\\ Pari/GP code for working with number field 18.6.2259436291848000000000.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 6*y^17 + 15*y^16 - 12*y^15 - 39*y^14 + 153*y^13 - 265*y^12 + 243*y^11 + 9*y^10 - 417*y^9 + 768*y^8 - 906*y^7 + 751*y^6 - 372*y^5 + 66*y^4 + 19*y^3 - 9*y^2 + 3*y - 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 6*x^17 + 15*x^16 - 12*x^15 - 39*x^14 + 153*x^13 - 265*x^12 + 243*x^11 + 9*x^10 - 417*x^9 + 768*x^8 - 906*x^7 + 751*x^6 - 372*x^5 + 66*x^4 + 19*x^3 - 9*x^2 + 3*x - 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])