Normalized defining polynomial
\( x^{7} - x^{6} - 7x^{5} + 3x^{4} + 13x^{3} + x^{2} - 4x - 1 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[7, 0]$ |
| |
| Discriminant: |
\(78373945\)
\(\medspace = 5\cdot 13\cdot 1205753\)
|
| |
| Root discriminant: | \(13.42\) |
| |
| Galois root discriminant: | $5^{1/2}13^{1/2}1205753^{1/2}\approx 8852.906020059176$ | ||
| Ramified primes: |
\(5\), \(13\), \(1205753\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{78373945}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{6}-a^{5}-7a^{4}+3a^{3}+12a^{2}+a-1$, $a^{6}-a^{5}-7a^{4}+3a^{3}+13a^{2}+a-3$, $a^{6}-a^{5}-7a^{4}+3a^{3}+13a^{2}-3$, $4a^{6}-6a^{5}-25a^{4}+24a^{3}+40a^{2}-14a-9$, $2a^{6}-3a^{5}-12a^{4}+11a^{3}+18a^{2}-4a-4$
|
| |
| Regulator: | \( 34.6446938558 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{7}\cdot(2\pi)^{0}\cdot 34.6446938558 \cdot 1}{2\cdot\sqrt{78373945}}\cr\approx \mathstrut & 0.250455658486 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 21 sibling: | deg 21 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Degree 42 siblings: | deg 42, deg 42, deg 42, deg 42 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | R | ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ | ${\href{/padicField/11.7.0.1}{7} }$ | R | ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.7.0.1}{7} }$ | ${\href{/padicField/23.5.0.1}{5} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.7.0.1}{7} }$ | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ | ${\href{/padicField/53.7.0.1}{7} }$ | ${\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.1.2.1a1.1 | $x^{2} + 5$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 5.5.1.0a1.1 | $x^{5} + 4 x + 3$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(1205753\)
| $\Q_{1205753}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *5040 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.78373945.2t1.a.a | $1$ | $ 5 \cdot 13 \cdot 1205753 $ | \(\Q(\sqrt{78373945}) \) | $C_2$ (as 2T1) | $1$ | $1$ | |
| 6.295...625.14t46.a.a | $6$ | $ 5^{5} \cdot 13^{5} \cdot 1205753^{5}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $6$ | |
| *5040 | 6.78373945.7t7.a.a | $6$ | $ 5 \cdot 13 \cdot 1205753 $ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $6$ |
| 14.377...625.21t38.a.a | $14$ | $ 5^{4} \cdot 13^{4} \cdot 1205753^{4}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $14$ | |
| 14.874...625.42t413.a.a | $14$ | $ 5^{10} \cdot 13^{10} \cdot 1205753^{10}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $14$ | |
| 14.111...625.30t565.a.a | $14$ | $ 5^{9} \cdot 13^{9} \cdot 1205753^{9}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $14$ | |
| 14.295...625.30t565.a.a | $14$ | $ 5^{5} \cdot 13^{5} \cdot 1205753^{5}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $14$ | |
| 15.295...625.42t412.a.a | $15$ | $ 5^{5} \cdot 13^{5} \cdot 1205753^{5}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $15$ | |
| 15.874...625.42t411.a.a | $15$ | $ 5^{10} \cdot 13^{10} \cdot 1205753^{10}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $15$ | |
| 20.874...625.70.a.a | $20$ | $ 5^{10} \cdot 13^{10} \cdot 1205753^{10}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $20$ | |
| 21.874...625.84.a.a | $21$ | $ 5^{10} \cdot 13^{10} \cdot 1205753^{10}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $21$ | |
| 21.685...625.42t418.a.a | $21$ | $ 5^{11} \cdot 13^{11} \cdot 1205753^{11}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $21$ | |
| 35.764...625.126.a.a | $35$ | $ 5^{20} \cdot 13^{20} \cdot 1205753^{20}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $35$ | |
| 35.258...625.70.a.a | $35$ | $ 5^{15} \cdot 13^{15} \cdot 1205753^{15}$ | 7.7.78373945.1 | $S_7$ (as 7T7) | $1$ | $35$ |