Properties

Label 2.25.aq_eh
Base field $\F_{5^{2}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5^{2}}$
Dimension:  $2$
L-polynomial:  $1 - 16 x + 111 x^{2} - 400 x^{3} + 625 x^{4}$
Frobenius angles:  $\pm0.0738526172967$, $\pm0.284366381360$
Angle rank:  $2$ (numerical)
Number field:  4.0.46224.1
Galois group:  $D_{4}$
Jacobians:  $2$
Isomorphism classes:  2

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $321$ $370113$ $244628964$ $152738602953$ $95357916129201$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $10$ $592$ $15658$ $391012$ $9764650$ $244116214$ $6103367770$ $152587603012$ $3814699921018$ $95367462167152$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5^{2}}$.

Endomorphism algebra over $\F_{5^{2}}$
The endomorphism algebra of this simple isogeny class is 4.0.46224.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.25.q_eh$2$2.625.abi_bdr