# SageMath code for working with number field 27.27.33967771186402966366427549984621879030979398934601324527479889.7 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^27 - 198*x^25 - 69*x^24 + 16947*x^23 + 10215*x^22 - 822495*x^21 - 626499*x^20 + 24996195*x^19 + 20626740*x^18 - 496209987*x^17 - 393964668*x^16 + 6511386444*x^15 + 4364596737*x^14 - 55763583489*x^13 - 25774577970*x^12 + 298557947277*x^11 + 57580976835*x^10 - 910210926315*x^9 + 71942819904*x^8 + 1311914075382*x^7 - 284784790380*x^6 - 772175021373*x^5 + 205559479314*x^4 + 123582042393*x^3 - 20629945359*x^2 - 2138965308*x + 140428837) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^27 - 198*x^25 - 69*x^24 + 16947*x^23 + 10215*x^22 - 822495*x^21 - 626499*x^20 + 24996195*x^19 + 20626740*x^18 - 496209987*x^17 - 393964668*x^16 + 6511386444*x^15 + 4364596737*x^14 - 55763583489*x^13 - 25774577970*x^12 + 298557947277*x^11 + 57580976835*x^10 - 910210926315*x^9 + 71942819904*x^8 + 1311914075382*x^7 - 284784790380*x^6 - 772175021373*x^5 + 205559479314*x^4 + 123582042393*x^3 - 20629945359*x^2 - 2138965308*x + 140428837) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]