/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^18 - 36*x^16 - 12*x^15 + 540*x^14 + 360*x^13 - 4704*x^12 - 4320*x^11 + 28656*x^10 + 24640*x^9 - 129600*x^8 - 54720*x^7 + 375360*x^6 - 44928*x^5 - 460800*x^4 + 264192*x^3 - 110592*x^2 + 73728*x - 65536, 18, 798, [2, 8], 2388995574494120588618803780817780736, [2, 3, 17], [1, a, 1/2*a^2, 1/4*a^3 - 1/2*a, 1/4*a^4, 1/8*a^5 - 1/2*a, 1/16*a^6 - 1/4*a^2, 1/32*a^7 - 1/8*a^4 - 1/8*a^3 - 1/4*a^2, 1/32*a^8 - 1/8*a^4, 1/128*a^9 - 1/64*a^7 - 1/32*a^6 - 1/32*a^5 - 1/8*a^4 + 1/16*a^3 - 1/8*a^2, 1/512*a^10 + 1/256*a^8 + 1/128*a^7 + 3/128*a^6 - 1/16*a^5 + 7/64*a^4 - 1/32*a^3 + 1/8*a^2 - 1/4*a, 1/512*a^11 - 1/256*a^9 + 1/128*a^8 + 1/128*a^7 - 1/32*a^6 + 1/64*a^5 - 1/32*a^4 - 1/16*a^3 + 1/8*a^2, 1/4096*a^12 - 3/1024*a^9 + 1/512*a^8 + 7/512*a^7 - 1/128*a^6 - 1/256*a^5 + 13/256*a^4 + 1/128*a^3 + 5/32*a^2 - 1/16*a - 1/2, 1/8192*a^13 - 1/1024*a^11 + 1/2048*a^10 - 1/1024*a^9 + 7/1024*a^8 - 1/128*a^7 - 5/512*a^6 + 17/512*a^5 + 1/256*a^4 - 1/64*a^3 + 7/32*a^2, 1/8192*a^14 + 1/2048*a^11 - 1/1024*a^10 + 3/1024*a^9 - 1/512*a^7 - 15/512*a^6 - 11/256*a^5 - 1/16*a^4 - 1/16*a^3 - 1/4*a^2 - 1/4*a, 1/32768*a^15 - 1/16384*a^13 - 1/8192*a^12 + 1/4096*a^11 + 1/2048*a^10 + 7/2048*a^9 - 3/512*a^8 - 3/2048*a^7 + 1/512*a^6 + 35/1024*a^5 - 35/512*a^4 - 1/8*a^3 - 5/64*a^2 - 7/16*a - 1/2, 1/131072*a^16 + 3/65536*a^14 + 1/32768*a^13 - 1/16384*a^12 - 1/8192*a^11 - 3/8192*a^10 - 3/1024*a^9 - 63/8192*a^8 + 17/2048*a^7 - 13/4096*a^6 + 119/2048*a^5 - 7/64*a^4 + 3/64*a^3 - 5/64*a^2 + 13/32*a - 1/4, 1/131072*a^17 - 1/65536*a^15 + 1/32768*a^14 - 1/16384*a^13 - 1/8192*a^12 + 1/8192*a^11 - 1/2048*a^10 - 23/8192*a^9 - 25/2048*a^8 - 25/4096*a^7 + 51/2048*a^6 + 3/256*a^5 + 25/256*a^4 - 9/128*a^3 + 1/16*a^2 + 3/16*a - 1/2], 0, 1, [], 1, [ (3)/(4096)*a^(12) - (9)/(512)*a^(10) - (9)/(1024)*a^(9) + (81)/(512)*a^(8) + (81)/(512)*a^(7) - (59)/(64)*a^(6) - (243)/(256)*a^(5) + (1131)/(256)*a^(4) + (135)/(128)*a^(3) - (333)/(32)*a^(2) + (81)/(16)*a + (1)/(2) , (3)/(16384)*a^(15) - (45)/(8192)*a^(13) - (9)/(4096)*a^(12) + (135)/(2048)*a^(11) + (27)/(512)*a^(10) - (479)/(1024)*a^(9) - (243)/(512)*a^(8) + (2547)/(1024)*a^(7) + (27)/(16)*a^(6) - (4725)/(512)*a^(5) - (81)/(256)*a^(4) + (1023)/(64)*a^(3) - (243)/(32)*a^(2) - (9)/(4)*a + 3 , (1155)/(65536)*a^(17) + (3811)/(65536)*a^(16) - (16495)/(32768)*a^(15) - (62465)/(32768)*a^(14) + (79257)/(16384)*a^(13) + (198051)/(8192)*a^(12) - (19899)/(1024)*a^(11) - (688941)/(4096)*a^(10) + (181707)/(4096)*a^(9) + (3148311)/(4096)*a^(8) - (375201)/(2048)*a^(7) - (4524565)/(2048)*a^(6) + (790521)/(1024)*a^(5) + (5141)/(2)*a^(4) - (95881)/(64)*a^(3) + (18171)/(32)*a^(2) - (6339)/(16)*a + (785)/(2) , (6045)/(8192)*a^(17) + (17611)/(65536)*a^(16) - (54547)/(2048)*a^(15) - (614027)/(32768)*a^(14) + (6513063)/(16384)*a^(13) + (3431755)/(8192)*a^(12) - (13933777)/(4096)*a^(11) - (18760713)/(4096)*a^(10) + (2576721)/(128)*a^(9) + (110589419)/(4096)*a^(8) - (91404565)/(1024)*a^(7) - (166566563)/(2048)*a^(6) + (267731937)/(1024)*a^(5) + (23016613)/(256)*a^(4) - (44352805)/(128)*a^(3) + (354651)/(16)*a^(2) - (56121)/(2)*a + 69433 , (1619)/(65536)*a^(17) + (1407)/(65536)*a^(16) - (28279)/(32768)*a^(15) - (41057)/(32768)*a^(14) + (185373)/(16384)*a^(13) + (192259)/(8192)*a^(12) - (153825)/(2048)*a^(11) - (830653)/(4096)*a^(10) + (1393479)/(4096)*a^(9) + (4045859)/(4096)*a^(8) - (2570101)/(2048)*a^(7) - (5649589)/(2048)*a^(6) + (2997417)/(1024)*a^(5) + (427291)/(128)*a^(4) - (34617)/(16)*a^(3) + (27065)/(32)*a^(2) - (5405)/(16)*a + (1367)/(2) , (2935)/(65536)*a^(17) - (901)/(8192)*a^(16) - (44865)/(32768)*a^(15) + (48117)/(16384)*a^(14) + (73843)/(4096)*a^(13) - (62249)/(2048)*a^(12) - (624833)/(4096)*a^(11) + (197199)/(1024)*a^(10) + (3878911)/(4096)*a^(9) - (1262297)/(1024)*a^(8) - (7223541)/(2048)*a^(7) + (6460215)/(1024)*a^(6) + (2017983)/(512)*a^(5) - (3294499)/(256)*a^(4) + (456575)/(64)*a^(3) - (105655)/(32)*a^(2) + (4295)/(2)*a - 1455 , (1727)/(32768)*a^(17) + (4463)/(16384)*a^(16) - (5033)/(4096)*a^(15) - (19325)/(2048)*a^(14) + (10585)/(8192)*a^(13) + (59851)/(512)*a^(12) + (87227)/(512)*a^(11) - (158521)/(256)*a^(10) - (3451281)/(2048)*a^(9) + (1174523)/(1024)*a^(8) + (3323815)/(512)*a^(7) + (126307)/(128)*a^(6) - (5116687)/(512)*a^(5) - (432601)/(128)*a^(4) + (421687)/(128)*a^(3) - (3729)/(2)*a^(2) + (5643)/(16)*a - (3149)/(2) , (917)/(32768)*a^(17) + (2867)/(65536)*a^(16) - (15631)/(16384)*a^(15) - (64327)/(32768)*a^(14) + (199049)/(16384)*a^(13) + (265499)/(8192)*a^(12) - (314251)/(4096)*a^(11) - (1099959)/(4096)*a^(10) + (659943)/(2048)*a^(9) + (5402759)/(4096)*a^(8) - (154191)/(128)*a^(7) - (7950651)/(2048)*a^(6) + (3246511)/(1024)*a^(5) + (318309)/(64)*a^(4) - (398947)/(128)*a^(3) + (40307)/(32)*a^(2) - 587*a + 931 , (171934971)/(131072)*a^(17) - (62953871)/(131072)*a^(16) - (3106985647)/(65536)*a^(15) + (116723793)/(65536)*a^(14) + (23617329779)/(32768)*a^(13) + (3386870593)/(16384)*a^(12) - (26397126343)/(4096)*a^(11) - (27418207035)/(8192)*a^(10) + (332546020763)/(8192)*a^(9) + (149314804845)/(8192)*a^(8) - (769746930197)/(4096)*a^(7) - (28759485483)/(4096)*a^(6) + (1120399831415)/(2048)*a^(5) - (16755443013)/(64)*a^(4) - (42181103059)/(64)*a^(3) + (43070205361)/(64)*a^(2) - (6952309343)/(32)*a - (96567005)/(4) ], 17501326796000, [[x^2 - x - 4, 1], [x^6 - 6*x^4 - 24*x^3 + 9*x^2 + 72*x + 76, 1]]]