# SageMath code for working with number field 32.0.922280736601273559510361401082691485048147448883056640625.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 2*x^31 - 18*x^30 + 48*x^29 + 188*x^28 - 530*x^27 - 1260*x^26 + 2484*x^25 + 9755*x^24 - 11858*x^23 - 67320*x^22 + 77464*x^21 + 245214*x^20 - 151056*x^19 - 505449*x^18 - 437870*x^17 + 1660069*x^16 - 2306224*x^15 + 5411604*x^14 - 4977908*x^13 + 2763805*x^12 - 6379754*x^11 + 5902238*x^10 + 4026816*x^9 + 1973385*x^8 - 3666630*x^7 - 6023357*x^6 - 740934*x^5 - 664887*x^4 + 1401626*x^3 + 465968*x^2 + 1135240*x + 1263376) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - 2*x^31 - 18*x^30 + 48*x^29 + 188*x^28 - 530*x^27 - 1260*x^26 + 2484*x^25 + 9755*x^24 - 11858*x^23 - 67320*x^22 + 77464*x^21 + 245214*x^20 - 151056*x^19 - 505449*x^18 - 437870*x^17 + 1660069*x^16 - 2306224*x^15 + 5411604*x^14 - 4977908*x^13 + 2763805*x^12 - 6379754*x^11 + 5902238*x^10 + 4026816*x^9 + 1973385*x^8 - 3666630*x^7 - 6023357*x^6 - 740934*x^5 - 664887*x^4 + 1401626*x^3 + 465968*x^2 + 1135240*x + 1263376) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]