# SageMath code for working with number field 32.0.29079187190356527093230483395294879034427143331250176.1
# Some of these functions may take a long time to execute (this depends on the field).
# Define the number field:
x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256)
# Defining polynomial:
K.defining_polynomial()
# Degree over Q:
K.degree()
# Signature:
K.signature()
# Discriminant:
K.disc()
# Ramified primes:
K.disc().support()
# Autmorphisms:
K.automorphisms()
# Integral basis:
K.integral_basis()
# Class group:
K.class_group().invariants()
# Unit group:
UK = K.unit_group()
# Unit rank:
UK.rank()
# Generator for roots of unity:
UK.torsion_generator()
# Fundamental units:
UK.fundamental_units()
# Regulator:
K.regulator()
# Analytic class number formula:
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# Intermediate fields:
K.subfields()[1:-1]
# Galois group:
K.galois_group(type='pari')
# Frobenius cycle types:
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]