/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^32 + 4*x^30 + 2*x^28 - 6*x^26 + 3*x^24 + 6*x^22 - 53*x^20 - 181*x^18 - 427*x^16 - 724*x^14 - 848*x^12 + 384*x^10 + 768*x^8 - 6144*x^6 + 8192*x^4 + 65536*x^2 + 65536, 32, 12882, [0, 16], 7898934032955601334170827214092449218560000000000000000, [2, 3, 5, 101, 401], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, 1/5*a^12 - 1/5*a^6 - 1/5, 1/5*a^13 - 1/5*a^7 - 1/5*a, 1/5*a^14 - 1/5*a^8 - 1/5*a^2, 1/5*a^15 - 1/5*a^9 - 1/5*a^3, 1/5*a^16 - 1/5*a^10 - 1/5*a^4, 1/10*a^17 + 2/5*a^11 - 1/2*a^9 - 1/10*a^5 - 1/2*a^3 - 1/2*a, 1/20*a^18 - 1/10*a^14 - 1/10*a^12 - 1/4*a^10 + 1/10*a^8 - 1/4*a^6 - 1/4*a^4 - 3/20*a^2 - 1/5, 1/40*a^19 + 1/20*a^15 + 1/20*a^13 - 1/8*a^11 + 9/20*a^9 + 11/40*a^7 + 3/8*a^5 - 7/40*a^3 - 1/5*a, 1/80*a^20 + 1/40*a^16 + 1/40*a^14 - 1/16*a^12 - 11/40*a^10 - 29/80*a^8 + 3/16*a^6 - 7/80*a^4 - 1/10*a^2, 1/160*a^21 + 1/80*a^17 - 7/80*a^15 - 1/32*a^13 + 29/80*a^11 + 67/160*a^9 - 13/32*a^7 - 7/160*a^5 + 1/20*a^3 - 1/2*a, 1/1600*a^22 - 1/200*a^20 + 17/800*a^18 - 47/800*a^16 + 107/1600*a^14 - 63/800*a^12 + 627/1600*a^10 + 679/1600*a^8 - 127/1600*a^6 + 9/50*a^4 - 49/100*a^2 - 2/25, 1/3200*a^23 - 1/400*a^21 + 17/1600*a^19 - 47/1600*a^17 + 107/3200*a^15 - 63/1600*a^13 + 627/3200*a^11 + 679/3200*a^9 + 1473/3200*a^7 + 9/100*a^5 + 51/200*a^3 - 1/25*a, 1/6400*a^24 - 3/640*a^20 - 71/3200*a^18 - 1/1280*a^16 - 11/128*a^14 + 259/6400*a^12 + 51/1280*a^10 + 357/1280*a^8 + 109/800*a^6 - 29/80*a^4 - 1/20*a^2 + 1/25, 1/12800*a^25 - 3/1280*a^21 - 71/6400*a^19 - 1/2560*a^17 - 11/256*a^15 + 259/12800*a^13 + 51/2560*a^11 - 923/2560*a^9 - 691/1600*a^7 - 29/160*a^5 + 19/40*a^3 - 12/25*a, 1/25600*a^26 + 1/12800*a^22 - 39/12800*a^20 - 197/25600*a^18 - 179/12800*a^16 - 797/25600*a^14 + 2303/25600*a^12 - 551/25600*a^10 - 19/640*a^8 - 19/1600*a^6 - 17/50*a^4 - 37/100*a^2 - 4/25, 1/51200*a^27 + 1/25600*a^23 - 39/25600*a^21 - 197/51200*a^19 - 179/25600*a^17 - 797/51200*a^15 + 2303/51200*a^13 - 551/51200*a^11 - 19/1280*a^9 + 1581/3200*a^7 - 17/100*a^5 - 37/200*a^3 + 21/50*a, 1/6656000*a^28 - 1/832000*a^26 + 177/3328000*a^24 + 1009/3328000*a^22 - 33429/6656000*a^20 + 67841/3328000*a^18 - 118861/6656000*a^16 + 243303/6656000*a^14 + 647041/6656000*a^12 - 82179/208000*a^10 - 107781/416000*a^8 + 1247/104000*a^6 - 491/6500*a^4 + 252/1625*a^2 - 61/1625, 1/13312000*a^29 - 1/1664000*a^27 + 177/6656000*a^25 + 1009/6656000*a^23 - 33429/13312000*a^21 + 67841/6656000*a^19 - 118861/13312000*a^17 + 243303/13312000*a^15 - 684159/13312000*a^13 + 125821/416000*a^11 + 308219/832000*a^9 + 22047/208000*a^7 + 6009/13000*a^5 - 1373/3250*a^3 - 