/* Data is in the following format
   Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0.
[polynomial,
degree,
t-number of Galois group,
signature [r,s],
discriminant,
list of ramifying primes,
integral basis as polynomials in a,
1 if it is a cm field otherwise 0,
class number,
class group structure,
1 if grh was assumed and 0 if not,
fundamental units,
regulator,
list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial]
]
*/

[x^20 - 19*x^18 + 120*x^16 - 136*x^14 - 2057*x^12 + 13362*x^10 - 34969*x^8 - 39304*x^6 + 589560*x^4 - 1586899*x^2 + 1419857, 20, 558, [4, 8], 28981504660616642032805158870581248, [2, 17, 73], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, 1/17*a^8 - 1/17*a^6, 1/17*a^9 - 1/17*a^7, 1/34*a^10 - 1/34*a^9 - 8/17*a^7 - 1/34*a^6 - 1/2*a^4 - 1/2*a - 1/2, 1/34*a^11 - 1/34*a^9 - 1/2*a^7 - 1/2*a^6 - 1/2*a^5 - 1/2*a^4 - 1/2*a^2 - 1/2, 1/34*a^12 - 1/34*a^9 - 1/34*a^8 + 1/34*a^7 - 1/2*a^5 - 1/2*a^4 - 1/2*a^3 - 1/2, 1/578*a^13 - 1/289*a^11 - 8/289*a^9 - 1/34*a^8 + 8/17*a^7 - 8/17*a^6 + 15/34*a^5 + 2/17*a^3 - 1/2, 1/578*a^14 - 1/289*a^12 + 1/578*a^10 - 2/17*a^6 - 13/34*a^4 - 1/2, 1/578*a^15 - 3/578*a^11 + 1/289*a^9 - 4/17*a^7 - 1/2*a^5 + 4/17*a^3 - 1/2*a, 1/9826*a^16 - 1/4913*a^14 + 43/4913*a^12 - 7/578*a^10 + 15/578*a^8 - 1/2*a^7 + 2/289*a^6 - 1/2*a^5 + 1/17*a^4 - 1/2*a^3 - 1/2*a^2 - 1/2*a, 1/9826*a^17 - 1/4913*a^15 + 1/9826*a^13 + 3/578*a^11 - 7/578*a^9 - 49/289*a^7 - 1/2*a^6 - 5/34*a^5 - 1/2*a^4 - 3/34*a^3 - 1/2*a^2 - 1/2, 1/5679428*a^18 - 1/2839714*a^16 + 43/2839714*a^14 + 39/167042*a^12 + 1205/334084*a^10 - 8207/334084*a^8 - 1/2*a^7 + 808/4913*a^6 - 1/2*a^5 + 167/578*a^4 - 1/2*a^3 - 140/289*a^2 - 1/2*a + 33/68, 1/5679428*a^19 - 1/2839714*a^17 + 43/2839714*a^15 + 39/167042*a^13 + 1205/334084*a^11 - 8207/334084*a^9 - 1/34*a^8 + 808/4913*a^7 + 1/34*a^6 + 167/578*a^5 - 1/2*a^4 - 140/289*a^3 - 1/2*a^2 + 33/68*a], 0, 1, [], 1, [ (43795)/(5679428)*a^(18) - (152092)/(1419857)*a^(16) + (521531)/(1419857)*a^(14) + (157809)/(167042)*a^(12) - (3739241)/(334084)*a^(10) + (14719037)/(334084)*a^(8) - (169021)/(4913)*a^(6) - (147250)/(289)*a^(4) + (1097003)/(578)*a^(2) - (133759)/(68) , (55511)/(5679428)*a^(18) - (174712)/(1419857)*a^(16) + (930991)/(2839714)*a^(14) + (230703)/(167042)*a^(12) - (4030423)/(334084)*a^(10) + (14660637)/(334084)*a^(8) - (37380)/(4913)*a^(6) - (342245)/(578)*a^(4) + (999569)/(578)*a^(2) - (97569)/(68) , (53755)/(2839714)*a^(18) - (781747)/(2839714)*a^(16) + (2940083)/(2839714)*a^(14) + (357503)/(167042)*a^(12) - (2467024)/(83521)*a^(10) + (20008511)/(167042)*a^(8) - (1174137)/(9826)*a^(6) - (752987)/(578)*a^(4) + (3072955)/(578)*a^(2) - (99629)/(17) , (88263)/(5679428)*a^(18) - (656437)/(2839714)*a^(16) + (2573417)/(2839714)*a^(14) + (140205)/(83521)*a^(12) - (8388223)/(334084)*a^(10) + (34490429)/(334084)*a^(8) - (1109693)/(9826)*a^(6) - (630323)/(578)*a^(4) + (1341202)/(289)*a^(2) - (357169)/(68) , (36900)/(1419857)*a^(19) + (138739)/(2839714)*a^(18) - (578683)/(1419857)*a^(17) - (2179965)/(2839714)*a^(16) + (2473442)/(1419857)*a^(15) + (9344715)/(2839714)*a^(14) + (209642)/(83521)*a^(13) + (784893)/(167042)*a^(12) - (3799078)/(83521)*a^(11) - (14324799)/(167042)*a^(10) + (32117211)/(167042)*a^(9) + (60605161)/(167042)*a^(8) - (1217826)/(4913)*a^(7) - (2309465)/(4913)*a^(6) - (552934)/(289)*a^(5) - (1041358)/(289)*a^(4) + (2563814)/(289)*a^(3) + (9683865)/(578)*a^(2) - (357275)/(34)*a - (675565)/(34) , (9133)/(2839714)*a^(19) + (124175)/(2839714)*a^(18) - (99475)/(2839714)*a^(17) - (1854901)/(2839714)*a^(16) + (137211)/(2839714)*a^(15) + (7323471)/(2839714)*a^(14) + (89715)/(167042)*a^(13) + (783583)/(167042)*a^(12) - (255259)/(83521)*a^(11) - (11877353)/(167042)*a^(10) + (771740)/(83521)*a^(9) + (48932845)/(167042)*a^(8) + (129701)/(9826)*a^(7) - (1597075)/(4913)*a^(6) - (99627)/(578)*a^(5) - (890464)/(289)*a^(4) + (159447)/(578)*a^(3) + (7628757)/(578)*a^(2) - (157)/(34)*a - (509429)/(34) , (75435)/(2839714)*a^(19) + (10765)/(2839714)*a^(18) - (1132025)/(2839714)*a^(17) - (138575)/(2839714)*a^(16) + (4504581)/(2839714)*a^(15) + (196726)/(1419857)*a^(14) + (235956)/(83521)*a^(13) + (87165)/(167042)*a^(12) - (3633161)/(83521)*a^(11) - (811163)/(167042)*a^(10) + (30008781)/(167042)*a^(9) + (1503573)/(83521)*a^(8) - (1990263)/(9826)*a^(7) - (57537)/(9826)*a^(6) - (543304)/(289)*a^(5) - (67791)/(289)*a^(4) + (4689983)/(578)*a^(3) + (419479)/(578)*a^(2) - (157168)/(17)*a - (10848)/(17) , (75435)/(2839714)*a^(19) - (10765)/(2839714)*a^(18) - (1132025)/(2839714)*a^(17) + (138575)/(2839714)*a^(16) + (4504581)/(2839714)*a^(15) - (196726)/(1419857)*a^(14) + (235956)/(83521)*a^(13) - (87165)/(167042)*a^(12) - (3633161)/(83521)*a^(11) + (811163)/(167042)*a^(10) + (30008781)/(167042)*a^(9) - (1503573)/(83521)*a^(8) - (1990263)/(9826)*a^(7) + (57537)/(9826)*a^(6) - (543304)/(289)*a^(5) + (67791)/(289)*a^(4) + (4689983)/(578)*a^(3) - (419479)/(578)*a^(2) - (157168)/(17)*a + (10848)/(17) , (24975)/(2839714)*a^(19) + (48811)/(5679428)*a^(18) - (186815)/(1419857)*a^(17) - (369023)/(2839714)*a^(16) + (739263)/(1419857)*a^(15) + (743241)/(1419857)*a^(14) + (78720)/(83521)*a^(13) + (75541)/(83521)*a^(12) - (2395661)/(167042)*a^(11) - (4764479)/(334084)*a^(10) + (4937977)/(83521)*a^(9) + (19738393)/(334084)*a^(8) - (324018)/(4913)*a^(7) - (334439)/(4913)*a^(6) - (179407)/(289)*a^(5) - (355091)/(578)*a^(4) + (770288)/(289)*a^(3) + (775830)/(289)*a^(2) - (51477)/(17)*a - (209665)/(68) , (10003)/(5679428)*a^(19) - (547)/(2839714)*a^(18) - (32890)/(1419857)*a^(17) + (27971)/(2839714)*a^(16) + (197773)/(2839714)*a^(15) - (243273)/(2839714)*a^(14) + (19729)/(83521)*a^(13) + (5901)/(83521)*a^(12) - (782031)/(334084)*a^(11) + (244857)/(167042)*a^(10) + (2944785)/(334084)*a^(9) - (1283257)/(167042)*a^(8) - (40079)/(9826)*a^(7) + (101232)/(4913)*a^(6) - (64315)/(578)*a^(5) + (25705)/(578)*a^(4) + (105168)/(289)*a^(3) - (242491)/(578)*a^(2) - (22651)/(68)*a + (20811)/(34) , (214291)/(5679428)*a^(19) + (322155)/(1419857)*a^(18) - (1126593)/(1419857)*a^(17) - (8690199)/(2839714)*a^(16) + (13390563)/(2839714)*a^(15) + (13931879)/(1419857)*a^(14) + (119115)/(167042)*a^(13) + (4869155)/(167042)*a^(12) - (33313875)/(334084)*a^(11) - (26225468)/(83521)*a^(10) + (156715017)/(334084)*a^(9) + (101038398)/(83521)*a^(8) - (4580069)/(4913)*a^(7) - (7381771)/(9826)*a^(6) - (2095863)/(578)*a^(5) - (4222320)/(289)*a^(4) + (13652125)/(578)*a^(3) + (29443619)/(578)*a^(2) - (2182517)/(68)*a - (852691)/(17) ], 4276795192.56, [[x^5 - 14*x^3 - 2*x^2 + 24*x + 8, 1], [x^10 - 5*x^9 + 4*x^8 + 8*x^7 + 4*x^6 - 24*x^5 - 18*x^4 - 51*x^3 + 45*x^2 + 30*x - 37, 1]]]