# SageMath code for working with number field 32.0.922280736601273559510361401082691485048147448883056640625.1
# Some of these functions may take a long time to execute (this depends on the field).
# Define the number field:
x = polygen(QQ); K. = NumberField(x^32 - 2*x^31 - 18*x^30 + 48*x^29 + 188*x^28 - 530*x^27 - 1260*x^26 + 2484*x^25 + 9755*x^24 - 11858*x^23 - 67320*x^22 + 77464*x^21 + 245214*x^20 - 151056*x^19 - 505449*x^18 - 437870*x^17 + 1660069*x^16 - 2306224*x^15 + 5411604*x^14 - 4977908*x^13 + 2763805*x^12 - 6379754*x^11 + 5902238*x^10 + 4026816*x^9 + 1973385*x^8 - 3666630*x^7 - 6023357*x^6 - 740934*x^5 - 664887*x^4 + 1401626*x^3 + 465968*x^2 + 1135240*x + 1263376)
# Defining polynomial:
K.defining_polynomial()
# Degree over Q:
K.degree()
# Signature:
K.signature()
# Discriminant:
K.disc()
# Ramified primes:
K.disc().support()
# Autmorphisms:
K.automorphisms()
# Integral basis:
K.integral_basis()
# Class group:
K.class_group().invariants()
# Unit group:
UK = K.unit_group()
# Unit rank:
UK.rank()
# Generator for roots of unity:
UK.torsion_generator()
# Fundamental units:
UK.fundamental_units()
# Regulator:
K.regulator()
# Analytic class number formula:
# self-contained SageMath code snippet to compute the analytic class number formula
x = polygen(QQ); K. = NumberField(x^32 - 2*x^31 - 18*x^30 + 48*x^29 + 188*x^28 - 530*x^27 - 1260*x^26 + 2484*x^25 + 9755*x^24 - 11858*x^23 - 67320*x^22 + 77464*x^21 + 245214*x^20 - 151056*x^19 - 505449*x^18 - 437870*x^17 + 1660069*x^16 - 2306224*x^15 + 5411604*x^14 - 4977908*x^13 + 2763805*x^12 - 6379754*x^11 + 5902238*x^10 + 4026816*x^9 + 1973385*x^8 - 3666630*x^7 - 6023357*x^6 - 740934*x^5 - 664887*x^4 + 1401626*x^3 + 465968*x^2 + 1135240*x + 1263376)
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
# Intermediate fields:
K.subfields()[1:-1]
# Galois group:
K.galois_group(type='pari')
# Frobenius cycle types:
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]