1361/3250*a, 1/26624000*a^30 + 29/2662400*a^26 + 69/2662400*a^24 - 129/5324800*a^22 - 14007/2662400*a^20 - 21573/1064960*a^18 - 450189/5324800*a^16 + 1189/5324800*a^14 + 17593/665600*a^12 - 84173/332800*a^10 - 249/2080*a^8 - 1259/20800*a^6 - 1663/5200*a^4 - 181/1300*a^2 - 642/1625, 1/53248000*a^31 + 29/5324800*a^27 + 69/5324800*a^25 - 129/10649600*a^23 - 14007/5324800*a^21 - 21573/2129920*a^19 - 450189/10649600*a^17 + 1189/10649600*a^15 + 17593/1331200*a^13 - 84173/665600*a^11 - 249/4160*a^9 - 1259/41600*a^7 - 1663/10400*a^5 + 1119/2600*a^3 + 983/3250*a], 1, 210, [210], 1, [ (4531)/(26624000)*a^(31) + (947)/(2662400)*a^(29) - (821)/(2662400)*a^(27) - (667)/(2662400)*a^(25) + (6729)/(5324800)*a^(23) - (859)/(665600)*a^(21) - (35847)/(5324800)*a^(19) - (94677)/(5324800)*a^(17) - (196719)/(5324800)*a^(15) - (30137)/(532480)*a^(13) - (33871)/(665600)*a^(11) + (22497)/(166400)*a^(9) - (5)/(52)*a^(7) - (151)/(208)*a^(5) + (109)/(40)*a^(3) + (9123)/(1625)*a , (461)/(4096000)*a^(31) + (2003)/(5324800)*a^(30) + (43)/(256000)*a^(29) + (217)/(266240)*a^(28) - (747)/(2048000)*a^(27) - (1901)/(2662400)*a^(26) - (459)/(2048000)*a^(25) - (1777)/(2662400)*a^(24) + (2239)/(4096000)*a^(23) + (16457)/(5324800)*a^(22) - (2431)/(2048000)*a^(21) - (6251)/(2662400)*a^(20) - (21289)/(4096000)*a^(19) - (67999)/(5324800)*a^(18) - (51613)/(4096000)*a^(17) - (212983)/(5324800)*a^(16) - (87611)/(4096000)*a^(15) - (417689)/(5324800)*a^(14) - (14639)/(512000)*a^(13) - (153317)/(1331200)*a^(12) - (747)/(128000)*a^(11) - (40591)/(332800)*a^(10) + (2157)/(16000)*a^(9) + (26951)/(83200)*a^(8) - (439)/(4000)*a^(7) - (4561)/(10400)*a^(6) - (399)/(2000)*a^(5) - (10011)/(5200)*a^(4) + (1083)/(500)*a^(3) + (76)/(13)*a^(2) + (428)/(125)*a + (3789)/(325) , (27)/(204800)*a^(30) + (147)/(1331200)*a^(28) - (461)/(1331200)*a^(26) + (493)/(1331200)*a^(24) - (223)/(2662400)*a^(22) - (617)/(332800)*a^(20) - (7727)/(2662400)*a^(18) - (33309)/(2662400)*a^(16) - (40743)/(2662400)*a^(14) - (33533)/(1331200)*a^(12) + (2681)/(332800)*a^(10) + (14633)/(83200)*a^(8) - (1653)/(10400)*a^(6) - (119)/(2600)*a^(4) + (2901)/(1300)*a^(2) + (29)/(325) , (13649)/(53248000)*a^(31) + (5673)/(13312000)*a^(29) - (11743)/(26624000)*a^(27) + (10189)/(26624000)*a^(25) + (102131)/(53248000)*a^(23) - (14109)/(26624000)*a^(21) - (298661)/(53248000)*a^(19) - (1302437)/(53248000)*a^(17) - (193223)/(4096000)*a^(15) - (1044357)/(13312000)*a^(13) - (344711)/(3328000)*a^(11) + (117137)/(832000)*a^(9) - (52417)/(104000)*a^(7) - (51347)/(52000)*a^(5) + (25417)/(6500)*a^(3) + (8677)/(1625)*a , (3069)/(53248000)*a^(31) - (829)/(2662400)*a^(30) + (2499)/(13312000)*a^(29) - (401)/(665600)*a^(28) + (1501)/(26624000)*a^(27) + (43)/(102400)*a^(26) - (703)/(26624000)*a^(25) + (423)/(1331200)*a^(24) + (38183)/(53248000)*a^(23) - (103)/(40960)*a^(22) - (2757)/(26624000)*a^(21) + (809)/(1331200)*a^(20) - (81713)/(53248000)*a^(19) + (1837)/(204800)*a^(18) - (275801)/(53248000)*a^(17) + (82081)/(2662400)*a^(16) - (828247)/(53248000)*a^(15) + (167191)/(2662400)*a^(14) - (372811)/(13312000)*a^(13) + (5491)/(51200)*a^(12) - (149933)/(3328000)*a^(11) + (32277)/(332800)*a^(10) + (321)/(832000)*a^(9) - (663)/(3200)*a^(8) + (707)/(52000)*a^(7) + (1307)/(2600)*a^(6) - (1711)/(3250)*a^(5) + (301)/(200)*a^(4) + (559)/(1000)*a^(3) - (274)/(65)*a^(2) + (3559)/(1625)*a - (3199)/(325) , (21)/(1024000)*a^(30) + (59)/(6656000)*a^(28) - (927)/(6656000)*a^(26) - (369)/(6656000)*a^(24) + (1719)/(13312000)*a^(22) - (6053)/(3328000)*a^(20) - (63569)/(13312000)*a^(18) - (69903)/(13312000)*a^(16) - (138221)/(13312000)*a^(14) - (75001)/(6656000)*a^(12) + (2649)/(208000)*a^(10) + (14463)/(208000)*a^(8) + (2463)/(104000)*a^(6) + (119)/(1625)*a^(4) + (1673)/(1625)*a^(2) + (2134)/(1625) , (3707)/(26624000)*a^(31) + (567)/(1331200)*a^(30) + (6189)/(13312000)*a^(29) + (289)/(332800)*a^(28) - (3657)/(13312000)*a^(27) - (721)/(665600)*a^(26) - (14179)/(13312000)*a^(25) - (797)/(665600)*a^(24) + (37469)/(26624000)*a^(23) + (3157)/(1331200)*a^(22) - (13813)/(6656000)*a^(21) - (3279)/(665600)*a^(20) - (218659)/(26624000)*a^(19) - (23171)/(1331200)*a^(18) - (455293)/(26624000)*a^(17) - (63307)/(1331200)*a^(16) - (1306671)/(26624000)*a^(15) - (25041)/(266240)*a^(14) - (668971)/(13312000)*a^(13) - (7473)/(66560)*a^(12) - (118113)/(3328000)*a^(11) - (193)/(4160)*a^(10) + (169131)/(832000)*a^(9) + (9793)/(20800)*a^(8) + (579)/(4000)*a^(7) - (309)/(1300)*a^(6) - (14409)/(13000)*a^(5) - (9147)/(5200)*a^(4) + (34087)/(13000)*a^(3) + (2492)/(325)*a^(2) + (13369)/(1625)*a + (4828)/(325) , (4141)/(4096000)*a^(31) + (12237)/(26624000)*a^(30) + (27633)/(13312000)*a^(29) + (1163)/(6656000)*a^(28) - (65583)/(26624000)*a^(27) - (16923)/(13312000)*a^(26) - (50171)/(26624000)*a^(25) + (13649)/(13312000)*a^(24) + (351291)/(53248000)*a^(23) + (11831)/(26624000)*a^(22) - (269989)/(26624000)*a^(21) - (60629)/(13312000)*a^(20) - (2117421)/(53248000)*a^(19) - (328241)/(26624000)*a^(18) - (6062237)/(53248000)*a^(17) - (1079977)/(26624000)*a^(16) - (11621939)/(53248000)*a^(15) - (110323)/(2048000)*a^(14) - (3865497)/(13312000)*a^(13) - (542287)/(6656000)*a^(12) - (201219)/(832000)*a^(11) - (12513)/(832000)*a^(10) + (426681)/(416000)*a^(9) + (5711)/(13000)*a^(8) - (44891)/(52000)*a^(7) - (14013)/(13000)*a^(6) - (219357)/(52000)*a^(5) + (4479)/(13000)*a^(4) + (239269)/(13000)*a^(3) + (13061)/(1625)*a^(2) + (52458)/(1625)*a + (5698)/(1625) , (9987)/(26624000)*a^(31) + (57)/(409600)*a^(30) + (9537)/(13312000)*a^(29) + (327)/(665600)*a^(28) - (12681)/(13312000)*a^(27) - (1507)/(2662400)*a^(26) - (9107)/(13312000)*a^(25) - (783)/(532480)*a^(24) + (54117)/(26624000)*a^(23) + (303)/(212992)*a^(22) - (26459)/(6656000)*a^(21) - (7419)/(2662400)*a^(20) - (323627)/(26624000)*a^(19) - (49137)/(5324800)*a^(18) - (1026029)/(26624000)*a^(17) - (100509)/(5324800)*a^(16) - (1900863)/(26624000)*a^(15) - (233547)/(5324800)*a^(14) - (1143343)/(13312000)*a^(13) - (14217)/(332800)*a^(12) - (254019)/(3328000)*a^(11) - (81)/(5200)*a^(10) + (314153)/(832000)*a^(9) + (3379)/(16640)*a^(8) - (1613)/(4000)*a^(7) + (357)/(2600)*a^(6) - (86753)/(52000)*a^(5) - (387)/(325)*a^(4) + (42163)/(6500)*a^(3) + (2029)/(650)*a^(2) + (7023)/(650)*a + (3084)/(325) , (13649)/(53248000)*a^(31) + (5563)/(26624000)*a^(30) + (5673)/(13312000)*a^(29) + (53)/(332800)*a^(28) - (11743)/(26624000)*a^(27) - (1393)/(2662400)*a^(26) + (10189)/(26624000)*a^(25) - (617)/(2662400)*a^(24) + (102131)/(53248000)*a^(23) + (229)/(5324800)*a^(22) - (14109)/(26624000)*a^(21) - (5749)/(2662400)*a^(20) - (298661)/(53248000)*a^(19) - (31011)/(5324800)*a^(18) - (1302437)/(53248000)*a^(17) - (94543)/(5324800)*a^(16) - (193223)/(4096000)*a^(15) - (85769)/(5324800)*a^(14) - (1044357)/(13312000)*a^(13) - (16179)/(665600)*a^(12) - (344711)/(3328000)*a^(11) + (2601)/(332800)*a^(10) + (117137)/(832000)*a^(9) + (23007)/(83200)*a^(8) - (52417)/(104000)*a^(7) - (4371)/(10400)*a^(6) - (51347)/(52000)*a^(5) - (1643)/(5200)*a^(4) + (25417)/(6500)*a^(3) + (946)/(325)*a^(2) + (8677)/(1625)*a + (5324)/(1625) , (187)/(819200)*a^(31) + (16607)/(26624000)*a^(30) + (3483)/(13312000)*a^(29) + (981)/(832000)*a^(28) - (21733)/(26624000)*a^(27) - (24273)/(13312000)*a^(26) - (17361)/(26624000)*a^(25) - (23161)/(13312000)*a^(24) + (15601)/(53248000)*a^(23) + (96741)/(26624000)*a^(22) - (83279)/(26624000)*a^(21) - (85789)/(13312000)*a^(20) - (420151)/(53248000)*a^(19) - (605091)/(26624000)*a^(18) - (1123127)/(53248000)*a^(17) - (1715327)/(26624000)*a^(16) - (1528169)/(53248000)*a^(15) - (245213)/(2048000)*a^(14) - (403447)/(13312000)*a^(13) - (504121)/(3328000)*a^(12) + (35369)/(3328000)*a^(11) - (180591)/(1664000)*a^(10) + (246647)/(832000)*a^(9) + (266367)/(416000)*a^(8) - (36237)/(104000)*a^(7) - (37187)/(52000)*a^(6) - (29587)/(52000)*a^(5) - (71427)/(26000)*a^(4) + (26627)/(6500)*a^(3) + (36167)/(3250)*a^(2) + (8851)/(1625)*a + (32948)/(1625) , (4033)/(10649600)*a^(31) + (13633)/(26624000)*a^(30) + (4707)/(6656000)*a^(29) + (87)/(83200)*a^(28) - (24299)/(26624000)*a^(27) - (3187)/(2662400)*a^(26) - (471)/(2048000)*a^(25) - (639)/(532480)*a^(24) + (175703)/(53248000)*a^(23) + (11903)/(5324800)*a^(22) - (66267)/(26624000)*a^(21) - (14327)/(2662400)*a^(20) - (666113)/(53248000)*a^(19) - (99833)/(5324800)*a^(18) - (2121021)/(53248000)*a^(17) - (279629)/(5324800)*a^(16) - (4465467)/(53248000)*a^(15) - (472763)/(5324800)*a^(14) - (216897)/(1664000)*a^(13) - (15279)/(133120)*a^(12) - (419833)/(3328000)*a^(11) - (27551)/(332800)*a^(10) + (107593)/(416000)*a^(9) + (24991)/(41600)*a^(8) - (118347)/(208000)*a^(7) - (11137)/(20800)*a^(6) - (68931)/(52000)*a^(5) - (2549)/(1040)*a^(4) + (93507)/(13000)*a^(3) + (213)/(26)*a^(2) + (37971)/(3250)*a + (23999)/(1625) , (25659)/(53248000)*a^(31) - (25731)/(26624000)*a^(30) + (12521)/(13312000)*a^(29) - (12787)/(6656000)*a^(28) - (27741)/(26624000)*a^(27) + (27277)/(13312000)*a^(26) - (25177)/(26624000)*a^(25) + (24169)/(13312000)*a^(24) + (156737)/(53248000)*a^(23) - (187849)/(26624000)*a^(22) - (102283)/(26624000)*a^(21) + (110391)/(13312000)*a^(20) - (908567)/(53248000)*a^(19) + (964479)/(26624000)*a^(18) - (2708399)/(53248000)*a^(17) + (2779743)/(26624000)*a^(16) - (408501)/(4096000)*a^(15) + (5393441)/(26624000)*a^(14) - (1828989)/(13312000)*a^(13) + (1877143)/(6656000)*a^(12) - (234661)/(1664000)*a^(11) + (398989)/(1664000)*a^(10) + (376319)/(832000)*a^(9) - (337053)/(416000)*a^(8) - (52289)/(104000)*a^(7) + (55403)/(52000)*a^(6) - (48297)/(26000)*a^(5) + (105873)/(26000)*a^(4) + (12826)/(1625)*a^(3) - (26084)/(1625)*a^(2) + (48981)/(3250)*a - (51726)/(1625) , (2343)/(53248000)*a^(31) - (59)/(26624000)*a^(30) + (727)/(13312000)*a^(29) + (3)/(3328000)*a^(28) - (2097)/(26624000)*a^(27) - (851)/(13312000)*a^(26) + (171)/(26624000)*a^(25) - (119)/(1024000)*a^(24) - (25451)/(53248000)*a^(23) + (1207)/(26624000)*a^(22) - (4487)/(2048000)*a^(21) - (9963)/(13312000)*a^(20) - (127139)/(53248000)*a^(19) - (53617)/(26624000)*a^(18) - (298483)/(53248000)*a^(17) + (55011)/(26624000)*a^(16) - (173661)/(53248000)*a^(15) - (147243)/(26624000)*a^(14) + (277977)/(13312000)*a^(13) - (7921)/(1664000)*a^(12) + (971)/(128000)*a^(11) + (74779)/(832000)*a^(10) + (22003)/(832000)*a^(9) + (55059)/(416000)*a^(8) + (10509)/(208000)*a^(7) + (11637)/(104000)*a^(6) - (2709)/(26000)*a^(5) + (7291)/(26000)*a^(4) + (7041)/(13000)*a^(3) - (1178)/(1625)*a^(2) + (5077)/(3250)*a - (2723)/(1625) , (30311)/(53248000)*a^(31) + (13667)/(5324800)*a^(30) + (14203)/(13312000)*a^(29) + (1581)/(332800)*a^(28) - (15553)/(26624000)*a^(27) - (15909)/(2662400)*a^(26) + (10459)/(26624000)*a^(25) - (16069)/(2662400)*a^(24) + (254261)/(53248000)*a^(23) + (78417)/(5324800)*a^(22) - (14819)/(26624000)*a^(21) - (70353)/(2662400)*a^(20) - (598691)/(53248000)*a^(19) - (559303)/(5324800)*a^(18) - (2547587)/(53248000)*a^(17) - (1502867)/(5324800)*a^(16) - (5138189)/(53248000)*a^(15) - (221993)/(409600)*a^(14) - (2493227)/(13312000)*a^(13) - (476017)/(665600)*a^(12) - (38691)/(208000)*a^(11) - (16969)/(33280)*a^(10) + (96011)/(416000)*a^(9) + (21897)/(8320)*a^(8) - (218249)/(208000)*a^(7) - (45999)/(20800)*a^(6) - (138027)/(52000)*a^(5) - (22769)/(2600)*a^(4) + (90959)/(13000)*a^(3) + (29333)/(650)*a^(2) + (8029)/(650)*a + (27551)/(325) ], 6738898358917.929, [[x^2 - x + 4, 1], [x^2 - 15, 1], [x^2 + 5, 1], [x^2 - x - 1, 1], [x^2 + 1, 1], [x^2 - 3, 1], [x^2 - x + 1, 1], [x^4 - 2*x^3 + 18*x^2 - 17*x + 61, 1], [x^4 - 66*x^2 + 909, 1], [x^4 + 22*x^2 + 101, 1], [x^4 - 2*x^3 - 4*x^2 + 5*x + 5, 1], [x^4 - x^2 + 1, 1], [x^4 - 7*x^2 + 16, 1], [x^4 + 3*x^2 + 1, 1], [x^4 + x^2 + 4, 1], [x^4 - 2*x^3 - 7*x^2 + 8*x + 1, 1], [x^4 - 5*x^2 + 25, 1], [x^4 - x^3 + 2*x^2 + x + 1, 1], [x^8 - 2*x^7 - 16*x^6 + 34*x^5 + 69*x^4 - 162*x^3 - 39*x^2 + 145*x - 5, 1], [x^8 + 60*x^6 + 1278*x^4 + 11205*x^2 + 32481, 1], [x^8 - 20*x^6 + 142*x^4 - 415*x^2 + 401, 1], [x^8 - 2*x^7 + 4*x^6 - 7*x^5 + 13*x^4 - 14*x^3 + 16*x^2 - 16*x + 16, 1], [x^8 - 3*x^6 + 8*x^4 - 3*x^2 + 1, 1], [x^8 - 32*x^6 + 378*x^4 - 1907*x^2 + 3721, 1], [x^8 + 12*x^6 + 46*x^4 + 65*x^2 + 25, 1], [x^8 + 8*x^6 + 38*x^4 + 73*x^2 + 121, 1], [x^8 - 4*x^7 - 16*x^6 + 62*x^5 + 48*x^4 - 204*x^3 + 141*x^2 - 28*x + 1, 1], [x^8 - 22*x^6 + 383*x^4 - 2222*x^2 + 10201, 1], [x^8 - 2*x^7 + 8*x^6 - 2*x^5 + 21*x^4 + 45*x^2 + 25*x + 25, 1], [x^16 - 12*x^14 + 98*x^12 - 422*x^10 + 1311*x^8 - 2390*x^6 + 3075*x^4 - 1625*x^2 + 625, 1], [x^16 + 36*x^14 + 530*x^12 + 4090*x^10 + 17595*x^8 + 41326*x^6 + 47811*x^4 + 20635*x^2 + 25, 1], [x^16 - 4*x^14 + 14*x^12 - 31*x^10 + 69*x^8 - 124*x^6 + 224*x^4 - 256*x^2 + 256, 1], [x^16 - 28*x^14 + 306*x^12 - 1638*x^10 + 4395*x^8 - 5362*x^6 + 2291*x^4 - 277*x^2 + 1, 1], [x^16 - 4*x^15 - 12*x^14 + 54*x^13 + 118*x^12 - 520*x^11 - 335*x^10 + 2268*x^9 + 922*x^8 - 9000*x^7 + 5374*x^6 + 8482*x^5 + 16246*x^4 - 34380*x^3 + 26565*x^2 + 33100*x + 45025, 1], [x^16 + 20*x^14 + 258*x^12 + 2010*x^10 + 11463*x^8 + 42890*x^6 + 115283*x^4 + 166415*x^2 + 160801, 1], [x^16 - 2*x^15 + 6*x^13 - 11*x^12 + 10*x^11 + x^10 - 27*x^9 + 55*x^8 - 54*x^7 + 4*x^6 + 80*x^5 - 176*x^4 + 192*x^3 - 256*x + 256, 1]]]