Invariants
Base field: | $\F_{5^{2}}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 111 x^{2} - 400 x^{3} + 625 x^{4}$ |
Frobenius angles: | $\pm0.0738526172967$, $\pm0.284366381360$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.46224.1 |
Galois group: | $D_{4}$ |
Jacobians: | $2$ |
Isomorphism classes: | 2 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $321$ | $370113$ | $244628964$ | $152738602953$ | $95357916129201$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $10$ | $592$ | $15658$ | $391012$ | $9764650$ | $244116214$ | $6103367770$ | $152587603012$ | $3814699921018$ | $95367462167152$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=(2a+4)x^6+4ax^5+(4a+1)x^4+4ax^3+2x^2+(3a+3)x+a$
- $y^2=(2a+2)x^6+(2a+4)x^5+(3a+1)x^4+(2a+3)x^3+(4a+1)x^2+2x+2a+4$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5^{2}}$.
Endomorphism algebra over $\F_{5^{2}}$The endomorphism algebra of this simple isogeny class is 4.0.46224.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.25.q_eh | $2$ | 2.625.abi_bdr |