# SageMath code for working with number field 32.0.29079187190356527093230483395294879034427143331250176.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - 4*x^31 + 42*x^30 - 134*x^29 + 754*x^28 - 1990*x^27 + 7802*x^26 - 17690*x^25 + 53094*x^24 - 108182*x^23 + 256762*x^22 - 492454*x^21 + 925356*x^20 - 1701130*x^19 + 2638782*x^18 - 4227686*x^17 + 6633341*x^16 - 6962910*x^15 + 13367372*x^14 - 10724860*x^13 + 11545802*x^12 - 23539896*x^11 + 3955128*x^10 - 7435992*x^9 + 19530996*x^8 + 2533056*x^7 - 5443776*x^6 - 1219904*x^5 + 651552*x^4 + 141056*x^3 - 11264*x^2 - 2816*x + 256) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]