4-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51,51,4w - 1]$
$51$
$[2, 2]$
$1$
51.4-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51,51,4w - 1]$
$51$
$[2, 2]$
$1$
51.4-c
\(\Q(\sqrt{13}) \)
$2$
$13$
$[51,51,4w - 1]$
$51$
$[2, 2]$
$1$
52.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[52, 26, -4w + 2]$
$52$
$[2, 2]$
$1$
✓
52.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[52, 26, -4w + 2]$
$52$
$[2, 2]$
$1$
✓
53.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[53, 53, -w - 7]$
$53$
$[2, 2]$
$1$
53.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[53, 53, -w - 7]$
$53$
$[2, 2]$
$3$
53.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[53,53,w - 8]$
$53$
$[2, 2]$
$1$
53.2-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[53,53,w - 8]$
$53$
$[2, 2]$
$3$
61.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[61, 61, -3w - 8]$
$61$
$[2, 2]$
$6$
61.2-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[61,61,3w - 11]$
$61$
$[2, 2]$
$6$
64.1-a
\(\Q(\sqrt{13}) \)
$2$
$13$
$[64, 8, 8]$
$64$
$[2, 2]$
$1$
64.1-b
\(\Q(\sqrt{13}) \)
$2$
$13$
$[64, 8, 8]$
$64$
$[2, 2]$
$1$
64.1-c
\(\Q(\sqrt{13}) \)
$2$
$13$
$[64, 8, 8]$
$64$
$[2, 2]$
$2$
✓
Next
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV