# SageMath code for working with number field 24.0.3234204723240544858872018632704000000000000000000.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^24 - 8*x^23 - 74*x^22 + 572*x^21 + 3016*x^20 - 17760*x^19 - 85518*x^18 + 285704*x^17 + 1661305*x^16 - 1906632*x^15 - 20467124*x^14 - 10151352*x^13 + 139734456*x^12 + 275550256*x^11 - 290937638*x^10 - 1685333160*x^9 - 1899102168*x^8 + 1612921144*x^7 + 7900602944*x^6 + 12266775908*x^5 + 11114510270*x^4 + 6111392440*x^3 + 2347621720*x^2 + 1082467988*x + 466788641) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^24 - 8*x^23 - 74*x^22 + 572*x^21 + 3016*x^20 - 17760*x^19 - 85518*x^18 + 285704*x^17 + 1661305*x^16 - 1906632*x^15 - 20467124*x^14 - 10151352*x^13 + 139734456*x^12 + 275550256*x^11 - 290937638*x^10 - 1685333160*x^9 - 1899102168*x^8 + 1612921144*x^7 + 7900602944*x^6 + 12266775908*x^5 + 11114510270*x^4 + 6111392440*x^3 + 2347621720*x^2 + 1082467988*x + 466788641) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]